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Abstract

Protected areas are often thought of as a key conservation strategy for avoiding

deforestation and retaining biodiversity; therefore, it is crucial to know how

effective they are at achieving this purpose. Using a case study from Queens-

land, Australia, we identified and controlled for bias in allocating strictly

protected areas (IUCN Class I and II) and evaluated their impact (in terms of

avoiding deforestation) using statistical matching methods. Over the 30 years

between 1988 and 2018, approximately 70,481 km2 of native forest was cleared

in the study region. Using statistical matching, we estimated that 10.5%

(1,447 km2) of Category I and II (strict) protected areas would have been

cleared in the absence of protection. Put differently, 89.5% of strictly protected

areas are unlikely to have been cleared, even if they were never protected.

While previous studies have used statistical matching at a country or state

level, we conducted an analysis that allows regional comparison across a single

State. Our research indicates that strictly protected areas are marginally effec-

tive at preventing deforestation, and this likely due to biases in establishing

protected areas on unproductive land.
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1 | INTRODUCTION

Intact forests support globally significant environmen-
tal values, including carbon sequestration and storage,
water cycle regulation, Indigenous culture, heritage,
and biodiversity (Watson et al., 2018). Deforestation
pressure threatens biodiversity by exacerbating climate
change and reducing the area of suitable habitat avail-
able to species. Covering roughly one-third of Earth's
landmass, forested habitats represent one of the most
economically, ecologically, and culturally valuable

habitats to humankind (Fritz-Vietta, 2016). In addition
to being some of the most biologically diverse terres-
trial environments (DeAngelis, 2008; FAO, 2010),
more than 1.6 billion people rely on forests for their
daily subsistence needs (Ghimire & Pimbert, 1997),
and they also play a crucial role in climate change mit-
igation. Recent estimates suggest that forests absorb
one-third of annual carbon dioxide emissions released
from fossil fuels and contribute to a healthy atmo-
spheric balance of oxygen, carbon dioxide and humid-
ity (Reich, 2011).
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Despite these values, forests are imperiled by human
activities such as agriculture, infrastructure and urbani-
zation (Venter et al., 2016). Such actions, directly and
indirectly, cause deforestation. The world has committed
to both the sustainable use of natural resources and the
expansion of protected area networks to mitigate
the adverse impacts of extensive land clearing (Brooks
et al., 2015; Díaz et al., 2015; Messerli et al., 2019). Global
action to expand protected area networks (Dudley &
Phillips, 2006) is underpinned by the assumption that,
among other objectives, protected areas (such as national
parks) will effectively abate deforestation.

However, protected areas are often located on land
unsuitable for commercial or extractive activities
(i.e., steep slopes and low productive capacity (Joppa &
Pfaff, 2009; Miranda, Corral, Blackman, Asner, &
Lima, 2016; Pressey, Whish, Barrett, & Watts, 2002)). Con-
sequently, we might posit that protected areas in such
locations are unlikely to be cleared in the first place, and
evaluation methods which fail to account for this are
likely to overestimate the impact of protection (Andam,
Ferraro, Pfaff, Sanchez-Azofeifa, & Robalino, 2008; Pfaff,
Robalino, Sanchez-Azofeifa, Andam, & Ferraro, 2009).
The impact of protected areas is defined here as the
amount of deforestation avoided due to protection, relative
to the counterfactual scenario of no protection (Pressey,
Visconti, & Ferraro, 2015). To ensure resources directed at
conservation initiatives are used to their maximum capac-
ity, credible information regarding the effectiveness of
conservation interventions is fundamental (Adams, Bar-
nes, & Pressey, 2019; Barnes, Glew, Wyborn, &
Craigie, 2018; Ferraro & Pattanayak, 2006; Pressey,
Weeks, & Gurney, 2017; Visconti et al., 2019a).

In Australia, the coverage in protected areas afforded to
native species by protected areas has been assessed (Barnes,
Szabo, Morris, Possingham, & Rouget, 2015; Taylor
et al., 2011), as has the protected area network's capacity to
manage threats (Kearney, Adams, Fuller, Possingham, &
Watson, 2018) and meet species or community representa-
tion targets (Barr, Watson, Possingham, Iwamura, &
Fuller, 2016). Such studies have shown that protected areas
in Australia tend to underperform, but the effects of protec-
ted areas on avoiding deforestation have not yet been care-
fully examined. As part of a broader movement towards
evidence-based policymaking, a growing body of literature
calls for robust impact evaluations (Gertler, Martinez,
Premand, Rawlings, & Vermeersch, 2016). Robust impact
evaluations attribute causality between an intervention
(in this case, protection) and specific observable variables
(in this case, the biophysical characteristics of land and
deforestation). Recent literature has increased the promi-
nence of rigorous impact evaluations (McKinnon, Mascia,
Yang, Turner, & Bonham, 2015), yet they remain rare in

conservation literature (Baylis et al., 2015; Ferraro, 2009;
Pattanayak, Wunder, & Ferraro, 2010; Schleicher
et al., 2019). There are efforts to improve evidence stan-
dards, but they are hindered by resourcing constraints
(Curzon & Kontoleon, 2016), lack of technical capacity, per-
ceived misalignment with core business (Craigie, Barnes,
Geldmann, & Woodley, 2015), and the mistaken assump-
tion that more straightforward approaches will yield suffi-
cient evidence to support policy (Adams et al., 2019; Rose
et al., 2019). Consequently, there has been limited uptake of
robust impact evaluations of conservation interventions
(Baylis et al., 2015). In this study, we assess strictly protected
areas in terms of their impact on avoiding land clearing.

Queensland is Australia's second-largest state, and its
diverse and iconic landscapes support globally significant
biodiversity (Queensland Government, 2019). Queensland
is home to 85% of Australia's native mammals, 72% of
Australia's native birds, 50% of Australia's native frogs and
reptiles and more than 11,000 plant species (Cresswell &
Murphy, 2017). Queensland's rich biodiversity is also
imperiled by the world's highest deforestation rates, aver-
aging nearly 400,000 ha per year (Hudson, 2019). Despite
a decline in global land clearing over the past 35 years
(Song et al., 2018a; Song et al., 2018b), land clearing has
been steadily increasing in Queensland over recent years
(Evans, 2016; Queensland Department of Environment
and Science, 2018; Reside et al., 2017). The Australian
Federal Government and Queensland State Government
have committed to acquiring areas under high threat of
deforestation for protection (Commonwealth of
Australia, 1997) by securing land from activities that con-
flict with nature conservation (Commonwealth of
Australia, 2015). Still, the extent to which protected areas
contribute to this commitment is unclear. Despite the
globally significant values, a recent audit found there are
no government strategies in place to systematically plan
effective conservation actions (Queensland Audit
Office, 2018), including protected areas.

Here we estimate the amount of clearing avoided due
to strictly protected areas in Queensland by comparing
two methods: statistical matching using biophysical char-
acteristics and a naïve comparison using logistic regres-
sion without matching. We also investigate regional
differences in the amount (in terms of percent and area)
of the avoided clearing. The findings of this work have
implications for the future management and conserva-
tion of Queensland's forests. Understanding impact in
this context is critical to improving recommendations for
new protected areas as networks continue to expand, not
only in Queensland (Queensland Government, 2017) and
Australia (Australian Government, 2016) but also glob-
ally as a result of international obligations (UNEP, 2016;
United Nations, 2014).
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2 | MATERIALS AND METHODS

The goal of this analysis is to measure the impact of the
Queensland protected area network on deforestation. We
measured impact (i.e., avoided loss) as the difference in
deforestation between strictly protected areas and statisti-
cally comparable places (Gertler et al., 2016). We com-
pared two types of evaluation to estimate impact; (1) using
regression analysis on statistically unmatched data and
(2) using regression analysis on statistically matched data.

2.1 | Study area

The study area (Queensland, Australia) is divided into
13 bioregions. Bioregions demarcate distinct regions
based on climate, geology and biota (Thackway &
Cresswell, 1997) and are the reporting unit for assessing
the extent of protection of ecosystems in Australia's
National Reserve System (Environment Australia, 2000).
We excluded four grassland-dominated bioregions
(390,000 km2 or 22.2% of land area in the state) because
such habitats are incompatible with the outcome, defor-
estation (described below).

2.2 | Strictly protected areas

Queensland's total protected area network covers 8.21%
(130,493 km2) of the total land area (1.85 million km2) in
the State (Figure 1). Each protected area has an IUCN
classification (Dudley & Phillips, 2006) that specifies the
protected area's management strategies. The strictest
IUCN Management Categories (I and II) are specifically
designated for biodiversity conservation, whereas other
IUCN Management Categories allow for multiple uses,
including sustainable resource harvest. The differences in
these management purposes may influence where such
protected areas are placed in the landscape. To avoid con-
founding across multiple drivers of protection, we
constrained our analysis to “strictly” protected areas
(IUCN Class I and II) established in 1988 or later (S1).
The total extent of IUCN Management Categories I and
II protected areas declared after 1988 was 49,536 km2 or
38% of Queensland's total current protected area network
and 2.9% of the total land area.

2.3 | Deforestation

Deforestation was defined as a change from forested
landscapes (forests and woodlands) to a non-forested
land cover. We used satellite data (based on Landsat 7)

for tree canopy cover to assess deforestation (Dadhich &
Hanaoka, 2010; Green, Kempka, & Lackey, 1994; Koh,
Miettinen, Liew, & Ghazoul, 2011). This remotely sensed
deforestation data combines a spectral clearing index
derived from short wave infrared bands, tree foliage den-
sity, and an index of variability over time to calculate a
“probability of woody vegetation clearing” index
(Wedderburn-Bisshop, Walls, Senarath, & Stewart, 2002).
Produced by the Queensland State Government under
the “State-wide land and trees study” (SLATS), this data
has a resolution of 30 m*30 m and was available from
1988–2018. (Department of Science ITaI, 1988–2016). We
excluded areas attributed as “natural tree death” or “nat-
ural disaster damage” from further analysis. Thus, the
outcome variable was binary, with a value of “1” indicat-
ing that a pixel contained woody vegetation before 1988
but was deforested between 1988 and 2018. Values of “0”
indicate no change in forest cover. Areas that were def-
orested before 1988 were also given a value of “0”.

2.4 | Quasi-experimental design

Quasi-experimental methods construct a plausible coun-
terfactual comparison group with similar biophysical char-
acteristics to treatment sites (i.e., strictly protected areas).
Such methods are a robust approach for ex-poste policy
evaluation or where on-ground experiments are not feasi-
ble (i.e., due to ethical constraints). Since it is impossible
to observe what would have happened to strictly protected
areas in the absence of protection (Holland, 1986), this
approach allows us to mimic a randomized control trial
within the context of an ex-post study (Blackman, 2013;
Jusys, 2018; Kirk, 2007; Stuart & Rubin, 2008). Specifically,
we utilized statistical matching (hereafter referred to as
matching). Matching is a method of pre-processing data
such that the effect of protection is decoupled from the
influence of co-variates which also influence observed out-
comes. Matching achieves this by producing a statistically
reasonable counterfactual group (Stuart, 2010) (Figure 2).
Counterfactual areas were then used as a proxy to estimate
the otherwise unobservable conservation outcomes of
strictly protected areas had they not been protected.

2.5 | Identification of relevant co-
variates

Protected areas are expected to retain habitat and secure
biodiversity in the long term by preventing deforestation.
Protection and deforestation are both predicted and
influenced by biophysical and landscape characteristics.
For example, clearing for pastoral production is
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FIGURE 1 Distribution of strictly protected areas declared after 1988 and the extent of clearing which has occurred since 1988.

Bioregions considered in this study are: Brigalow Belt (BB), Cape York (CY), Central Queensland Coast (CQC), Desert Uplands (DU),

Einasleigh Uplands (EU), Mulga Lands (Mulga), New England Tablelands (NET), Southeast Queensland (SEQ), and Wet Tropics (WET)
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Australia's primary driver of land clearing (Department
of Climate Change and Energy Efficiency, 2017). In
Queensland, more than 88% of the state is used for pri-
mary industry (86% for pastoral production, and 2% for
broad-acre cropping) (Department of Agriculture and
Fisheries, 2018). Land suitability in grass biomass is a
predictor of deforestation and protection because areas
with high grass biomass represent prime cattle country.
Woodlands with a high capacity for grazing are more
likely to be cleared for this purpose and are therefore
unlikely to be protected. Using this well-established princi-
ple, we developed a theory of change to guide the selection
of co-variates (Figure S1) and identified candidate co-
variates known to predict land clearing in this context.
These were: distance to population centers, distance to
roads, distance to watercourses, grass biomass, land zone
(geological information), rainfall, slope, shaded relief, tem-
perature and vegetation type (Andam et al., 2008; Cuenca,
Arriagada, & Echeverría, 2016; Laurance et al., 2002;
Veldkamp & Lambin, 2001) (Table 1). All data were sou-
rced from the Queensland Government's publicly available
spatial catalogue—“QSpatial” (Queensland Spatial Cata-
logue – QSpatial, 2019). We performed data preparation
and cleaning in ArcGIS 10.2.1 (ESRI, 2014). The data were
rasterized into the same spatial extent and resolution
(250*250 m pixel size) for analysis. A resolution of 250 m
was chosen because it is sufficient to maintain mapping
accuracy for use in predictive modeling (Hengl et al.,
2015; Storlie, Phillips, VanDerWal, & Williams, 2013).

Once rasterized, spatial data frames representing each co-
variate value at the pixel centroid were created and data
checks were performed (S1.2).

2.6 | Pixel matching

Following multiple trials, we selected a random sample
of each bioregional dataset comprising 20% of the total
pixels. The number of pixels assessed varied by bioregion
with a maximum of 1.4 million pixels (Brigalow Belt) and
a minimum of 22,727 pixels (New England Tablelands)
(S2; Table S1). We then interrogated the data for unac-
ceptably high levels of correlation and removed variables
that had a correlation coefficient greater than 0.7 or a
variance inflation factor (VIF) greater than 0.4 (Hair,
Black, Babin, & Anderson, 2013) (S3). Next, we used the
MatchIt package (Ho, Imai, King, Stuart, &
Whitworth, 2018) in R Version 3.3.2 and RStudio 3.3.2 to
match protected and unprotected pixels based on their
co-variates. Exact matching was used for categorical co-
variates (vegetation and landzone), and nearest-neighbor
based propensity score matching with replacement was
used for all continuous variables (Table 1). Propensity
scores are a pixel's probability of being treated (protected)
based on the baseline characteristics of the co-variates
estimated via logistic regression (Rosenbaum &
Rubin, 1983). Thus, the propensity score model had the
formula:

FIGURE 2 Flow chart for the design of the quasi-experimental approach used in this analysis: design (left) and analysis (right)
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TABLE 1 Description of each co-variate, including the logic behind its inclusion, the dataset name, data authority, year published, and

data type

Co-variate Rationale
Restrictions in protected–
unprotected matched pairs Data type

Distance To Built-Up Areas
(Department of Natural
Resources MaE, 2014)

Higher costs are associated with
extracting from lands that are
further from current urban areas
(Chomitz & Gray, 1999).

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Distance To Major Roads
(Department of Transport and
Main Roads, 2018)

Roads facilitate access and are a
known correlate to deforestation
(Chomitz & Gray, 1999).

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Distance To Watercourses
(Department of Natural
Resources MaE, 2016)

Increased access to surface water
increases the likelihood of land
development for agricultural or
grazing purposes (Apan &
Peterson, 1998).

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Grass Biomass (Department of
Agriculture and Fisheries, 2013)

Lands with higher pasture
production are less likely to be
protected due to higher production
value; vice versa, protected areas
will have lower production values
on average.

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Shaded Relief (Department of
Natural Resources MaE, 2013)

Plants and animals both need
sunlight to grow and thrive, but
access to shade is critical to
productivity.

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Land Zones (Government. Q, 2017) Soil and geological characteristics are
significant determinates of land
arability and therefore decisions
around clearing (Wilson
et al., 2005).

Pixels should be matched with the
same vegetation type

Categorical; 12
classes

Vegetation Type (Department of
Environment and Science, 2017)

The vegetation type is an appraisal
criterion for national park
selection and specific vegetation
categories are more attractive for
clearing (Seabrook, McAlpine, &
Fensham, 2008), and clearing is
permissible on specific vegetation
types (Queensland
Government, 2018a).

Pixels should be matched with the
same vegetation type

Categorical; 16
classes

Rainfall (Booth, Nix, Busby, &
Hutchinson, 2014)

Rainfall is a key determinant of land
arability which may lead to
competition between protection
and production (Nori et al., 2013).

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Slope (Department of Natural
Resources MaE, 2013)

Flatland (low percent slope) is easier
to clear (Wilson et al., 2005).

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Temperature (Booth et al., 2014) Temperature is a key determinant of
land arability which may lead to
competition between protection
and production (Nori et al., 2013).

Minimize the mean standardized
difference between protected and
unprotected groups

Continuous

Note: Data authority names are Commonwealth Scientific and Industrial Research Organisation (CSIRO), Department of Environment and Science (DES),
Department of Agriculture and Fisheries (DAF) Department of Natural Resources, Mines and Energy (DNRME). Restrictions in the protected and unprotected
matched pairs describe how matching acts to reduce the differences in the co-variate distributions.
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protected ~co�variate1þ co�variate2,exact
¼ c }landzone},}veg}ð Þ ð1Þ

Nearest-neighbor matching selects the most similar con-
trol (unprotected) pixel for each protected pixel. It does
this by selecting pixels with the most negligible mean
standardized difference from the protected pixel's propen-
sity score. This matching method was selected based on
data characteristics: the co-variate distribution was not
normal; the sample size was large, the outcome variable
(cleared/not cleared) was dichotomous (Ho, Imai, King, &
Stuart, 2007; Imbens & Rubin, 2015; Rubin, 2006). All
unmatched control pixels were discarded, allowing us to
estimate the treatment effects on the counterfactual
group. Matching with replacement was used to enable
control pixels to be used as matches for more than one
protected pixel and decrease bias in the estimates of
impact (Stuart, 2010). Further details on model specifica-
tions are provided in S1.2.

2.7 | Quality checks: Co-variate balance

We created paired boxplots and used a Man-Whitney U
Test to demonstrate the differences between protected
and cleared pixels. We evaluated match performance

(co-variate balance) for continuous co-variates using
Mean Standardized Difference (MSD), variance ratios
(V), Kolmogorov–Smirnov (KS) test-statistics and Love
Plots in the Cobalt package v3.4.1 (Greifer, 2018). Using
Love Plots, we visualized the MSD in co-variate values
for each co-variate within each bioregion (Greifer, 2018)
based on a random sample of the data before and after
the data was matched. Post-matching, MSD should be as
close to zero as possible. We considered balance
acceptable if MSD was less than or equal to 0.25,
(Austin, 2009; Stuart, Lee, & Leacy, 2013). For V
and KS, we considered scores less than or equal to 2 and
0.1, respectively, to indicate acceptable balance
(Austin, 2009; Stuart et al., 2013). We report MSD, V
and KS for each bioregion (Table 2; S4: Table S2). We
also compared the similarity of the likelihood of protec-
tion (propensity scores) by investigating the distribu-
tions of values for protected and matched unprotected
(i.e., counterfactual) pixels (Imai & Ratkovic, 2014) for
all bioregions (Table 2; S4: Table S2: Figures S4–S23).
When distributions overlapped well visually, we inferred
the matching method produced a comparable set of
counterfactual pixels (Stuart, 2010). We tested for hid-
den bias using Rosenbaum's bounds (S8; Figure S34)
and examined the influence of spatial autocorrelation
(S7: Figures S25–S33).

TABLE 2 Example of impact (ATT) calculation for matched data and a naïve estimate (unmatched data)

Label
Protected
(Y = “1”, N = “0”)

Cleared
(Y = “1”, N = “0”)

Propensity
score (%)

Expt.
mod (%) Category

A 0 0 82 4.94*10�4 Counterfactual pixel

B 1 0 75 0.94 Protected, not likely to be cleared

C 0 0 80 1.06 Counterfactual pixel

D 1 0 27 0 Protected, not likely to be cleared

E 0 1 6 55 Not protected, not likely to be protected,
likely to be cleared

F 0 0 1 14 Not likely to be cleared, not likely to be
protected and neither cleared nor
protected

G 0 1 1 21 Cleared, not likely to be protected

H 0 1 3 36 Cleared, not likely to be protected

Mean outcome 0.4

ATT.Matcheda �0.06

ATT.Un-matchedb �20.21

Note: The values presented here were curated from our Brigalow Belt dataset to represent each category best. For simplicity, only the propensity score is
presented, not individual co-variate data. The expected outcome model (expt.mod) is used to estimate the likelihood that each pixel will be cleared with higher
values suggesting a greater likelihood of clearing.
aMean expected outcome for protected pixels (rows B & D) minus the mean expected outcome for unprotected, but statistically similar (i.e., counterfactual)

pixels (rows A&C).
bMean expected outcome for protected pixels (rows B & D) minus the mean expected outcome for all unprotected pixels (rows A, C, E-H).
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2.8 | Estimating causal impact

To estimate the causal impact of protection on deforestation,
we calculated the Average Treatment Effect on the Treated
(ATT). This allowed us to assess the likelihood of clearing
per pixel in the absence of protection by comparing the
expected change in forest cover, based on each pixel's pro-
pensity for protection (propensity score) and their co-variate
values, with the actual change in forest cover (Arriagada,
Ferraro, Sills, Pattanayak, & Cordero-Sancho, 2012;
Imbens & Rubin, 2015). The ATT was derived using doubly
robust methods (Rubin, 1973; Stuart, 2010; Stuart &
Rubin, 2008), which use the propensity scores derived from
matching as a co-variate (Stuart, 2010; Stuart &
Rubin, 2008). This controls for any remaining imbalance
between the co-variates of matched treated and untreated
pixels resulting in robust estimates of impact (Rubin, 1973)
in a process called “regression adjustment” (Blackman,
2013; Imbens, 2015; Rosenbaum & Rubin, 1983).

Regression adjustment is a statistical procedure that
uses co-variates that are known to drive clearing and the
propensity score derived from matching as predictors in a
logistic model to estimate the probability of clearing.
Doing so quantifies the relationship between the co-
variates and the outcome (i.e., cleared or not cleared) for
each counterfactual and control pixel (Guo & Fraser, 2014;
Rubin, 1973). Regression adjustments were conducted in
Zelig v5.1.6 (Hair et al., 2013; Nori et al., 2013) by fitting a
weighted logistic regression model to the matched dataset.
This model has the formula

cleared ~propensity_scoreþ co�variate1þ co�variate2…
ð2Þ

To capture any uncertainty in the overall ATT estimate,
we computed 1,000 simulations of this model for each
bioregion (Horton & Kleinman, 2007) (see S9; Figure S33
for further details). Finally, since matching with replace-
ment was utilized, weights were incorporated into the
regression to reflect the number of times each counterfac-
tual pixel was used to match (Stuart, 2010).

The average values from the above model were then
used to estimate the ATT. The ATT is the mean differ-
ence in the expected outcomes (or the values derived
from the model) between the protected and counterfac-
tual pixels (see the example from the Brigalow Belt in
Table 2). Negative ATT values suggest clearing would
have occurred if protection was not present. The higher
the negative value, the more likely the average pixel
would have been cleared in the absence of protection.

The mean ATT (King, Tomz, & Wittenberg, 2000) for
each bioregion was used to estimate the total area of

avoided loss (km2) attributable to strictly protected areas
(Rasolofoson, Ferraro, Jenkins, & Jones, 2015) by multi-
plying the bioregion's average ATT (as a % of the proba-
bility of clearing) by the total area within each bioregion
that was cleared between 1988 and 2018 (Jusys, 2018;
Miteva, Ellis, Ellis, & Griscom, 2019).

2.9 | Un-matched (naïve) estimation of
avoided deforestation

To assess the implications of not performing statistical
matching when calculating impact, we used the same
subset of randomly sampled pixels (i.e., 20% of a biore-
gion's total number of pixels) and replicated the approach
described above to calculate ATT without statistically
matching treated (protected) and control (unprotected)
pixels. This generated a naïve (non-robust) estimate of
the impact of protection on deforestation (Table 2).

3 | RESULTS

3.1 | Characteristics of strictly
protected areas

We found notable differences between cleared and protected
pixels in their biophysical characteristics (co-variates). Specif-
ically, protected pixels were further from built-up areas, had
a lower grazing capacity (grass biomass), and occurred on
steeper slopes. Cleared areas tended to be closer to roads,
have a higher temperature and lower rainfall. Overall, we
found that the majority of co-variates were statistically dis-
similar between protected and cleared areas, and this trend
was consistent across bioregions (p < .05) (Figure 3).

3.2 | Pixel matching and co-variate
balance

Despite significant differences in protected and unpro-
tected groups before matching (S4; Figure S4), we were
able to match between 99 and 100% of protected pixels in
all bioregions to equivalent unprotected pixels (S2-6). A
minimum of one of the statistical balance thresholds was
met for all co-variates and bioregions, but the majority
met more than one. An in-text exemplar of tabulated bal-
ance metrics for the Brigalow Belt is shown in Table 3. Of
the co-variates included in each bioregion, 27.7% did not
meet a conservative threshold of 0.1 for mean standard-
ized differences; however, 97% reached a less conserva-
tive limit of 0.25 (Figure 4; Table 3). Metrics for all other
bioregions are provided in S4: Table S2.
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Similarly, the variance ratio was less than two for the
majority (97%) of co-variates. However, 58% of co-variates
failed to meet the Kolmogorov–Smirnov threshold. We

concluded that our matching algorithms performed well in
eliminating non-comparable pixels, but we performed a
regression adjustment given the poor performance against

FIGURE 3 Boxplots showing the differences in biophysical characteristics of cleared versus protected pixels for each bioregion. BB,

Brigalow Belt; CY, Cape York; CQC, Central Queensland Coast; DU, Desert Uplands; EU, Einasleigh Uplands; MU, Mulga Lands; NET,

New England Tablelands; SEQ, Southeast Queensland; WET, Wet Tropics

TABLE 3 Example of a co-variate balance table using results from the Brigalow Belt

Co-
variate name

Mean
unprotected
random

Mean
protected
random

MSD
random

Mean
unprotected
matched

Mean
protected
matched

MSD
matched V. KS

Dist. to built-up
areas

0.38 0.57 0.68 0.57 0.57 �0.014^ 1.18^ 0.08^

Shaded relief 126.88 126.30 �0.03 126.46 126.30 �0.01^ 1.37^ 0.05^

Rainfall 627.01 697.05 0.50 686.30 697.05 0.08^ 1.23^ 0.08^

Dist. to road 0.13 0.29 0.73 0.29 0.29 �0.03^ 1.10^ 0.05^

Slope 6.58 18.90 0.71 19.078 18.90 �0.01^ 1.01^ 0.01^

Dist. to
watercourse

0.06 0.073 0.14 0.07 0.07 0.02^ 1.00^ 0.04^

Temperature 21.16 20.34 �0.48 20.39 20.34 �0.03^ 1.03^ 0.06^

Note: This table shows the co-variate name, the mean of the unprotected pixels from the random sample, the mean average of the protected pixels from the
random sample, and their mean standardized difference (MSD). It then shows the mean average of the unprotected and protected pixels after matching, and
their mean standardized differences. The values for the matched test statistics include variance ratios (V) and Kolmogorov–Smirnov (KS) thresholds. For each
threshold, a “ ”̂ is given next to the value if it is acceptably balanced.
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the Kolmogorov–Smirnov threshold. We found that all our
results were robust to hidden bias (Γ >1.2) (Rasolofoson
et al., 2015), and we found clearing is spatially autocorrelated
(see supporting information (Table 3; S7 and S8).

3.3 | Comparing measures of avoided
deforestation (average treatment effect on
the treated, ATT)

Without matching, the estimate of avoided deforestation
across all bioregions was 25%—more than double the
matched estimate (10.5% Table 4). We observed signifi-
cant differences in the estimated avoided deforestation
for individual bioregions when comparing unmatched
and matched approaches. The mean ATT was almost
always higher without matching (Cape York being an
exception). Without matching, 7.32% of clearing between
1988 and 2018 was avoided because of protection in the

Briagalow Belt. With matching, the highest mean ATT
was also in the Brigalow Belt (2.60%) but was compara-
tively lower than the naïve estimate. The lowest ATT
with matching was observed in the Wet Tropics bioregion
(0.26%). Without matching, the lowest ATT was observed
in Cape York (0.17%) (Table 4).

3.4 | ATT estimates vary between
bioregions

The overarching characteristic of the study region was that
highly cleared areas tended to have minimal protection,
and strictly protected areas tended to have minimal clear-
ing (Table 4). The highest matched ATT estimates were
observed in the Brigalow Belt (�2.60%), Southeast Queens-
land (�1.60%), and the Mulga Lands (�1.42%). The lowest
estimated ATT was observed in the Wet Tropics (�0.26%).
The mean ATT was less than 1% for five of the nine

FIGURE 4 Love plots of propensity scores for each bioregion. Love plots show the standardized mean difference of co-variates before

and after matching (Matched and Unmatched). Love plots illustrate the standardized mean difference between protected and unprotected

pixels before and after matching. The dotted line is a conservative mean differences conservative threshold of 0.1—though values up to 0.25

are acceptable. In these plots, the variable “distance” is the propensity score. Unadjusted values are the standardized mean differences before

matching, and adjusted values are the standardized mean. BB, Brigalow Belt; CY, Cape York; CQC, Central Queensland Coast; DU, Desert

Uplands; EU, Einasleigh Uplands; MU, Mulga Lands; NET, New England Tablelands; SEQ, Southeast Queensland; WET, Wet Tropics
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bioregions in the study area (Cape York, Central Queens-
land Coast, Einasleigh Uplands, and the Wet Tropics)
(Figure 5), indicating strictly protected areas had minimal
impact on avoiding deforestation in these bioregions.

• Between 1988 and 2018, 70,190 km2 of land was cleared
in the study region. We estimated that 518 km2

(or 96,800 football fields) of the clearing was avoided
because of strictly protected areas across the study region
(covering 974,907 km2 or approximately 182,184,232
football fields). The majority of avoided deforestation was
1,075 km2 (200,889 football fields) in the Brigalow Belt.
The smallest area of avoided deforestation was approxi-
mately 0.96 km2 in the Wet Tropics (Table 3). In total,
this means that 10.5% of land in strictly protected areas
would have been cleared in the absence of protection.
Put differently, 89.5% of the strictly protected areas
included in this study are unlikely to have been cleared,
even if they were never protected.

4 | DISCUSSION

We evaluated the potential of strictly protected areas to
avoid land clearing in Queensland, Australia. Since 1988,
the strictly protected area network in the study area

tripled in area (13,480 km2 in 1988 to 46,611 km2 in
2018), with the primary objective of conserving biodiver-
sity by avoiding and managing threatening processes
(Queensland Government, 2017). Total deforestation in
the considered bioregions was 57,488 km2 or about 10.7
million football fields in this period. Despite this growing
threat, we found that 89.5% of land in strictly protected
areas are not suitable for clearing, even in the absence of
protection. The estimated ATT was highly variable
between bioregions. Highly developed regions tended to
have a higher mean ATT and regions with moderate
to low development had an ATT close to zero. These
results demonstrate that strictly protected areas are not
guarantees of effective reduction in deforestation because
strictly protected areas are biased towards areas with a
low propensity for clearing.

Our analysis does not include the full suite of protec-
ted areas. IUCN Management Categories of protected
areas have different management intents (i.e., resource
harvesting and recreation) and different drivers for their
gazettal (Nature Conservation Act, 1992). To reliably
quantify the impact, we chose to constrain our analysis to
strictly protected areas to avoid conflating several addi-
tional economic, political or social drivers. Nonetheless,
the results of these analyses support recommendations
for outcome-based targets (Visconti et al., 2019b) focused
on preventing threatening processes (Sacre, Weeks,

TABLE 4 Average treatment effects on the treated (ATT) for each bioregion

Mean ATT
unmatched

Mean ATT
matched

Area
protected
(km2)

Per cent
protected

Area
cleared
(km2)

Per cent of
area cleared^

Avoided
(km2)

Brigalow Belt‡ �7.32% �2.60% 6,319 1.72 41,337 11.6 �164.3

Cape York‡ �0.17% �0.78% 14,651 11.9 347 0.3 �111.4

Central
Queensland
Coast‡

�1.37% �0.84% 623 4.20 458 3.7 �5.2

Desert Uplands‡ �3.51% �1.26% 1,720 2.46 5,523 9.1 �21.7

Einasleigh
Uplands‡

�0.82% �0.37% 2,463 4.81 2,327 1.0 �9.1

Mulga Lands‡ �4.31% �1.42% 5,091 2.73 16,438 9.7 �72.3

New England
Tablelands‡

�2.92% �1.38% 154 1.97 508 7.1 �2.1

Southeast
Queensland‡

�3.64% �1.60% 6,843 10.85 2,877 4.6 �109.5

Wet Tropics‡ �0.88% �0.26% 8,747 44.13 375 2.2 �22.7

Total �24.94% �10.51% 46,611 70,190 �518.4

Note: Results are presented for unmatched and matched samples. We also show the area of avoided deforestation in km2 as estimated with matching. Estimates
of avoided clearing (km2) were calculated by multiplying the total cleared area in the bioregion between 1988 and 2018? by the mean ATT (%).
‡Signifies a significant difference in mean ATT of the matched and unmatched datasets at the 5% level (p-value ≤ .05).
^ The total cleared area is the product of the number of pixels by 0.0625 (or the area of one pixel in square kilometres).
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Bode, & Pressey, 2020). Using rigorous evaluation mea-
sures for conservation interventions, we can quantify the
impact of conservation interventions leading to measur-
able outcomes for biodiversity.

While other studies have considered the impact of
protected areas at a state or national scale, our study
uniquely examines the ATT by bioregion. In Queensland,
the extent of deforestation per bioregion is not uniform
(with between 0.34% and 11.6% of each bioregion
cleared). Performing a per bioregion analysis provides
insights into the drivers of deforestation at socio-
economic and biologically relevant spatial scales that
would have otherwise been unobserved. For example, we
observed significant variation in ATT estimates across
bioregions (Table 4; Figure 4). The highest ATT was
observed in the Brigalow Belt (2.6%). The Brigalow Belt,
named Australia's most ecologically transformed area
(Ponce Reyes et al., 2016), is heavily impacted by grazing
activities. With 11.6% of the bioregion cleared between
1988–2018 and over 30% cleared since European

settlement (Neldner et al., 2017), this bioregion has expe-
rienced the highest clearing rates in recent years
(Queensland Department of Environment and
Science, 2018). Likewise, in South-east Queensland,
where a long history of development has resulted in a
profoundly transformed landscape (Neldner et al., 2017),
our results demonstrate that less than 2% of strictly
protected areas are likely to have been cleared in this bio-
region in the absence of protection.

In contrast to the low ATT of strictly protected areas
in highly cleared bioregions, we also found low ATT in
relatively intact bioregions. For example, the Cape York
Peninsula has had 0.38% of its area cleared since 1988
and received an ATT estimate of 0.78% (Figure 5). This
bioregion contains vast and relatively undisturbed land-
scapes which support extraordinary ecological and Tradi-
tional Owner heritage values (Hitchcock et al., 2013).
Clearing, however, is an emerging threat to this bioregion
as it is targeted for future development under a Federal
commitment to increase agricultural outputs in Northern

FIGURE 5 Maps of the study area. (a) showing the variation in impact measured as avoided clearing (ATT) and (b) the per cent of land

that has been cleared from 1988 to 2018. Brigalow Belt (BB), Cape York (CY), Central Queensland Coast (CQC), Desert Uplands (DU),

Einasleigh Uplands (EU), Mulga Lands (Mulga), New England Tablelands (NET), Southeast Queensland (SEQ) and Wet Tropics (WET)
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Australia (Commonwealth of Australia, 2015; Taylor,
Payer, & Brokensha, 2015). It is possible that incorporat-
ing the likelihood of land clearing into protected area
selection will help future protected areas make measur-
able contributions toward achieving the globally agreed
goal of halting deforestation (United Nations, 2018). The
next few years present a new opportunity to acquire
high-impact protected areas that mitigate likely defores-
tation in Cape York.

Strictly protected areas with low estimates of avoided
deforestation in regions where deforestation rates are
low may have a high impact on other metrics because
there are other protected area objectives. For example,
we observed the lowest ATT in the Wet Tropics biore-
gion (0.26%). This mountainous and species-rich
bioregion has, by per cent of total area, the largest protec-
ted area network (44.13%), but has also experienced
extensive land clearing for agriculture (Neldner
et al., 2017). Large portions of the protected area estate in
the Wet Tropics safeguard the remnant and topographi-
cally complex rainforest habitat and its highly endemic
fauna (Commonwealth of Australia, 1986) as World Heri-
tage Areas (Liburd & Becken, 2017). Establishing a World
Heritage Area in the Wet Tropics has successfully prohib-
ited selective logging (Laurance, 1994). Our analysis con-
siders clearing outright and does not address the impact
of strictly protected areas in avoiding selective logging.
We could not estimate avoided selective harvest because
the spatial resolution of the remotely sensed satellite data
is insufficient to measure selective timber harvest. For
these reasons, the Wet Tropics bioregion is expected to
have a low estimate of avoided deforestation but may
have considerable impacts when evaluating alternative
outcome variables.

Confounding variables may mask conservation pro-
gram failure or mimic conservation success, and it is
essential to use approaches (such as statistical matching)
to control for confounding. Scale is an important consid-
eration for confounding variables because they are not
uniformly distributed across landscapes (Joppa, Loarie, &
Pimm, 2008). Indeed, we found that there were differ-
ences in the landscape characteristics between protected
and cleared pixels within the Queensland context. Protec-
ted pixels tended to have less favorable characteristics for
agricultural development (i.e., higher slope). This result
is consistent with previous studies demonstrating the
non-uniformity of protected pixels across landscapes
(Joppa & Pfaff, 2010). A failure to control for con-
founding would have over-estimated the ATT of strictly
protected areas by as much as 50%. This result is consis-
tent with extensive literature regarding the use of statisti-
cal matching for estimating impact (Andam et al., 2008;
Bruggeman, Meyfroidt, & Lambin, 2015; Nolte,

Agrawal, & Barreto, 2013; Rasolofoson et al., 2015). To
ensure resources directed at conservation initiatives are
used to their maximum capacity, credible information
regarding the effectiveness of conservation interventions
is fundamental.

Australia is a relatively high-income nation with glob-
ally significant species. Australia was an early adopter of
establishing a reserve system based on systematic conser-
vation planning principles (Australian Government, n.
d.). We found that strictly protected areas are perhaps
underperforming to avoid threatening processes immi-
nence and severity of current biodiversity declines. If they
are ill-performing, then the strategies guiding their selec-
tion require a restructuring. For example, it may be help-
ful for Governments to employ robust impact evaluations
when considering candidates to fulfill specific socio-
ecological objectives. Such evaluations can be used as a
negotiation tool for costing considerations (Adams,
Game, & Bode, 2014). Evaluations can be used to assess a
parcel's merit and potentially provide a cost–benefit anal-
ysis for including that parcel in the network by crucially
answering the question: “What would happen if I did
nothing?” Publically reporting on this evaluation can be
an invaluable negotiation tool for future assets and
resourcing and fill a fundamental knowledge gap con-
cerning how well the current network fulfills its
objectives.

5 | LIMITATIONS AND
FUTURE WORK

Our analysis was constrained to strictly protected areas.
This was necessary to avoid conflating economic, social
and political drivers of gazettal for lower IUCN manage-
ment categories. Further research should compare the
avoided deforestation of multiple Management Catego-
ries of protected areas. Outliers or Average Treatment
Effect on the Treated (ATT) estimates above the first and
third quartile, were present for all bioregions. Signifi-
cantly, the ATT estimates in the New England Tablelands
(NET) ranged from �0.07% to �6.70%, giving this biore-
gion a more comprehensive range than others considered
in this study. We attribute the cause of the outliers to the
extensive clearing (McAlpine, Fensham, & Temple-
Smith, 2002; Queensland Government, 2018b) and a
small area under protection in the bioregion (28 km2).
We, therefore, presented the estimated ATT for NET, but
caution that outliers influence the mean estimate. We
also note that our study considers the 30 years from 1988
to 2018, corresponding with the development of high-res-
olution, highly accurate datasets on land clearing
(Department of Science ITaI, 1988–2016). Whilst this

HERNANDEZ ET AL. 13 of 18



does not provide an estimate of impact since European
colonization, it does provide an estimate of impact which
corresponds to both modern clearing (Evans, 2016) and
the rapid expansion of the protected area network
(Australian Government, 2016), however, these results
may not reflect future deforestation trends.
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