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Abstract. Physical processes within geoscientific models are
sometimes described by simplified schemes known as pa-
rameterisations. The values of the parameters within these
schemes can be poorly constrained by theory or observa-
tion. Uncertainty in the parameter values translates into un-
certainty in the outputs of the models. Proper quantification
of the uncertainty in model predictions therefore requires a
systematic approach for sampling parameter space. In this
study, we develop a simple and efficient approach to identify
regions of multi-dimensional parameter space that are con-
sistent with observations. Using the Parallel Ice Sheet Model
to simulate the present-day state of the Antarctic Ice Sheet,
we find that co-dependencies between parameters preclude
any simple identification of a single optimal set of parame-
ter values. Approaches such as large ensemble modelling are
therefore required in order to generate model predictions that
incorporate proper quantification of the uncertainty arising
from the parameterisation of physical processes.

1 Introduction

The aim of any geoscientific model is typically to replicate
the state and behaviour of real-world systems as accurately
as possible, or at least with sufficient accuracy to generate
useful insights into the problem being studied. This requires
the model to incorporate a sufficiently accurate description of

the real world, as well as sufficiently accurate data to provide
boundary conditions and an initial state. However, geoscien-
tific modelling inevitably involves making compromises in
model design and implementation. Observational data, which
is typically used to provide both initial and boundary condi-
tions and to evaluate the models, can also be limited in ac-
curacy and spatial coverage. Model error can therefore re-
sult from a number of sources, including missing or incom-
plete physics, missing or incomplete boundary conditions,
and missing or incomplete initial conditions. This study fo-
cuses upon the first of these three potential sources of error,
aiming to explore the contribution to model prediction error
that arises from the simplifications made in the representa-
tion of physical processes within geoscientific models.

Either through choice or through necessity, physical
processes are sometimes described by simplified schemes
known as parameterisations (e.g. Hourdin et al., 2017). The
values of the parameters within these schemes are often
poorly constrained by theory or observation. Uncertainty in
the parameter values translates into uncertainty in the outputs
of the models. This uncertainty must be properly quantified
in order to properly quantify the uncertainty in model predic-
tions.

There are a number of reasons why parameterisations are
required, or why a decision might be made to use them.
These reasons include the following:
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– Lack of physical understanding. If a process is insuffi-
ciently well understood to enable a complete physical
description, then it will need to be described in simpli-
fied terms.

– Computational constraints. Models can be computa-
tionally expensive, in terms of the number of proces-
sors required to run the model, the amount of mem-
ory required to run the model and also in terms of the
amount of time required to complete a simulation. Com-
putational costs are increased if the user wishes to em-
ploy large ensemble modelling approaches (for exam-
ple, to explore parameter space or to assess sensitivity
to initial conditions). Even if a process is fully under-
stood from a physical perspective, simplified parameter-
isations might therefore be required simply for reasons
of computational feasibility.

– Design choice. An intentional decision might be made
to employ a parameterisation for the purposes of a pro-
cess study.

The use of parameterisations rests upon a number of prior
assumptions. These assumptions are usually made implicitly,
rather than being stated explicitly. Key assumptions include
the following:

– That the underlying process can be adequately de-
scribed by a parameterisation. The underlying model
must be capable of replicating the real world, at least to
a desired degree of accuracy. A parameterisation must
therefore be capable of adequately describing the pro-
cess that it seeks to replicate.

– That optimal (true) parameter values exist. Optimal pa-
rameter values can only exist if the underlying model
is capable of adequately replicating the real world, not
just for one particular state but for the full spectrum of
physical states that the model is designed to explore.

– That these optimal (true) parameter values can be lo-
cated. Even if optimal parameter values do exist, a
means must exist to actually find them. Parameter val-
ues can have a direct theoretical or observational basis;
otherwise sufficient observational data must exist, both
to drive the model and to allow the model simulations
to be evaluated. The model must also have a stable ref-
erence state and it must be possible to locate this; one
category of model for which this might not be true is
coupled atmosphere–ocean general circulation models,
which are prone to drift (e.g. Sen Gupta et al., 2012)
and can potentially exhibit multiple stable states (e.g.
Hawkins et al., 2011). Computational constraints might
also be a factor: it must be feasible to run a sufficiently
large number of simulations, and to run simulations of a
sufficiently long duration, to allow for adequate explo-
ration of parameter space.

Thus, even if optimal parameter values do exist, a number of
factors can prevent them from being meaningfully located.
These factors include the availability of computational re-
sources, which might constrain ensemble sizes and/or render
it infeasible to integrate the model to a stable, equilibrium
state, and the lack of sufficient, or sufficiently reliable, ob-
servational data to drive and evaluate the model. Interaction
with other, possibly incomplete, parameterisations, or with
finite model resolution and numerics, might also lead to the
determination of incorrect parameter values. This might arise
through cancellation of errors or through other more general
error propagation mechanisms, such as the addition of errors
or the selection of alternative branches through the model
code. Finally, there are human constraints too: there may
simply be too many interacting parameters for it to be fea-
sible to perform any comprehensive parameter optimisation
exercise within a realistic timeframe.

In practice, because of the time and effort required for pa-
rameter optimisation, the typical approach is simply to rely
on prior published values. This can be the case even if these
values were derived using a different version of the model
or a different model configuration (for example, a different
model resolution). This approach has the potential to result
in inappropriate parameter choices, with the potential to in-
troduce bias into model experiments. Using fixed parameter
values in model ensembles will also mean that any uncertain-
ties derived in the model predictions will not incorporate the
contribution arising from the uncertainty in parameter values.
This neglection of parameter uncertainty will result in an un-
derestimation of the uncertainty in the model predictions.

Despite the challenges involved, there is an increasing em-
phasis on quantifying uncertainty in geoscientific modelling.
This is apparent, for example, within the reports of the Inter-
governmental Panel on Climate Change (e.g. Stocker et al.,
2013). We therefore contend that, despite the challenges in-
volved, parameter optimisation and sampling of parameter
uncertainty should be a routine part of the process of geosci-
entific modelling. These efforts should also be documented
as part of the process of publishing scientific results (e.g. Pit-
tard, 2016).

The process of parameter optimisation is commonly re-
ferred to as “tuning” (e.g. Hourdin et al., 2017). Broadly
speaking, the process of tuning a model typically involves in-
tegrating it to an equilibrium state under given boundary con-
ditions (which are usually derived from observations, if suit-
able observations exist). The simulations are then evaluated
against observational datasets, with the degree of model dis-
agreement being quantified using a pre-defined cost function.
Given knowledge of the evolution of a system over time, for
example if information is available on past climate states, this
process can be generalised to evaluate the ability of a model
to simulate multiple different states (e.g. Forest et al., 2008).
A model of the Antarctic Ice Sheet, for example, might be
evaluated for its ability to simulate past warm or cold inter-
vals (e.g. DeConto and Pollard, 2016).

Geosci. Model Dev., 14, 5107–5124, 2021 https://doi.org/10.5194/gmd-14-5107-2021



S. J. Phipps et al.: Optimising parameters in geoscientific models 5109

The techniques used to optimise geoscientific models can
be grouped into four broad categories:

– Trial and error. This is the simplest technique and con-
sists simply of running the model forwards multiple
times, with different combinations of parameter val-
ues. The parameters can be varied separately (single-
parameter optimisation) or simultaneously (multiple-
parameter optimisation). Single-parameter approaches
are simpler and more common (e.g. Pittard, 2016).
However, if interactions exist between the values of
different parameters, then only multiple-parameter ap-
proaches are capable of finding the optimal state of
the model. Nonetheless, multiple-parameter optimisa-
tion can require large ensemble sizes to be effective, par-
ticularly if a large number of parameters are being opti-
mised (e.g. Järvinen et al., 2010; Gladstone et al., 2012;
Pollard et al., 2016). The efficacy of multiple-parameter
approaches is therefore potentially limited by the com-
putational resources available. Solutions include the ap-
plication of adaptive sampling algorithms (e.g. Solonen
et al., 2012), particle-based approaches (e.g. Lee et al.,
2020) or the construction of an emulator or metamodel
(simple statistical models that seek to describe the be-
haviour of vastly more complex computational models,
e.g. O’Hagan, 2006; Neelin et al., 2010; Bellprat et al.,
2012; Lee et al., 2013; Chang et al., 2014; McNeall
et al., 2016; Williamson et al., 2017; Edwards et al.,
2019; Gilford et al., 2020).

– Bayesian techniques. These are statistical techniques
that seek to incorporate prior knowledge on plausible
parameter values (e.g. Jackson et al., 2004; Rougier,
2007; Forest et al., 2008; Sexton et al., 2012). The ap-
plication of Bayesian techniques requires knowledge of
the prior distributions of the parameter values, which are
frequently unknown and which may require a relatively
large number of ensemble simulations even for rela-
tively low-dimensional parameter space (Guillas et al.,
2009).

– Inversion. Inversion requires the derivative of the model
to each key parameter, which is obtained either through
re-formulation of the model (a so-called adjoint model)
or via an approximation of the derivative using meth-
ods such as finite differencing (e.g. Errico, 1997; Forget
et al., 2015; Lyu et al., 2018). Inversion has the advan-
tage that it enables much larger parameter spaces to be
explored. However, the resulting inversions may only
be applicable for one very specific model state and may
therefore under-predict the uncertainty in model projec-
tions. Examples of the application of inversion using
ice sheet models include PISM (van Pelt et al., 2013;
Habermann et al., 2013), ISSM (Larour et al., 2012) and
SICOPOLIS (Heimbach and Bugnion, 2009).

– Machine learning. Machine learning techniques aim to
enumerate unspecified relationships between input and
output datasets, without requiring any understanding of
the underlying physical processes (e.g. DeVries et al.,
2017; Kim and Nakata, 2018). This allows for the dis-
covery and utilisation of previously unknown relation-
ships but does raise questions regarding the applicabil-
ity for states that lie outside the range spanned by the
training datasets.

In this study, because of the potential limitations associated
with the alternatives, we adopt the first of these four ap-
proaches (trial and error). We attempt to reduce the computa-
tional cost of multi-parameter optimisation by developing a
simple and efficient iterative approach to identify regions of
multi-dimensional parameter space that are consistent with
observations. We then demonstrate the application of this
technique by using the Parallel Ice Sheet Model to simulate
the present-day state of the Antarctic Ice Sheet. The meth-
ods are described in Sect. 2, while the results are presented
and discussed in Sect. 3. Finally, conclusions are presented
in Sect. 4.

2 Methods

2.1 Optimisation process

The iterative parameter optimisation process that we develop
in this study consists of five key steps:

1. Identify the parameters to be optimised.

2. Select the initial ranges for each parameter.

3. Construct and run a perturbed-physics ensemble.

4. Evaluate each member of the ensemble against observa-
tions and determine which regions of parameter space,
if any, can be rejected.

5. Repeat steps 3 and 4 until the process has converged,
i.e. until no further changes are made to the ranges of
any of the parameters.

Steps 1 and 2 will be informed by existing knowledge of the
model and of the system being simulated. This might include
theory, observations, prior published work and even prelim-
inary modelling experiments that involve exploring the be-
haviour of individual parameters.

To illustrate the application of this process using a real-
world geoscientific model, we will now present a demon-
stration using the Parallel Ice Sheet Model to simulate the
present-day state of the Antarctic Ice Sheet (AIS).

2.2 Modelling framework

In this study, we use version 0.7.3 of the Parallel Ice Sheet
Model (PISM), a highly parallel, open-source model that is
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suitable for large ensemble modelling and the simulation
of large-scale marine ice sheets. Computational efficiency
is achieved by employing a hybrid stress balance model to
calculate ice velocities. PISM is described and evaluated for
Antarctica, by Winkelmann et al. (2011), Martin et al. (2011)
and Albrecht et al. (2015).

The model is written in C++ with MPI used for
distributed-memory parallelism. The Portable, Extensible
Toolkit for Scientific Computation (PETSc; Balay et al.,
1997, 2015) is used to solve the model equations. Time step-
ping is explicit and adaptive. PISM has more than 200 user-
configurable parameters, with the values set via command-
line options (Albrecht et al., 2015).

The following is an outline summary of the key model
physics. Specific aspects that form the target of the param-
eter optimisation are discussed in further detail later in this
section. This description also reflects the specific configura-
tion of the model used in this study and may not therefore
accurately describe the configurations used in other studies.

2.2.1 Grid

The model is configured to simulate the present-day state of
the entire AIS, with a horizontal resolution of 15km×15 km
and 101 quadratically spaced vertical levels.

2.2.2 Ice dynamics and thermodynamics

The two prognostic model variables are ice temperature and
ice thickness. A hybrid approach is used to calculate the
stress balance within the ice sheet, with the ice velocity being
calculated by the superposition of two shallow stress balance
approximations (Winkelmann et al., 2011). The shallow ice
approximation (SIA) describes planar flow by shear parallel
to the surface, while the shallow shelf approximation (SSA)
describes membrane-type flow of floating ice or grounded
ice sliding over a weak base (MacAyeal, 1989; Weis et al.,
1999; Schoof, 2006). The SIA and SSA are both shallow ap-
proximations based on the assumption of a small thickness-
to-width ratio for the ice sheet and are more computationally
efficient than higher-order full-Stokes models. The flow law,
which describes the relationship between the applied stress
and the resulting deformation or strain rate, is described
by the isotropic, polythermal scheme of Paterson and Budd
(1982), Lliboutry and Duval (1985) and Aschwanden et al.
(2012). An energy-conserving enthalpy-based model is used
to calculate the ice temperature (Aschwanden and Blatter,
2009; Aschwanden et al., 2012).

2.2.3 Subglacier

PISM assumes that the ice sheet rests on a layer of till
(Clarke, 2005). A spatially and temporally variable basal
yield stress is determined by modelling a saturated subglacial
till (Schoof, 2006; Bueler and Brown, 2009). The till friction
angle is determined heuristically as a function of bed eleva-

tion, based on the hypothesis that till with a marine history
should be weaker than till without such a history (Winkel-
mann et al., 2011; Martin et al., 2011; Aschwanden et al.,
2013). A pseudo-plastic power law model is used to calcu-
late the basal shear stress, and therefore to determine where
sliding occurs. The subglacial hydrology model calculates
the effective thickness of the layer of liquid water in the till,
which is used to compute the effective pressure on the till, on
a purely local basis (Tulaczyk et al., 2000; Bueler and Brown,
2009). No model of glacial isostatic adjustment is used in
this study, as it is restricted to equilibrium simulations of the
present-day state of the ice sheet.

2.2.4 Marine ice sheets

The lateral boundaries of the ice sheet are free to evolve
(Winkelmann et al., 2011). Subgrid parameterisations are
used to describe the positions of the ice shelf calving fronts
(Albrecht et al., 2011) and the grounding lines (Gladstone
et al., 2010; Feldmann et al., 2014). Calving is described us-
ing the physically based two-dimensional parameterisation
of Levermann et al. (2012).

2.2.5 Boundary conditions

The topography follows Bedmap2 (Fretwell et al., 2013).
Geothermal heat flow is taken from An et al. (2015). Cli-
matological air temperature and precipitation for the pe-
riod 1979–2014 are taken from the RACMO2.3 regional
model (Van Wessem et al., 2014). The positive degree-day
scheme of Calov and Greve (2005) is used to calculate the
rate of surface melt. Following Pollard and DeConto (2012),
Golledge et al. (2015) and DeConto and Pollard (2016), an
atmospheric lapse rate correction of 8 Kkm−1 is used. The
boundary-layer ocean model of Hellmer et al. (1998) and
Holland and Jenkins (1999) is used to calculate the melt rate
and temperature at the base of the floating ice shelves.

2.3 Step 1: Parameter selection

Through reading prior published work and the model docu-
mentation, 10 parameters are selected for optimisation on the
basis that they describe key physical processes and that their
values are not well constrained by either theory or observa-
tions. Out of the 10 parameters, 6 relate to the description
of basal sliding, which is highly parameterised and involves
parameters that are particularly poorly constrained (Albrecht
et al., 2015). Two parameters relate to the description of the
internal stress balance within the ice sheet, while the final
two parameters relate to the description of calving. Table A1
provides the command-line options used by PISM to specify
the values of each parameter, as well as a brief description.
For ease of readability, the descriptive names provided in Ta-
ble A1, rather than the names of the command-line options,
will be used throughout this paper.
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2.4 Step 2: Selection of initial ranges

The selection of initial parameter ranges is based on prior
knowledge. PISM is distributed with a number of pre-
configured experiments (Albrecht et al., 2015), with the
configuration that forms the basis of this study being the
Sea-level Response to Ice Sheet Evolution (SeaRISE; Bind-
schadler et al., 2013) experiment. The default parameter val-
ues specified for this experiment, as well as the values em-
ployed in previous studies that have used PISM to model the
AIS, are provided in Table 1. These previous studies have
modelled either the entire AIS or individual sectors and have
used PISM to simulate the past, present and future states of
the ice sheet:

– Martin et al. (2011) simulate the present-day state of the
AIS using a horizontal resolution of 19.98 km.

– Golledge et al. (2015) simulate the present and future
states of the AIS using horizontal resolutions of 20 and
10 km.

– Pittard (2016) simulates the present and future states of
the Lambert–Amery glacial system using a horizontal
resolution of 5 km. Single-parameter perturbation ex-
periments are used to select parameter values, with the
ranges used for optimisation and the final values se-
lected shown in Table 1.

– Kingslake et al. (2018) simulate the evolution of the AIS
over the past 205 000 years using a horizontal resolu-
tion of 15 km. An ensemble approach is used to sample
uncertain parameters, with the ranges used for optimi-
sation, and the final reference state selected, shown in
Table 1.

Shallow ice enhancement factor

The shallow ice enhancement factor is a flow enhancement
factor for the non-sliding Shallow Ice Approximation, which
is used to model grounded ice (Payne et al., 2000; Bueler
et al., 2007). The factor sets the value of esia in Eq. (1), where
Dij is the strain rate tensor, F is the function that describes
the flow law, σ ′ij is the stress deviator tensor, T is the ice
temperature, ω is the liquid water fraction, P is the pressure,
and σ 2

=
1
2σ
′

ijσ
′

ij defines the second invariant σ of the stress
deviator tensor (Albrecht et al., 2015).

Dij = esiaF(σ,T ,ω,P )σ
′

ij (1)

Previous studies have used values of the shallow ice en-
hancement factor in the range 1.0–5.0 (Table 1). We therefore
use this range as the initial range in this study.

Shallow shelf enhancement factor

The shallow shelf enhancement factor is a flow enhancement
factor for the shallow shelf approximation (Weis et al., 1999). Ta
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This approximation is used to model floating ice and is also
used by PISM to describe ice streams and the sliding of
grounded ice (Bueler and Brown, 2009). The enhancement
factor sets the value of essa in Eq. (2), where ν is an effective
viscosity, D2

=
1
2D
′

ijD
′

ij , and the other terms have the same
meaning as in Eq. (1) (Albrecht et al., 2015).

σ ′ij = e
−

1
3

ssa 2ν(D,T ,ω,P,d)Dij (2)

Most previous studies have used values of the shallow
shelf enhancement factor in the range 0.4–0.8; however, Pit-
tard (2016) used values as large as 1.6 (Table 1). We use the
full range 0.4–1.6 as the initial range in this study.

Exponent of basal resistance model

PISM uses a pseudo-plastic power law model to describe
basal resistance (Albrecht et al., 2015). The exponent of the
basal resistance model sets the value of q in Eq. (3), where
τ b is the basal shear stress, τc is the yield stress, u is velocity,
and uthreshold is a parameter with a fixed value of 100 ma−1.
Sliding occurs when the shear stress reaches the yield value.

τ b =−τc
u

u
q

threshold|u|
1−q

(3)

Theoretically, the value of the exponent must lie in the
range 0< q < 1. Previous studies have used values that span
the whole of this range. We therefore use the full range 0–1
as the initial range in this study.

Effective till pressure scaling factor

The yield stress τc in Eq. (3) is calculated as a function of
a till friction angle φ and an effective till pressure Ntil (Al-
brecht et al., 2015).

τc = (tanφ)Ntil (4)

The effective till pressure scaling factor sets the value of
δ in Eq. (5), where Po is the ice overburden pressure, Wtil is
the effective thickness of water in the till, and Wmax

til is the
maximum amount of water in the till (Tulaczyk et al., 2000;
Albrecht et al., 2015). The default values of e0 = 0.69 and
Cc = 0.12 are based on laboratory experiments (Tulaczyk
et al., 2000).

Ntil = δPo10(e0/Cc)(1−Wtil/W
max
til ) (5)

We are only aware of one previous study that has varied
the effective till pressure scaling factor parameter: Kingslake
et al. (2018) explored values in the range 0.02–0.05, with a
reference value of 0.04. We use the range 0.01–0.05 as the
initial range in this study. This spans the published range of
0.02–0.05, but with a reduced lower bound of 0.01 chosen
so that we sample values both above and below the default
value in PISM of 0.02.

Calving rate scaling factor

PISM uses the calving scheme of Levermann et al. (2012).
The calving rate scaling factor sets the value of K in Eq. (6),
where c is the calving rate and ε̇+ and ε̇− are the horizontal
strain rates (Albrecht et al., 2015).

c =Kε̇+ε̇− (6)

The units of c, K and ε̇+/ε̇− are ms−1, ms and s−1, re-
spectively. Levermann et al. (2012) find that values ofK&1×
109 ma [&3.2× 1016 ms] are required in order to maintain
a stable grounding line, while a value of K ≈ 5× 109 m a
[≈ 1.6× 1017 ms] is found to give the best agreement with
observations. Previous studies have used values of the calv-
ing rate scaling factor in the range 1015–1019 m s (Table 1).
We therefore use this range as the initial range in this study.

Minimum thickness of floating ice shelves

The calving scheme in PISM removes any ice at the calv-
ing front that is thinner than a specified minimum thickness
(Albrecht et al., 2015).

Previous studies have used values in the range 200–225 m.
However, observations suggest a wider plausible range of
150–250 m (Albrecht et al., 2015). We use this wider range
as the initial range in this study.

Till friction angle parameters

PISM calculates the till friction angle φ in Eq. (4) as the func-
tion of four parameters (Albrecht et al., 2015).

φ(x,y)

=


φmin, b(x,y)≤ bmin

φmin+ (b(x,y)− bmin)M, bmin < b(x,y) < bmax

φmax, bmax ≤ b(x,y)

(7)

Here, φmin and φmax are the minimum and maximum till fric-
tion angles, bmin and bmax are the elevations of the minimum
and maximum till friction angles, b(x,y) is the bed eleva-
tion, and M = (φmax−φmin)/(bmax− bmin). By definition,
φmin ≤ φmax and bmin ≤ bmax.

Previous studies have used values for φmin and φmax in the
ranges 1–15◦ and 20–40◦, respectively. For φmin, we use the
initial range 1–20◦ so that we include the full published range
and sample values both above and below the default value
in PISM of 15◦. For φmax, we use the initial range 20–40◦.
Although this means that we do not sample values larger than
the default value of 40◦, observations do not support values
larger than this upper limit (Cuffey and Paterson, 2010).

Previous studies have used values for bmin and bmax in the
ranges −1500 to −500 m and −500 to 500 m, respectively.
For bmin, we use the published range −1500 to −500 m as
the initial range in this study. While this range excludes the
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default value in PISM of −300 m, this is unavoidable given
the constraint bmin ≤ bmax. For bmax, we use the initial range
−500 to 1000 m. This includes the full published range and
samples values both above and below the default value of
700 m.

2.5 Step 3: Ensemble construction and integration

A 100-member perturbed-physics ensemble is constructed.
Each of the 10 parameters is perturbed independently, using
a Latin hypercube approach (e.g. Helton and Davis, 2003)
to sample the ranges of possible values. Latin hypercube
sampling is employed here as, for a given ensemble size, it
provides the most efficient representation of the variability
spanned by the underlying parameter space. In the absence
of any information on the distribution of prior probabilities,
a uniform probability distribution is used for each parameter.

The specific set of parameter values used is generated us-
ing the lhs function, which is part of the pyDOE pack-
age (https://pythonhosted.org/pyDOE/, last access: 9 August
2021). Each member of the ensemble is integrated to equilib-
rium under present-day boundary conditions, by employing
the following four-stage spin-up procedure:

1. The model is run for 1 year in bootstrapping mode (Al-
brecht et al., 2015) to initialise model fields. The ini-
tial geometry of the ice sheet is provided by Bedmap2
(Fretwell et al., 2013).

2. The model is run for 100 years, with basal sliding dis-
abled, to smooth the surface of the ice sheet.

3. The model is run for 250 000 years, with fixed geometry
(basal sliding and mass conservation disabled), in order
to improve the enthalpy field.

4. Finally, the model is run for 100 000 years with full
physics. This period is chosen to allow the simulated ice
sheet to come into equilibrium with the boundary con-
ditions, and thus to lose the memory of its initial state.

Stages 1–3 are fast and typically account for only ∼ 10 %
of the total run time.

For this study, PISM is run on a Huawei E9000 cluster
with each ensemble member using 224 cores. The queueing
system for the cluster imposes a time limit of 48 h for each
job, which is deemed to be sufficient as simulations typically
take ∼ 6–12 h to complete. However, during each iteration,
a small number of ensemble members can fail to complete.
There are two reasons for this:

– PISM uses an adaptive time-stepping scheme controlled
by both the maximum diffusivity and the solutions to
the mass conservation and energy conservation equa-
tions (Bueler et al., 2007; Bueler and Brown, 2009; Al-
brecht et al., 2015). This can result in large decreases in

the time step (and hence large increases in the compu-
tational time required to complete a simulation) if nu-
merical instabilities arise. The duration of the time step
depends upon model resolution, the geometry of the ice
sheet and the ice dynamics (and thus on the parameter
choices). In a small number of cases involving extreme
parameter values, ensemble members can therefore fail
to complete within the time limit of 48 h.

– Ensemble members can fail to complete the simulation
because of numerical errors.

The total number of ensemble members to complete success-
fully for each iteration is shown in Table 2.

2.6 Step 4: Model evaluation

Each ensemble member is evaluated to determine whether
the simulated state of the AIS is realistic. Two error metrics
are calculated, as follows.

EA =
100
Aobs

∫∫
|Mmod−Mobs|dx dy (8)

EV =
100
Vobs

∫∫
|Hmod−Hobs|dx dy (9)

EA measures the error in the two-dimensional geometry
of the ice sheet and therefore measures errors in the location
of the ice margin (including the calving fronts of the floating
ice shelves).Mmod andMobs are masks for the simulated and
observed ice sheet, respectively, and are set equal to 1 where
ice is present and 0 where it is not. EA is normalised by the
observed area of the ice sheet Aobs and is then multiplied by
100 to convert it to a percentage.EA is equal to zero when the
model is in perfect agreement with observations, with larger
values representing increasing errors in the two-dimensional
geometry of the simulated ice sheet. Equation (8) does not
distinguish between grounded and floating ice.
EV measures the error in the three-dimensional geometry

of the ice sheet and therefore measures errors in the simu-
lated ice thickness. Hmod and Hobs are the simulated and ob-
served ice thickness, respectively, with EV being normalised
by the observed volume of the ice sheet Vobs and then mul-
tiplied by 100 to convert it to a percentage. EV is equal to
zero when the model is in perfect agreement with observa-
tions, with larger values representing increasing errors in the
three-dimensional geometry of the simulated ice sheet.

To determine whether each individual ensemble member
can be considered to be “realistic”, it is necessary to define
critical values of EA and EV . In the absence of any objec-
tive criterion that can be applied, the critical values are deter-
mined at each iteration of the parameter optimisation process
by selecting the top tercile of ensemble members. Specifi-
cally, the critical value Ecrit

A is determined by selecting the
one-third of ensemble members with the smallest values of
EA; similarly, the critical value Ecrit

V is determined by se-
lecting the one-third of ensemble members with the smallest
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values of EV . This allows the skill metrics to evolve during
the parameter optimisation process, guided by the potential
skill of the model being optimised. The values of Ecrit

A and
Ecrit
V for each iteration are shown in Table 2.
To determine whether part of the range for each param-

eter can be rejected, it is necessary to perform a statistical
test. For parameter X, let the range of values used to gener-
ate the ensemble be XA to XB . Let N members of the en-
semble satisfy the criteria EA ≤ Ecrit

A and EV ≤ Ecrit
V and let

the maximum value of X for these members be Xmax. Under
the null hypothesis that all values of X in the range XA to
XB are equally plausible, the probability that all N members
will have X ≤Xmax simply through random chance is given
by

p =

(
Xmax−XA

XB −XA

)N
. (10)

If the probability p is less than a pre-determined critical
value pcrit, the null hypothesis can be rejected. In this case,
XB is replaced with Xmax for the next iteration.

Similarly, if the minimum value ofX for theseN ensemble
members is Xmin, the probability that all N members will
have X ≥Xmin simply through random chance is given by

p =

(
XB −Xmin

XB −XA

)N
. (11)

If p is less than pcrit, the null hypothesis can be rejected
and XA is replaced with Xmin for the next iteration.

The value of pcrit should be chosen carefully: if it is too
large, there will be an excessive number of false positives,
and regions of parameter space that are capable of generating
skilful simulations will be rejected unnecessarily. However,
if the value is too small, the iterative optimisation process
will not be useful for refining the ranges for each parameter.
We suggest therefore that the value of pcrit should be cho-
sen such that the expected number of false positives at each
iteration is no greater than 0.5. If n parameters are being op-
timised, then 2n significance tests will be performed at each
iteration (one for the minimum value of each parameter, and
one for the maximum value). In this case, the value of pcrit is
given by

pcrit
= 1− 0.52n. (12)

In this study n= 10 and Eq. (12) therefore gives a value
of pcrit

= 3.41%.

2.7 Step 5: Convergence

Table 2 shows the progression of the iterative parameter
optimisation process. Convergence is achieved after five it-
erations, at which point the statistical tests described by
Eqs. (10) and (11) do not result in a rejection of the null hy-
pothesis for any of the 10 parameters. No further changes are
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therefore made to either the minimum or maximum values
for each parameter.

During the optimisation process, the ranges for all four of
the parameters used to determine the till friction angle re-
main unchanged. However, for the other six parameters, the
ranges are reduced in width by between 14.5 % (the shal-
low ice enhancement factor) and 44.0 % (the exponent of the
basal resistance model). Overall, the volume of the param-
eter space has been reduced to just 14.6 % of the original
size, meaning that 85.4 % of the possible parameter combi-
nations have been eliminated. We note that the application
of the technique described in this paper involves a trade-off
between computational expense (as determined by the en-
semble size) and precision (as measured by the reduction in
parameter uncertainty). Increasing the ensemble size might
allow a greater reduction in the volume of parameter space,
but at the expense of increased computational cost.

The final ranges for two of the parameters are notewor-
thy within the context of previous work. We find that values
of the shallow shelf enhancement factor smaller than 0.68
are not consistent with observations, or at least not for the
specific version and specific configuration of the model used
here. This excludes both the default value used by PISM (0.6)
and the final values used in all previous studies with the ex-
ception of Pittard (2016). We also reject values of the calving
rate scaling parameter smaller than 3.70× 1016 m s, which
is consistent with the finding of Levermann et al. (2012)
that values &3.2× 1016 m s are required to produce a stable
grounding line.

3 Results and discussion

For the final iteration of the optimisation process, 91 of the
100 ensemble members complete successfully (i.e. they do
not fail because of numerical errors or because of exceeding
the time limit). Of these members, by definition, one-third
satisfy the criterion EA ≤ Ecrit

A (Eq. 8) and one-third satisfy
the criterion EV ≤ Ecrit

V (Eq. 9). Only 14 of the original 100
ensemble members satisfy both of these criteria. This reflects
the use of model-guided evaluation metrics during the opti-
misation process and does not mean that the other ensem-
ble members are not useful. Nonetheless, we can examine
these 14 members to gain insights into the performance of
the model and the relationships between the model parame-
ters.

The simulated ice thickness for each of the 14 ensemble
members is shown in Fig. 1, while the errors relative to obser-
vations are shown in Fig. 2. The simulated states of the AIS
are extremely similar, with all members having ice sheets that
are too thick in coastal areas and along the Antarctic Penin-
sula. This suggests systematic errors arising either from the
basic physics of the model or from the boundary conditions
applied (for example, excessive precipitation). The simulated
ice sheet is also generally too thin in inland areas, although

it can be slightly too thick in some ensemble members (par-
ticularly ensemble members 63 and 83).

The parameter combinations used in each ensemble mem-
ber, as well as the values ofEA andEV , are shown in Table 3.
For all 10 parameters, the values are distributed throughout
the range. We can use these 14 sets of parameter values to de-
termine the degree of covariance between parameters, within
the set of model configurations that can be considered to be
realistic. The Pearson correlation coefficient between each
possible pair of parameters is shown in Table 4. Using boot-
strapping to determine statistical significance, there are three
pairs for which it is possible to reject the null hypothesis of
no relationship at the p = 0.01 probability level. These rela-
tionships are examined in Fig. 3.

In each case, there are plausible physical explanations for
the relationships:

– Elevation of maximum till friction angle versus shallow
ice enhancement factor. Increasing the elevation of the
maximum till friction angle (bmax in Eq. 7) will tend
to reduce the till friction angle φ and hence reduce the
yield stress τc (Eq. 4). Reducing the shallow ice en-
hancement factor (e in Eq. 1) will tend to compensate
for this by reducing ice flow, accounting for the nega-
tive relationship.

– Minimum thickness of floating ice shelves versus effec-
tive till pressure scaling factor. Increasing the minimum
thickness of the floating ice shelves will increase the
calving rate and hence tend to result in an ice sheet with
a smaller volume. Increasing the effective till pressure
scaling factor (δ in Eq. 5) will tend to compensate for
this by increasing the yield stress τc (Eq. 4) and hence
reducing ice flow, accounting for the positive relation-
ship.

– Elevation of maximum till friction angle versus max-
imum till friction angle. Varying the elevation of the
maximum till friction angle and the maximum till fric-
tion angle (bmax and φmax, respectively, in Eq. 7) to-
gether will leave the value of the till friction angle φ
unchanged throughout most of the vertical range. This
accounts for the positive relationship.

Nonetheless, the existence of such relationships indicates
that there is no single configuration of the model that can be
considered to be optimal, at least on the basis of the evalua-
tion conducted in this study.

We have shown that the optimal ranges for each parame-
ter can be dependent on other variables. While we have been
able to substantially reduce the volume of plausible param-
eter space, limitations on our understanding of the underly-
ing physical system ensure that the plausible ranges remain
large for some parameters. Using additional observational
and palaeoclimate datasets to evaluate the model, such as the
surface ice velocity and vertical profiles of temperature and
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Figure 1. The simulated ice thickness (m) for the 14 ensemble members that are in best agreement with observations. The observed ice
thickness (Bedmap2; Fretwell et al., 2013) is also shown for comparison.

age from ice cores, might allow us to constrain the parameter
ranges further.

Nonetheless, to sample equally from amongst all plausi-
ble model configurations requires the systematic sampling of
parameter space. Different sampling strategies might be su-
perior to others, with the application of these strategies (for
example, the size of Latin hypercube ensembles) being po-
tentially constrained by computational considerations. The
size of the ensemble presented in this study (100) is rela-
tively small, particularly given the large number of parame-
ters being optimised (10). Chang et al. (2014) show that a
100-member Latin hypercube ensemble cannot adequately
resolve the interactions between parameters in an ice sheet

model, even when being used to study a five-dimensional pa-
rameter space. Ideally, our technique would therefore use a
larger ensemble size or would be used to target a smaller
number of model parameters. While the former would in-
crease the computational cost, either of these modifications
should allow for greater refinement of parameter ranges.

Fundamentally, however, the systematic sampling of pa-
rameter space requires the application of large ensemble
modelling approaches. We also emphasise the importance
of such modelling approaches when generating projections.
Proper ensemble design is necessary not just to quantify un-
certainty around the mean or median response of the system,
but also to correctly identify the mean or median response
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Figure 2. The error in the simulated ice thickness (m) relative to Bedmap2 (Fretwell et al., 2013) for the 14 ensemble members that are in
best agreement with observations. The ensemble mean and ensemble standard deviation of the error in the simulated ice thickness are also
shown (bottom right).

itself. The importance of these points is demonstrated by De-
Conto and Pollard (2016) and Edwards et al. (2019), who find
that parameter uncertainty and ensemble design influence the
probability distributions for projections of future sea level
rise. In particular, Edwards et al. (2019) emulate an ice sheet
model and find that the probability distributions are skewed
towards lower values; failure to take this into account might
lead to overestimates of the most likely rate of sea level rise
during the coming centuries.

Finally, we note that, whereas the approach developed in
this study allows for the rigorous quantification of uncer-
tainty in model parameters, and therefore the quantification

of uncertainty in model projections, the technique presented
here does not allow these uncertainty ranges to be interpreted
in probabilistic terms. Extending our approach to generate
future projections with associated probability distributions
would require larger ensembles and further understanding of
the uncertainties inherent in the physical system. This would
include uncertainties in our physical understanding of that
system, in the numerical representation of that physical un-
derstanding within the model and in the boundary conditions
applied to the model.
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Figure 3. Scatter plots of the relationships between the three pairs of physical parameters identified in Table 4: (a) elevation of maximum
till friction angle versus shallow ice enhancement factor; (b) minimum thickness of floating ice shelves versus effective till pressure scaling
factor; and (c) elevation of maximum till friction angle versus maximum till friction angle. Values are shown for all 91 ensemble members
that completed the final iteration successfully. The larger dots indicate the 14 ensemble members that are in best agreement with observations.

4 Conclusions

We have developed a simple and efficient iterative technique
for optimising parameters in geoscientific models. Specifi-
cally, our approach is able to eliminate regions of parame-
ter space that are inconsistent with observations. While it is
analogous to other techniques that use large ensemble mod-
elling to refine parameter ranges (e.g. Solonen et al., 2012;
Lee et al., 2020), the approach developed here is consider-
ably simpler and should therefore be more accessible to the
geoscientific modelling community.

We have demonstrated the application of our technique by
using PISM to simulate the present-day state of the AIS. Af-
ter five iterations, we were able to refine the ranges of 6 out of
10 parameters. Most significantly, we find that multiple dif-
ferent parameter combinations are able to generate equally
skillful simulations. This suggests that, at least for the model
and for the experiments used in this study, ice sheet mod-
els have no single optimal configuration and therefore cannot
be meaningfully “tuned”. Using single model configurations
to generate predictions is therefore likely to underestimate
the magnitude of the uncertainty around the best estimates.
The solution to this is to use large ensemble modelling ap-
proaches with perturbed parameters.

Given the existence of parameter uncertainty, exploring
parameter space is essential. However, the behaviour of the
model may depend upon the parameter values in non-trivial
(and, in particular, non-linear) ways: this requires system-
atic exploration of parameter space. Identifying implausible
regions of parameter space allows for more efficient explo-
ration of those regions that are potentially consistent with
observations.

Correct values for geoscientific model parameters may
be unknown or may not even exist given that parameterisa-
tions by their very nature represent simplifications of real-
world processes. The parameter uncertainties identified in
this study, and in other studies that have used analogous large
ensemble modelling approaches (e.g. Chang et al., 2014; Ed-
wards et al., 2019; Gilford et al., 2020; Lee et al., 2020),
represent a source of uncertainty in future climate projec-
tions. Further exploration of these uncertainties should form
the basis of further work.
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Appendix A

Table A1. The 10 physical parameters that are varied in this study: the command-line option used by PISM and a descriptive name. The
descriptive names are used throughout the paper.

Command-line option Descriptive name

1 -sia_e Shallow ice enhancement factor
2 -ssa_e Shallow shelf enhancement factor
3 -pseudo_plastic_q Exponent of basal resistance model
4 -till_effective_fraction_overburden Effective till pressure scaling factor
5 -eigen_calving_K Calving rate scaling factor
6 -thickness_calving_threshold Minimum thickness of floating ice shelves
7 -topg_to_phi phimin Minimum till friction angle
8 -topg_to_phi phimax Maximum till friction angle
9 -topg_to_phi bmin Elevation of minimum till friction angle
10 -topg_to_phi bmax Elevation of maximum till friction angle
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