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Protein from fish is essential for feeding the world’s population and is increasingly
recognized as critical for food security. To ensure that fisheries resources can be
sustainably maintained, fisheries management must be appropriately implemented.
When logbook and landing records data are not complete or are incorrect, it is
challenging to have an accurate understanding of catch volume. Focusing on Indonesian
longline vessels operating in the Indian Ocean from 2012–2019 (n = 1124 vessels), our
aims were to (1) assess compliance through identification of landing sites and potentially
illicit behavior inferred by interruptions in VMS transmission, and (2) understand how
the fishery operates along with quantifying the spatio-temporal distribution of fishing
intensity by applying a Hidden Markov Model, which automatically classified each VMS
position as fishing, steaming and anchoring. We found vessel compliance gaps in 90%
of vessels in the dataset. Compliance was questionable due both to the widespread
occurrence of long intermissions in relaying VMS positions (mean = 17.8 h, n = 973
vessels) and the use of unauthorized landing sites. We also observed substantial
changes in fishing effort locations among years. The introduction of regulatory measures
during the study period banning transshipment and foreign vessels may be responsible
for the spatial shift in fishing activity we observed, from encompassing nearly the whole
Indian Ocean to more recent intense efforts off western Sumatra and northern Australia.

Keywords: fishing effort, hidden Markov model, longline, vessel monitoring system, vessel compliance, VMS,
IUU, spatial management

INTRODUCTION

Protein from fish is essential for feeding the world global population and is increasingly recognized
as critical for food security. Annually, seafood consumption per capita has increased from 9.0 kg
in 1961 to 20.5 kg as of 2018 (FAO, 2020). Accordingly, it has been projected that by 2030, about
35–40 million tonnes of fish will be required annually to satisfy global demand (Delgado et al.,
2003). However, wild fish stocks are increasingly depleted, as demonstrated by the consistent
reduction in the proportion of stocks that are biologically sustainable, from 90% in 1974 to 65.8%
in 2017 (FAO, 2020). This downward trend is largely the result of insufficient or ineffective fisheries
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management, leading to overfishing and illegal fishing
(Mora et al., 2009). It has also been noted that environmental
degradation and climate change are major forces affecting the
world fish populations (Rijnsdorp et al., 2009).

Recent reviews have highlighted a range of key variables
for effective fisheries management. The three most important
features included quality of stock assessments, limits to fishing
pressure, and the quality of enforcement (Melnychuk et al.,
2017). Effective fisheries management is critically dependent
on reliable data on fisheries catch and effort, the two key
variables that underpin the measurement and control of harvest,
and the resulting outcomes for sustainability. While seemingly
straightforward to measure, even quantities as basic as fisheries
catches potentially suffer from significant uncertainty, potentially
due to underreporting (Pauly and Zeller, 2016).

These issues are reflected in Indonesia’s Indian Ocean tuna
fisheries, which are managed through a mix of domestic
regulations and international measures under the Indian Ocean
Tuna Commission (IOTC). In Indonesia, lack of fisheries
management, law enforcement and lack of awareness of
fishery stakeholders have been raised in a review by the
Indonesia National Development Board as the main obstacles
to the establishment of sustainable fisheries practices (Badan
Perencanaan Pembangunan Nasional, 2014). Underpinning these
shortcomings in management is the lack of consistent and reliable
data on fish catch and effort (Badan Perencanaan Pembangunan
Nasional, 2014).

Fishing catch and effort by Indonesian vessels is estimated
by the Ministry of Marine Affairs and Fisheries (MMAF),
typically using handwritten fisheries logbooks, validated against
information reported from independent fisheries observers. All
vessels greater than 5 Gross Tonnes (GT) are required to submit
fisheries logbook data to their relevant port authority, which
includes fishing gear, coordinates of fishing area, month/season,
species and volumes from bycatch and discard catch, ecological
related species (ERS), hook rate, and catch per unit effort
(CPUE). Catch volumes from logbook records are visually
validated against vessel monitoring system (VMS) tracking data,
but also manually evaluated against fishing gear productivity,
species composition, landing port and the numbers of sets
with days at sea.

Skippers nonetheless seldom complete logbooks while
operating at sea; logbooks are instead typically documented
by an agent at landing facility (Proctor et al., 2003). Through
the Indonesian Regional Observer Scheme, onboard observers
collect data such as number of hooks and sets, fishing ground
location, and species composition; however, their number
has been steadily decreasing from 2003 to 2018, to the
extent that logbook validation has become a growing issue
(Fahmi et al., 2019). Furthermore, handwritten logbook
data is degraded by many inconsistencies, such as spelling
errors, non-standard naming protocols, inappropriate data
format and missing data (Sunoko and Huang, 2014; Marza,
2017; Yuniarta et al., 2017; Pramoda and Putri, 2018). These
errors compound to produce low accuracy data, to the extent
that the estimated catch volumes have been deemed invalid
(Badan Perencanaan Pembangunan Nasional, 2014). This

issue with data availability and quality is such that even the
precise location of the Indonesian longline fleet’s fishing
grounds remains obscure (Mertha et al., 2017). To address the
latter issue, Indonesia introduced its own electronic logbook
system in 2017. However, obtaining accurate catch records
remains problematic, thus emphasizing the need for alternate
approaches to monitor compliance and fishing activities for
vessels while at sea.

Vessel monitoring systems (VMS) are a satellite-based
surveillance technology used to monitor registered fishing
vessels and gain a better understanding of fishing effort in
space and time. While VMS was initially designed to support
resource management and enforcement of lawful activities, it is
increasingly being used to analyze fishing behavior (Witt and
Godley, 2007; Walker and Bez, 2010; Bez et al., 2011; Russo
et al., 2016), and locate fishing grounds (Gerritsen and Lordan,
2011; Hintzen et al., 2012; Jennings and Lee, 2012; Lambert et al.,
2012; Joo et al., 2015). Despite the limited amount of information
transmitted by VMS units (i.e., vessel ID, datetime, GPS position)
which does not include any detail on vessel activity or gear status,
statistical approaches such as Hidden Markov Models (HMM)
are able to accurately predict vessel behavior (Vermard et al.,
2010; Peel and Good, 2011; Joo et al., 2013; Charles et al., 2014).

In the present study we applied Hidden Markov Models to
the VMS data for the Indonesian longline vessels operating in
the Indian Ocean to estimate the temporal and spatial patterns of
fishing effort. The system we developed is based on an automated
workflow, which starts with raw VMS data and ends with data
segregated by vessel and trip, and labeled with a type of activity
for each VMS position. To fill in the paucity of information
regarding the at-sea activity of Indonesian tuna long liners our
study aimed to: (1) estimate the spatial and temporal distributions
of fishing effort across the fleet, (2) demonstrate the value of
statistical modeling in moving from manual inspection of VMS
data to automated processing, and (3) identify two potential non-
compliant behaviors, namely, landing catch at unauthorized ports
and disabling VMS transmissions while at sea. We discuss our
findings in the context of regulatory drivers and opportunities
to deliver intelligence to field inspectors in order to improve
efficiency in fisheries management.

MATERIALS AND METHODS

Vessel monitoring systems data were obtained from MMAF
for the period 2012–2019. This data encompassed all vessels
operating in the Indian Ocean during the time period, and
included hourly transmission of VMS ID, timestamp, position
(latitude and longitude), instantaneous speed, instantaneous
bearing, and vessel identity. All vessels < 30 Gross Tons (GT),
which are not required to carry VMS, and those fishing with gears
other than longline were removed before analysis. To improve
the accuracy of our assessment of fishing effort we removed
VMS records associated with the following conditions: individual
vessels with less than 10 VMS transmissions, points associated
with speed outliers (i.e., > 30 km.h−1), duplicate VMS data
points, and transmissions with missing GPS coordinates. For
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each vessel, the distance, time and speed between consecutive
positions was calculated.

To automatically discriminate fishing behavior from
individual VMS positions, we first segregated each vessel’s
tracking data into consecutive trips at sea. The start and end of
a trip, respectively, corresponds to the first position after the
vessel has left port, and the last VMS position before entering
to port, regardless of whether it returned to the same port. Port
identification for each vessel was initiated by calculating the
distance from each position to the nearest port or coastline.
To identify ports not listed in the national register, groups
of VMS positions with near-zero speeds near land with were
used to identify additional ports. We found these groups by
rounding VMS positions to 0.1-degree latitude and longitude
for all positions within 4 km of land. We then counted the
number of positions in each 0.1-degree grid cell associated
with speeds < 1 km.h−1. If a given cell had 10 or more of
those coastal slow-speed VMS positions, our algorithm inferred
the presence of a port within that grid cell. Once all potential
ports were thus identified for a given vessel, VMS locations
were assigned as being in port if within a 4 km radius of a
predicted port and each trip was numbered sequentially. We
additionally flagged VMS positions associated with a temporal
gap in transmission interval if the time difference between
consecutive VMS positions was greater than 4 h and the vessel

was at sea. We subsequently summed the number and duration
of gap occurrences per one-degree grid cell to identify spatial
hotspots of dubious activity.

To estimate fishing effort and obtain an overview of how the
fishery operates, we first used the above described pre-processed
VMS data to generate summary statistics including number of
trips, trip duration, distance traveled, and port entered. We then
used a hidden Markov model (HMM) to automatically categorize
vessel behavior at each position into one of the following three
states using the computed vessel speed: steaming, fishing, or
anchoring (Figure 1).

In brief, an HMM is a statistical model of a system that changes
over time between a finite number of states (Figure 2). An HMM
relies on the assumption that the system is a Markov process, in
which the probability of a future state – here a vessel’s activity,
only depends on the state at the previous time. The true state
is hidden, as we do not observe it directly in the VMS data, we
only observe state-dependent behaviors such as speed. Changes
in speed, or more generally other observable characteristics, are
then used to estimate the characteristics of the state, i.e., the mean
and variance in speed for that state, along with the probabilities
of transitioning from one state to another.

The result is a probabilistic estimate of which state the vessel
is in at any time, along with the characteristics of the state
and the transition probabilities. HMM approaches have multiple

FIGURE 1 | States and potential transitions between states in a hidden Markov model. Arrows represent potential transitions in states between times, which are
estimated from the observations.
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FIGURE 2 | Recovery of vessel behavior states and speed distributions from simulated data using our hidden Markov model. The left panel shows simulated data
from the VMS system over time, with variations in vessel speeds driven by the state of the vessel. The colors of the points show the estimated states of the vessel,
using an HMM to model the speed distribution and state transitions. The right panel shows the distribution of speeds estimated for each of the three states in the
model.

advantages over traditional rules-based methods for estimating
vessel behaviors. HMMs account for the temporal correlation in
the data, they provide a measure of uncertainty in classification,
and can have specified transitions to prevent predictions of
unrealistic behaviors such as moving from being in port directly
to fishing (Figure 2).

For a more in-depth description of the HMM used in this
study, refer to Peel and Good (2011) and Hoenner et al. (2020).
This HMM configuration proved highly satisfactory in Hoenner
et al. (2020) who were able to validate predictions against fisheries
observer data, yielding rates of correct behavior classification
>70% across four fisheries and three gear types. Once the model
assigned one of those three behavioral states to each VMS
position, we then quantified fishing duration in space and time by
aggregating fishing events within the same 0.5-degree grid cell.

RESULTS

Data from 1,124 vessels (more than 15 million VMS positions)
were analyzed for the period 2012–2019. We removed 42 vessels
which had less than 10 VMS positions. For the remaining 1,082
vessels, size ranged from 30 GT to 597 GT, with a median of
70 GT. Throughout the study period, we observed substantial
variability in the number of vessels operating within the focal
region when evaluated on an annual basis. The number of
longline vessels operating in the Indian Ocean rose from roughly
180 in 2012 to over 600 by 2016, remaining high until 2019 when
vessel numbers dropped to just under 400. There was a sharp drop
in the number of vessels operating in 2015, with a reduction of
26% from 2014 numbers.

Our algorithm identified 223 unique landing sites across the
VMS data, 70 of which matched with the MMAF official list of
fisheries landing ports (Figure 3). The remaining 153 unique
landing sites may be indicative of unofficial landing sites used
by the fishing fleet. Many of the potential unofficial landing sites
were on the outer islands to the southwest of Sumatra (0◦C
latitude, 100◦C longitude), near the passage between Sumatra

and Java (−7◦C latitude, 107◦C longitude) on the route into the
major port at Jakarta, or along the coasts of islands border the
Timor and Arafura Seas (Figure 3). Potential unofficial landing
sites often occurred near official landing sites that were used, and
there was generally no strong spatial separation among the two
types of landing sites used by the vessels. Using these landing sites,
vessel VMS data was segmented into trips. The mean number
of trips across all vessels was 15, with most vessels fairly close
to this average (Table 1). Trip duration was typically 3 months
(mean = 85 days, median = 61.2 days), while distance traveled per
trip averaged 6584.9 km (Table 1).

Gaps in VMS transmissions occurred for 973 of the 1,082
vessels in our dataset, typically occurring far from port and
lasting for extended periods of time (mean distance from
port = 323.4 km, mean duration = 17.8 h, Table 1). The
highest spatial concentration of gaps in transmission took
place along the southern margin of the Indonesian archipelago
(Figure 3), particularly on the approach to the two major ports
in Jakarta (−6◦C latitude, 106◦C longitude) and Benoa (−8◦C
latitude, 115◦C longitude). However, substantial numbers of
interruptions in VMS transmissions also took place offshore,
particularly off western Sumatra (Figures 3, 4; −5◦C latitude,
95◦C longitude) and south of Java (−6◦C latitude, 104◦C
longitude). There is a notable pattern of VMS interruptions along
the northwestern boundary of the Australian mainland exclusive
economic zone, near the Australian territories of Christmas
Island (−10 latitude, 105 longitude) and Cocos (Keeling) Islands
(−12◦C latitude, 96◦C longitude), in Indonesian waters south
of the Aru Islands (−6◦C latitude, 134◦C longitude) and along
the joint Papua New Guinea, Indonesia, Australia border (−7◦C
latitude, 139◦C longitude). There were two minor areas of
elevated VMS interruptions in the southern portion of the fishing
grounds at approximately −30◦C latitude, and 85◦C and 104◦C
longitude (Figure 4).

We found that the best structure for the HMM included
three states, fishing, anchoring, and steaming (Figure 5). The
best model used only speed and was superior to models bearing
or bearing and speed to model vessel behaviors (Figure 5). We
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FIGURE 3 | Map of identified ports vs. registered ports. Green squares indicate identified landing sites based on VMS data that match one (or more) officially
registered ports; oranges squares indicate landing sites based on VMS data that did not match any officially registered port and red squares indicate registered ports
that were not visited by longline fishing vessels.

found that the best fitting model had a half-Gaussian with a
mean of 0.05 km.h−1 for anchoring, a Gaussian with a mean
of 4.5 km.h−1 and standard deviation of 1.85 km.h−1 for
fishing, and a Gaussian with a mean of 16 km.h−1 and standard
deviation of 3 km.h−1 for steaming. The model includes temporal
dynamics for transitions among states, and thus there is some
overlap among observed speeds as vessels transition from one
state to another (Figure 5), compare Anchoring and Steaming.
Using the best fitting HMM, we estimated that vessels fish on
average 648.1 h, with an average duration for individual fishing
events of 4.9 h and an average vessel speed of 2.6 km.h−1 during
a fishing trip. Fishing activity typically occurred far offshore
(mean distance to land = 549.5 km), at an average distance from
port of 1451.1 km.

Based on the spatial distribution of effort as estimated by
the HMM, fishing grounds for the Indonesian tuna longline

fishery encompass nearly all of the eastern Indian Ocean.
However, the relative distribution varied markedly between years
(Figure 6). In 2012–2013, fishing was concentrated in two areas,
between 0◦C and −10◦C latitude and south of −30◦C latitude,
largely west of 105◦C longitude. In 2015, effort contracted
back to the northeast, with the main concentration (−20◦C
latitude, 100◦C longitude) just to the southeast of the Australian
territory of the Cocos Islands. This contraction continued in
2016 and intensified in 2017 and 2018. By 2017, there was
effectively no fishing in the southern portion of the fishing
grounds in the Indian Ocean. As the effort in the southern
Indian Ocean contracted through 2016, effort expanded eastward
into the Timor Sea (−12◦C latitude, 120◦C longitude). By
2017, fishing effort had increased markedly in this eastern
area, spreading all the way to the coast of West Papua, in
the Arafura Sea (−10◦C latitude, 140◦C longitude). In 2019,
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TABLE 1 | Summary of VMS data, including the number of trips in each quarter, the total distance traveled, the trip duration, number of gaps detected, distance from
land traveled by the vessel, and the distance the vessel traveled to port.

No. of trips Distance traveled (KM) Trip duration days Temporal GAP Distance from land (KM) Port distance (KM)

Min. 1 7.1 0.1 1 0 0

1st Quarter 5 1928.4 33 6.2 21.1 57.8

Median 9 3655.7 61.2 14 97.7 228.5

Mean 15.5 6584.9 85 29 313.7 806.6

3rd Quarter 17 7472.4 107.3 26 522.1 1167

Max. 272 66330.4 1201.7 428 2104.3 15467.1

Note that port distance of 0 km indicates the vessel returned to its home port.

effort in the southern Indian Ocean appeared to expand again
slightly, although it did not reach the intensity of the period
before 2015, nor did it reach as far south as it had prior to
2015 (Figure 6).

DISCUSSION

We found major shifts in the distribution of the Indonesian
longline fleet between 2012 and 2019, with the southern Indian
Ocean portion of the operations collapsing back toward the
Indonesian domestic waters and an expansion eastward toward
the border with Papua New Guinea. Using a time-series model
tuned individually for each of the 1,082 vessels in the fleet,
we were able to construct their individual fishing patterns by
separating their activity types over the course of each fishing
trip. The workflow we developed, which requires identifying
landing sites in order to segment VMS data into individual
trips, and flag abnormal gaps in VMS transmission, to identify
low quality data, also serves to flag compliance issues. Both
of these behaviors, landing at an unauthorized port and not
transmitting hourly VMS positions, are prohibited by Indonesian
fisheries regulations.

High accuracy in identifying the behavior of fishing vessels
is a critical step to estimate fishing vessel activity and effort
(Gloaguen et al., 2015). Various methods have been used to
estimate fishing vessel behavior using VMS data, including
simple speed rules, statistical clustering routines, and time series
models like the HMM we used. In Indonesia to date, the
fisheries ministry has primarily used a speed rule in their VMS
software to identify fishing vessel behaviors (MMAF, 2019).
In the Indonesian case, all vessels moving at 0 km.h−1 are
considered to be anchored, those with a speed over ground
between 0 and 5.55 km.h−1 are considered to be fishing, and
those moving faster than 9.26 km.h−1 are considered to be
transiting. Speeds between fishing and transiting are not classified
(MMAF, 2019). Typically, these sorts of speed rules for fishing
behavior have been validated by comparison to fishing logbook
records, with the identification of fishing grounds being based
on fisheries logbook or observer information (Jennings and Lee,
2012). However, in the Indonesian case, defining fishing behavior
based on logbook data is not possible due to pervasive problems
with coverage, accuracy, and standardization. Similarly, fisheries
observer coverage is very low, with declines in coverage and
quality since 2012 (Marza, 2017).

While a simple speed rule is easy to apply as a behavior
classification approach to separate anchoring, transiting, and
fishing, the approach suffers from a number of problems.
Generally, it is not derived by estimation from observation data,
and thus has no fundamental link to the underlying process. This
lack of estimation means that differences across time or among
vessels are generally not accounted for, nor is the uncertainty
in classification included in the estimates. The more statistically
oriented approaches, such as statistical clustering techniques and
time series approaches can address these issues, creating data-
driven models that provide classifications of behaviors across
VMS polls, and including uncertainty around the classification
estimates. Marza (2017) explored the use of statistical clustering
approaches, which treat each VMS poll independently, for
classifying vessel behaviors (anchoring, steaming, fishing) and
fishing gear types. The research evaluated a simple rule-based
classification against a Support Vector Machine (SVM) model,
a Random Forest model (RF), and a Gaussian Mixture Model
(GMM). Marza (2017) demonstrated that the GMM was the
most accurate method, with an estimated accuracy of 82% at
identifying fishing events. For longline vessels, the research
estimated that fishing activities (such as setting and hauling
gear) occurs at speeds between 3.7 and 11 km.h−1, with
steaming at more than 11 km.h−1, and anchoring at less than
3.7 km.h−1.

The approach we use extends that of Marza (2017) in several
ways. The HMM we used is similar to a Gaussian mixture model
in that it uses a combination of distributions to model vessel
behavioral states. However, it has several key differences. First,
it considers the connection of behavioral states between time
periods. Thus, if a vessel is steaming when the VMS polls, there
is some probability that it is still steaming at the next poll, and
a probability of moving to each of the other possible states.
This consideration of the time series of states allows for the
possibility that transitions between some states are not possible.
For instance, it might not be possible to go from anchoring
to fishing without an intermediary state. An HMM also allows
for a typical residence time in a state, driven by the probability
of moving out of that state. Thus, in contrast to Marza (2017)
we find overlap between speeds in Anchoring and Fishing,
which result from the temporal dependence between states over
time, as opposed to being able to switch among behavior types
independently at each individual time point. This feature of the
model reduces issues such as false fishing events near ports when
vessels are moving slowly.
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FIGURE 4 | Average speed for each vessel associated with each behavioral state. The speeds are taken from all 1,082 vessels whose behavior was classified, with
the average calculated for each vessel across all of its VMS positions.

The shift in effort north-eastward across the fishing grounds
that we observed is very likely linked to regulatory changes
that came into the fishery between 2014 and 2015. Two key
regulations were released by the fisheries ministry, a ban on
foreign-made fishing vessels operating in Indonesian waters,
and a prohibition on transshipment at sea in Indonesia’s EEZ.
Transshipment is common in the Indonesian longline fleet
(estimated at 62% of vessels), with vessels moving their catches
to fish carrier vessels, or to other fishing vessels heading to port
(Purnama et al., 2016; Satria et al., 2018). The characteristics of
most Indonesian longline vessels, which generally lack modern
refrigeration, mean that transshipment is often the best option
to maintain the quality of fish. Offloading catch to carrier
vessels is a fundamental part of the operational model that
allows these relatively basic wooden vessels to remain at sea
for 3 months and travel more than 6,000 km to the southern
Indian Ocean. The prohibition on transshipment likely made
much of the southern Indian Ocean fishing ground economically

unviable, as longline vessels would have been forced to carry
their own catches back to port using onboard chilling with
an ice-brine slurry. The inability to offload catch would have
shorted trip lengths significantly, and increased the ratio of
steaming to fishing activity, raising the cost of production
substantially. The effort contraction observed in 2015 was likely
compounded by the ban on foreign built vessels. Subsequently,
ship owners may have shifted their fishing area licenses from the
Indian Ocean to eastern Indonesia as fishing grounds in eastern
Indonesia are closer to fishing ports and the transshipment
ban does not apply to these waters. Finally, shipowners may
have changed gear to squid jigging as the latter is considered
more profitable than longline when fishing grounds are close
to port and trips are of short duration. This explanation is
corroborated by port records documenting a sharp rise in
longline and squid jigging vessels operating out of Dobo fishing
port in the region of the Arafura Sea where effort shifted
(Saleh and Sutanti, 2020).
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FIGURE 5 | Number of intermissions in VMS transmission per 0.5 degree grid cell across all longline vessels tracked in this study (n = 1,082). Countries’ EEZs
boundaries are represented by thin red lines.

We found gaps in VMS transmissions for 90% of the vessels in
our dataset. This is an increase over official compliance records,
which report that 42% of ships received a warning for not
transmitting VMS (DFMO, 2020). Chapsos and Hamilton (2018)
noted that gaps in VMS transmissions by vessels in Indonesia
is likely linked to intentional disabling by vessel operators to
avoid monitoring during non-compliant activities. The main
non-compliance activity likely occurring during temporal gaps is
transshipment, the majority of which takes place at sea (Chapsos
and Hamilton, 2018). The spatial pattern of gaps in transmissions
we found is indicative of this pattern, with gaps particularly
common for vessels in the two fishing locations in the southern
Indian Ocean. The frequency of gaps was also high just to the
west of the Indonesian archipelago, on the boundary of an area
of consistently high fishing effort. The average gap length was
18 h, on a VMS system that reports hourly – suggesting that the
issue was not a minor malfunction that was fixed quickly, nor
an equipment failure that required a return to port. Together,
the frequency, positions, and length of these gaps supports the
suggestion that vessels continued to tranship after it was banned,
but avoided monitoring of rendezvous by having one or both
vessels disable their transponders.

There also appears to be a strong pattern of VMS gaps
along the EEZ boundaries of neighboring countries, including
mainland Australia, Australia’s offshore territories, Timor Leste,
and Papua New Guinea. These gaps may be linked to fishing
activity near borders, and potentially incursions across borders –
particularly in the later years of the dataset as effort contracted
back from their southern and northwestern Indian Ocean fishing
grounds. We found concentrations of fishing effort along these
borders after 2017, with fishing positions crossing into some areas
historically linked to illegal fishing such as the “dogleg,” at the
Australia – Papua New Guinea – Indonesia border. Historically,
incursions by Indonesian vessels into Australian waters have
been an issue. However, based on recent surveillance data the
issue has declined since its peak in 2006 and is very low in the
later years of our study (Vince et al., 2020). Vessels that are not
transmitting VMS may still be entering Papua New Guinea in
particular though, given fishing events we estimated from VMS
transmissions near or inside PNG waters.

Finally, the high concentration of gaps near the two largest
official ports may be indicative of use of unauthorized landing
sites, prior to entry into the main ports. Fishing port authorities
play a critical role as they register vessel port entry and exit,
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FIGURE 6 | Spatio-temporal distribution of fishing events from 2012 through 2019, represented as the total fishing duration (hours) per 0.5 × 0.5◦ grid cell.

monitor catch, and provide clearance to sail. The presence
of very high levels of VMS gaps on the approach to the
two main ports (Jakarta and Benoa) from the main fishing
grounds to the south, along with the presence of unauthorized
landing sites in these two locations, could indicate landing
of undocumented catch (DFMO, 2020), smuggling, or human
trafficking (Chapsos and Hamilton, 2018). Similarly, there is a
concentration of unauthorized landing sites on Aru Island, and
in the southeastern coast of West Papua. Historically these
areas have had significant issues with illegal fishing, particularly
from foreign or joint venture vessels prior to the moratorium
on foreign built vessels (FWU, pers. obs.). The coincidence
of very high levels of VMS gaps and relatively large numbers
of potential unauthorized landing sites should be taken as a

potential indication of illegal activity (DFMO, 2020). A recent
study of illegal fishing across the region highlights this area as
having ongoing illegal fishing issues (Wilcox et al., 2021).

Indonesian vessels over 30 GT have a set list of specific
ports they may enter based on their license, typically three
locations, unless exceptional circumstances arise such as a storm,
a medical emergency or technical failures (Witbooi, 2014). We
found 153 potential landing sites based on the VMS data from
long liners that were not on the list of official ports throughout
Indonesia. While it is possible that many of these sites are
locations where vessels shelter from weather, and thus might not
raise compliance issues, their frequency and proximity to other
fisheries infrastructure suggests that they could be a compliance
issue worth monitoring (DFMO, 2020).
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Our results provide useful information on the shifts in
effort and potential compliance issues that has direct value
for management and compliance activities. The transshipment
ban appears to have driven a major shift in fishing effort, and
may have led some vessels to transition out of the longline
fleet. We found significant compliance issues that could be
used to target enforcement activities, as VMS disabling and
unauthorized landings are non-compliant in and of themselves.
These patterns may also point to larger issues, such as offloading
of unrecorded catch, labor and human trafficking, or smuggling.
A transition to real time processing of VMS data using the
workflow developed here is possible, offering the potential for
the fisheries management agency to respond immediately to
known compliance issues such as fishing outside permitted
areas or in foreign waters, disabling of VMS, or unauthorized
landings. Moreover, linking VMS based estimates of effort with
reported landings could be used to forecast expected landings,
providing field officers with information on catch volumes
and compositions they should expect when inspecting vessels
at landing. This information could increase the effectiveness
of compliance officers, as it would make it easier for them
to detect irregularities in fishing practices based on expected
landings at inspection.

CONCLUSION

We developed a timeseries model for inferring fishing effort from
individual vessel VMS patterns, building on past approaches that
used either simple speed rules, or statistical clustering techniques
that ignored time dynamics. This model is embedded in a
supporting workflow that segments VMS data and identifies
landing sites and gaps in VMS transmissions. This set of tools can
be implemented in a VMS system, simplifying estimation of effort
distributions and automating detection of important compliance
issues. Moreover, it provides the foundation for delivering real-
time intelligence to field inspectors, improving their efficiency in
detecting non-compliant behaviors.

Applying this tool to the Indonesian longline fleet, we found a
major shift in the distribution of effort over a 7 year period. This
shift appears to be largely driven by the economic implications
of the regulatory ban on transshipment in the tuna longline
sector. These economic implications appear to be exacerbating
compliance issues, with evidence of illicit transshipment and
unauthorized landings occurring at scale throughout the fishery.
Moreover, the shift in effort to the Arafura Sea on the eastern
boundary of Indonesia’s waters is likely exacerbating border
incursions into Papua New Guinea and Timor Leste waters.
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