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A B S T R A C T   

Advances in fire behaviour modelling provide a catalyst for the development of next generation fuel inputs. Fire 
simulations underpin risk and consequence mapping and inform decisions regarding ecological and social im
pacts of different fire regimes. Unoccupied Aerial Systems (UAS) carrying Light Detection and Ranging (LiDAR) 
sensors have been proposed as a source of structural information with potential for describing fine fuel prop
erties. Whilst these systems have been shown to be capable of describing general vegetation distribution, the 
ability to distinguish between vegetation elements that contribute to fire spread and those that do not (such as 
large woody elements) is yet to be explored. This study evaluates the ability of UAS LiDAR point clouds to 
provide a description of crown fuel elements in eucalypt trees. This is achieved through comparison with dense 
Terrestrial Laser Scanning (TLS) that were manually attributed with a fuel description. Using the TLSeparation 
package TLS and UAS LiDAR point clouds achieved 84.6% and 81.1% overall accuracy respectively in the 
separation of crown fuel and wood in nine reference trees. When applying the same separation process across a 
30 by 50 m plot consisting of approximately 75 trees, total canopy fuel volume was found to be strongly 
correlated between the TLS and UAS LiDAR point clouds (r: 0.96, RMSE: 1.53 m3). A lower canopy base height 
and greater distance between crown fuel regions within each crown supported visual inspection of the point 
clouds that TLS point clouds were able to represent the crown to a greater extent than UAS LiDAR point clouds. 
Despite these differences it is likely that a less complete representation of canopy fuel such as that generated from 
UAS LiDAR point clouds will suitably represent the crown and canopy fuel objects effectively for fire behaviour 
modelling purposes. The research presented in this manuscript highlights the potential of TLS and UAS LiDAR 
point clouds to provide repeatable, accurate 3D characterisation of canopy fuel properties.   

1. Introduction 

Modelling fire behaviour assists land managers in understanding the 
potential rate of spread of fire and in-turn the potential impacts of fire on 
communities and ecosystems (Gazzard et al., 2020; Gorte and Eco
nomics, 2013; Penman and Cirulis, 2020). Given the importance of these 
models for decision making, it is imperative that core inputs of fuel, 
weather and topography are accurate and fit-for purpose (Sullivan et al., 
2012). A description of fuel characteristics over the entire vegetation 
profile is necessary for accurate fire behaviour modelling. Canopy fuel 
inputs however are especially important due to the highly erratic and 
dangerous fire behaviour that is produced from crown fires with higher 
spread rate, fireline intensity, smoke production, spotting and 

turbulence (Cruz and Alexander, 2013). Maps of canopy fuel hazard are 
used in fire behaviour models around the world, especially in fire 
behaviour models developed for coniferous forests such as Nexus (Scott, 
1999), Farsite and Flammap (Finney, 1998, 2006), Crown Fire Initiation 
and Spread(CFIS) (Van Wagner, 1977; Alexander et al., 2006). The 
characterisation of fine fuels is of particular importance due to these 
fuels being more responsive to dry weather and short-term changes in 
atmospheric variations in moisture conditions (Rothermel, 1986; Viney, 
1991) and allowing fire to propagate faster with higher flame heights 
and intensity (Hines et al., 2010; Raymond and Peterson, 2005). 

The definition outlined in Cruz et al. (2004) when describing aerial 
fuels is applied in this research where ’crown’ is applied to describe 
aerial fuels at the tree level and ’canopy’ at the stand level. Several 
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metrics have been used to describe canopy properties; Canopy Fuel Load 
(CFL) also referred to as Canopy Fuel Weight (CFW), Canopy Bulk 
Density (CBD) and Canopy Base Height (CBH) (Mitsopoulos and Dimi
trakopoulos, 2007; Cruz et al., 2004). These metrics have been devel
oped and assessed using a combination of destructive harvesting 
techniques, visual based assessments, and species-specific regression 
models using standard forest biometric measurements such as tree 
density, mean height and Diameter at Breast Height (DBH) (Skowronski 
et al., 2011; Duveneck and Patterson, 2007; Keane, 1998; Keane et al., 
2000). These metrics have largely been developed in coniferous forests 
with little work conducted in mixed forests with non-homogenous 
(heterogeneous) canopies (Gould et al., 2008; Cruz et al., 2013). 

Developments in remote sensing technologies, in particular Light 
Detection and Ranging (LiDAR) sensing systems, present pathways to 
empirically measure and analyse vegetation structure at scales appro
priate for fire behaviour modelling. Terrestrial Laser Scanners (TLS) 
have been shown to be able to accurately calculate biomass, characterise 
stem properties, develop allometric biomass relationships and observe 
fine scale vegetation characteristics (Disney et al., 2019; Newnham 
et al., 2015; Calders et al., 2015; Rowell et al., 2016). TLS point clouds 
have also been utilised to estimate canopy attributes of height and cover 
(Hillman et al., 2021; García et al., 2011; Danson et al., 2014). Strong 
correlation of TLS derived attributes to field measurements for crown 
base height, crown diameter and crown volume have been observed in 
deciduous stands (García et al., 2011). High density point cloud infor
mation produced from TLS scans allows novel classification methods to 
be developed (Hillman et al., 2021; Chen et al., 2016). 

An area which has been the focus of recent investigation has been the 
separation of leaf and wood material using TLS point clouds (Ma et al., 
2015; Zhu et al., 2018; Wang et al., 2018, 2020). Methods used to 
separate points into the respective leaf and wood classes can be grouped 
into methods which utilise the intensity of returned points, geometry 
(location and proximity of points) or a mixture of both (Vicari et al., 
2019). Intensity based methods separate the components of the tree 
based on the different optical properties at the operating wavelength of 
the laser scanner (Béland et al., 2014; Wang, 2020). Limitations with 
intensity-based separation methods have been highlighted in dense 
canopies where partial reflectances can generate misleading intensity 
values in addition to the need for the scanner to be calibrated to generate 
accurate separation (Tao et al., 2015a). Geometry based methods for 
separating components of the tree require only the 3D coordinates of 
points and have shown to be effective at separating leaf and wood ma
terial whilst also being less labour and time intensive than supervised 
classifiers (Tao et al., 2015a; Ma et al., 2015; Zhu et al., 2018; Wang 
et al., 2020; Krishna et al., 2019; Vicari et al., 2019; Wang et al., 2020). 
The development of these algorithms has largely been focused in single- 
layered forests, coniferous and/or broadleaved trees which largely have 
a uniform structure (Hall et al., 2005; Wulder and Seemann, 2003; 
Patenaude et al., 2005). A current gap in the literature exists in the trial 
of leaf and wood separation algorithms in eucalypt forests. The crowns 
in eucalypt systems are distinct to coniferous forests with mostly woody, 
sclerophyllous and evergreen trees with highly variable crowns that 
have small, rigid leaves which are also erectophile in orientation in 
response to the high sun intensity (Lee and Lucas, 2007). Due to different 
structure of the crowns, the applicability of the existing segmentation 
workflows needs to be verified and potentially optimised for their use in 
the separation of crown fuel in eucalypt systems. It is predicted that an 
automated approach to the classification of fine fuels in the canopy 
would allow for the determination of canopy fuel loads which are not 
currently utilised in Eucalypt fire behaviour models. That is, the sepa
ration of crown fuel provides an avenue for fire behaviour modellers to 
access information on the total volume and distribution of fuel across the 
crown. 

Airborne LiDAR has been used extensively in northern hemisphere 
forests to estimate canopy fuel properties (Skowronski et al., 2007; 
Andersen et al., 2005; Hermosilla et al., 2014; González-Olabarria et al., 

2012; Romero Ramirez et al., 2018; Engelstad et al., 2019; Zhao et al., 
2011; Skowronski et al., 2011). In contrast mixed-forests have had 
limited research to determine canopy fuel properties from LiDAR (Cao 
et al., 2014; Latifi et al., 2016; Botequim et al., 2019; Guerra-Hernández 
et al., 2016). Promising studies in mixed-forests have reported medium 
to high correlations of field estimated stand height to LiDAR derived 
measurements, CFL, CBD and CBH (Botequim et al., 2019). Whilst 
airborne LiDAR provides wide area observations, this comes at the trade- 
off of lower point density and potentially greater cost depending on the 
size of data acquisition. UAS LiDAR is a bridging technology that trades 
off capturing smaller areas for more information describing vegetation 
beneath the canopy (Wallace et al., 2012; Wallace et al., 2016; Sankey 
et al., 2017; Guo et al., 2017; Cao et al., 2019). Previous UAS LiDAR 
(low-altitude) studies have predominantly focused on replicating exist
ing metrics from fixed-wing airborne (high altitude) derived point 
clouds (Liu et al., 2018). Studies extracting canopy and tree-based vol
ume and DBH metrics from UAS LiDAR point clouds have shown strong 
correlation to TLS point clouds and field-based estimates (Brede et al., 
2017; Brede et al., 2019; Fritz et al., 2013; Wieser et al., 2017; Hillman 
et al., 2021; Wallace et al., 2014b,a; Peng et al., 2020). Whilst UAS 
LiDAR has been shown to be able to represent below canopy structure, 
limited research has been conducted in the ability of UAS LiDAR to 
measure fine-scale features such as leaves and fine twigs either below or 
at the canopy. It is predicted that with the different sampling geometry 
from UAS LiDAR in comparison to TLS, that stems are likely to be less 
continuous stems and have a lower relative precision (Levick et al., 
2021). 

The aim of this study is to investigate the capability for the method 
outlined in Vicari et al. (2019) to be utilised in the separation of crown 
fuel and wood in a eucalypt forest using data captured by TLS and UAS 
LiDAR. Secondary to this aim, a comparison between the TLS and UAS 
LiDAR point clouds in their ability to represent crown fuels will be 
conducted using manually separated reference trees and automatically 
classified point clouds (where TLS point clouds are considered to pro
vide the best representation of vegetation). The distribution of canopy 
volume estimates are subsequently compared between UAS LiDAR and 
TLS calculated over a plot area of 30 × 50 m (1500 m2). If shown to be 
successful in eucalypt forests, such an approach allows land managers to 
fully utilise high resolution 3D data and develop canopy fuel inputs for 
use in next generation fire behaviour models that accurately charac
terise the fuel objects. 

2. Materials and methods 

2.1. Study site 

The study area consisted of two plots located south-east of Hobart in 
Ridgeway Tasmania, Australia. The first plot (T1) consisted of a group of 
9 trees that were located next to each other in a (25 × 30 m area). This 
set of nine trees were selected to provide a diverse array of tree heights, 
crown overlap and structure. The second plot (T2) was a 30 × 50 m plot 
captured approximately 10 m from the isolated trees. The predominant 
forest type was native dry sclerophyll eucalypt forest (Fig. 1). The 
dominant canopy species consisted of Eucalyptus pulchella trees of mixed 
ages and ranging in height from 4.7 m to 16.2 m. Trees were distributed 
unevenly throughout the plot ranging from individually isolated trees, 
through to multiple trees with overlapping canopies. The study area had 
been subject to planned burning activities in 2016 which subsequently 
affected the distribution of leaf/fine fuel on the trees. For example, some 
trees had epicormic growth at the bottom of the stem with full leaf 
removal in the upper branches. 

2.2. Terrestrial laser scanning data 

TLS data was captured using a Trimble TX8 laser scanner (Trimble 
Inc., Sunnyvale, CA, USA) set to capture Level 2 quality scans (11.3 mm 
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point spacing at a distance of 30 m). Two separate sets of scans were 
collected in line with the two separate plots (T1, T2). Capturing T1 
involved nine scans approximately 10 m apart and surrounding the trees 
(Fig. 2). The second plot (T2) consisted of 24 scans which were captured 
in a 10 m grid pattern to allow full coverage of the plot (Fig. 2). The 
point density of the TLS scans were approximately 950,000 points/m2. 

TLS Scans were co-registered in Trimble Realworks 10.1 using scan- 
to-scan matching. The quality of the matches was assessed with scans 
manually adjusted through the use of common features found within the 
point cloud. To georegister the TLS data the same approach as discussed 
in Hillman et al. (2021) was implemented using a minimum of six 
common features (such as tree stems and stumps) that were identified in 
the geo-rectified UAS LiDAR point clouds and the relevant translation 
and rotation applied to the TLS point cloud. Visual inspection of the 
point clouds was then conducted to ensure accurate co-registration (to 
within 0.10 m). 

2.3. UAS LiDAR data capture 

LiDAR data was captured with a custom-built UAS developed at the 

University of Tasmania, Australia. The system consisted of a DJI M600 
platform, a Velodyne Puck (VLP-16) and an Advanced Navigation 
Spatial Dual coupled GNSS and IMU sensor. The scanner and associated 
settings were the same as in Hillman et al. (2021). The scan angle was 
limited to − 40◦ to +40◦ in the across-track direction (80◦ field-of-view) 
and across-track beam divergence of 0.18◦ (3.0 mrad); along-track: 
0.07◦ (1.2 mrad), resulting in a laser footprint of 12.6 cm by 4.9 cm 
on the ground. Flight lines are illustrated in (Fig. 2). Flying height was 
40 m above the ground level, with flight lines chosen to achieve 
approximately 50% overlap at ground level. Georeferenced LiDAR point 
clouds were generated using Python software code that was developed 
in-house specifically for UAS LiDAR processing (du Toit et al., 2020; 
Grubinger et al., 2020; Camarretta et al., 2020). Both T1 and T2 were 
captured in a single flight and resulted in a point density of approxi
mately 330 points/m2. 

2.4. Point cloud preparation 

Noise filtering to remove spurious points from both the TLS and UAS 
LiDAR point clouds was completed by manually inspecting and 

Fig. 1. a) The location of the site in Tasmania, Australia b) Location of the site in Ridgeway, Tasmania; c) Photograph showing the dry eucalyptus forest in which the 
technology was assessed. 

Fig. 2. a) Diagram of scan arrangement and flight lines for isolated group of trees (T1); b) Plot diagram showing the distribution of TLS scans in T2 with canopies 
shown and flight lines of UAS LiDAR capture. 
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removing points that were beneath the ground or several metres above 
the canopy. Subsequently a raster pouring approach as outlined in 
Hillman et al. (2021) was completed. This is a novel approach which 
considers the connections between voxel layers and allows vegetation 
objects to be allocated to a fuel strata in which they started. For this 
study, although there are no fixed height thresholds defined in the 
literature for describing fuel strata in dry eucalypt forests, we applied an 
approach consistent with fuel studies in eucalypt forests. This created 
four classes which capture the surface and near-surface combined fuel 
layer (<0.6 m), elevated (0.6 m to 3 m), intermediate (3 m-5 m) and 
canopy (>5 m) fuel layers(Hines et al., 2010; Gould et al., 2008). This 
process was applied on all point clouds to separate those points which 
describe the stem and crown elements from the elevated and near- 
surface and surface elements of the fuel strata. 

In order to use the automatic leaf and wood separation algorithm 
outlined below each individual tree needed to be segmented into sepa
rate point clouds. In this case manual segmentation based on visual 
interpretation (using both point location and intensity) was considered 
to be the most likely to provide similar accuracy between the two point 
cloud sources (TLS and UAS LiDAR). This was completed in Cloud
Compare v2.12 (Girardeau-Montaut, 2016). Each tree from the UAS 
LiDAR point cloud was individually co-aligned to the respective TLS 
point cloud based on stem and branch matching. This process ensured 
high accuracy of co-alignment and accounted for any environmental 
effects (such as wind which was 0 to 5 km h− 1) effecting the tree 
alignment. Once aligned, all point clouds (TLS and UAS LiDAR) were 
normalised in density using a 0.02 m voxel size. This allowed efficient 
processing of the TLS data while allowing fine fuels to be represented 
and had negligible effect on the UAS LiDAR point clouds. 

2.5. Crown fuel classification 

2.5.1. Manual data labelling 
The nine trees from T1 were selected to generate attributed reference 

data. For each of the trees in T1, the TLS point cloud of the tree was 
visually inspected with points manually labelled as originating from a 
woody component (greater than approx. 0.05 m) or from a crown fuel 
element (less than approx. 0.05 m). This process was completed in 
CloudCompare v2.12 (Girardeau-Montaut, 2016) utilising both geome
try and intensity of point returns to assist the interpreter in separating 
the points. TLS point clouds were considered to provide the best rep
resentation of vegetation information and as such were used to develop 
the reference separation for the UAS point clouds of trees in T1. For each 
tree in T1, the class of the closest point in the classified TLS point cloud 
was assigned to each point in UAS point cloud. 

2.5.2. Automated classification of crown fuels 
Automated classification of crown fuels was conducted using the 

approach outlined in Vicari et al. (2019). The package TLSeparation 
(Vicari, 2017) is flexible in it’s application and a bespoke workflow was 
created for the application in eucalypt forests for both the TLS and UAS 
point clouds. The workflow for extracting crown fuel and wood vege
tation elements from TLS and UAS LiDAR point clouds was completed 
using distinct processing workflows. For a full description of the 
methods utilised in this manuscript, Vicari et al. (2019) outlines the 
workflow in more detail. Briefly, the algorithms that were used in the 
separation of points in this manuscript are a combination of path anal
ysis and point-wise classification processes. For the path analysis, the 
point clouds are converted into a network graph where every point is 
represented by a node and connections between pairs of neighbouring 
points are represented by edges. Once the graph is made, path retracing 
and path frequency detection algorithms can be applied to identify the 
trunk and branches. For point-wise classifications, the geometry of each 
point is defined by calculating the eigenvalues (which can express data 
variability over orthogonally projected axes) of 3D coordinates using 
local subsets of points around it (Vicari et al., 2019). Features are then 

calculated using the normalised eigen values based on the features 
calculated and proposed by Ma et al. (2015), Wang et al. (2014). These 
features are then used to generate distribution models using Gaussian 
Mixture Model, which when coupled with Expectation/Maximization 
(EM) algorithms, are able to classify the features into a predefined 
number of classes (Vicari et al., 2019). In all cases the leaf points are 
determined by the difference between the identified wood points and 
initial point clouds. 

For TLS point clouds, the generic tree workflow as described in the 
TLSeparation package (Vicari, 2017) was utilised with an optimised set 
of k nearest neighbours and voxel size to generate an initial separation of 
crown fuel and wood points. Based on visual inspection of the point 
clouds, a majority filter, continuity filter, and voxel path detection filter 
were subsequently applied to remove mis-classified points and establish 
a final separation of crown fuel and wood points. For the UAS LiDAR 
point clouds, the separation of crown fuel and wood points was 
completed using the inbuilt workflow large tree 3 described in the 
TLSeparation package (Vicari, 2017). After completing the large tree 3 
automated tree algorithm, a majority filter was run to remove mis
classified points by comparing each point against its neighbours’ classes. 

2.5.3. Optimisation of automated classification parameters 
Three representative trees from the TLS and UAS LiDAR point clouds 

were used as training trees to optimise the selection of parameters used 
in the respective workflows. The training trees were selected to repre
sent a diversity of structural arrangements and heights. The parameters 
were selected for each algorithm by iterating over a set of possible 
combinations for the variables used in the respective workflows. For TLS 
point clouds these were k nearest neighbours(knn), voxel size, and 
search radius for filters (Table 1). For UAS LiDAR point clouds these 
were k nearest neighbours, voxel size and search radius for majority 
filter (Table 1). Parameters which resulted in the highest Matthews 
Correlation Coefficient (MCC) score for the separation of crown fuel and 
wood points across all three trees were selected for use in the final 
model. The MCC formula is defined as follows Eq. (1) where TP is the 
number of true positives, TN the number of true negatives, FP the 
number of false positives and FN the number of false negatives. 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (1) 

MCC was also utilised to provide a measure of classification accuracy 
of the nine reference trees. MCC has previously been applied in the 
analysis of point clouds (Gawel et al., 2016; Aijazi et al., 2013; Hillman 
et al., 2019) to compare observed and predicted binary classifications 
where the classes are imbalanced (Boughorbel et al., 2017). 

Table 1 
Optimised settings applied to TLS and UAS LiDAR point clouds to be used with 
TLSeparation (Vicari, 2017).  

Filter Settings TLS Settings UAS LiDAR Settings 

Automated separation algorithm Generic tree Large Tree 3 
Automated separation algorithm 

- voxel size 
0.02 m 0.02 m 

Automated separation 
algorithm-nearest neighbours 

20, 40, 60, 
80, 100 

20, 40, 60, 80, 120 

Majority filter- search radius 0.05 m 0.05 m 
Majority filter - number of 

nearest neighbours 
100 40 

Continuity filter-search radius 0.05 m  
Voxel path detection-voxel size 0.05 m 0.1 m 
Voxel path detection-number of 

steps to retrace 
4 varies depending on process 

(refer Vicari (2017) for more 
details) 

Voxel path detection-number of 
nearest neighbours to fill in 
gaps 

100 100 

Voxel path detection-neighbour 
distance threshold 

0.05 m 0.15 m  

S. Hillman et al.                                                                                                                                                                                                                                 



ISPRS Journal of Photogrammetry and Remote Sensing 181 (2021) 295–307

299

2.6. Crown volume, crown distance and canopy base height calculations 

Once the crown fuel points were separated from wood points, the 
volume of the crown fuel points were calculated. To calculate volume, 
the alpha shapes algorithm was utilised to allow for the shape of a set of 
unorganized points to be described (Edelsbrunner and Mücke, 1994). 
The shape described by this algorithm is determined by the set of points 
and the value of alpha. Different alpha values were applied to TLS and 
UAS LiDAR point clouds. Visual inspection of the TLS point clouds was 
used to assess the resultant output shapes for how well they formed 
realistic crown fuel clumps (ie formed separate clumps and that con
tained minimal holes within clumps) and subsequently to identify the 
most suitable alpha value. In this case, alpha was set to 0.05 m for the 
TLS point clouds. For the UAS LiDAR point clouds, the alpha value 0.15 
m was selected through minimising the RMSE of the crown volume 
when comparing the UAS LIDAR reference tree dataset with the TLS 
reference tree dataset. 

Once the alpha shapes were created for each tree, a calculation to 
determine the shortest distance between each group or clump of alpha 
shapes for the tree was made. This calculation was made to investigate 
the differences in the ability of each technology to describe connections 
between crown fuel. Whilst not able to be currently used in fire 
behaviour models, this metric is one which is considered to be useful for 
describing the highly distributed nature of crown fuel elements in 
eucalypt trees. To calculate the distance, the euclidean distance between 
the nearest vertex of each shape was made to the neighbouring shapes. 
An average distance between regions was calculated for each tree. 

Canopy base height (CBH) was calculated across the plot by firstly 
separating crown fuel points from each tree. Based on visual inspection 
of the point clouds and point distribution, the 10th percentile height of 
the crown points was then extracted to represent the Crown Base Height 
(CrBH) which ensured that outlying points did not have a large influence 
on results. A plot scale measurement of canopy cover, mean CBH and 
90th percentile height (CTH) were derived from a 0.5 m grid size. The 
CTH is an input into fire behaviour models (Cruz et al., 2013; Scott, 
2005) and is an important variable to demonstrates differences in the 
ability of each sensor to represent crown fuel elements at the top of trees. 

2.7. Comparison of TLS and UAS LiDAR derived crown fuels 

2.7.1. Classification assessment 
Overall accuracy of classification was determined by using six of the 

nine trees extracted as reference trees (ie excluding trees that were used 
for parameter optimisation). An accuracy score was calculated from the 
confusion matrix for the classification of wood and crown fuel points. 
Due to the higher number of crown fuel points in comparison to wood 
points, MCC was utilised to provide a measure of classification accuracy 
of the nine reference trees. Errors of omission and commission of the 
respective crown fuel and wood points was also calculated for each 
reference tree. 

2.7.2. Metric analysis 
For the six reference trees in T1 that were not used in the parameter 

optimisation, comparisons were conducted on the volume of crown 
fuels, distance between crown fuel elements and CrBH derived from 
reference and automated separation processes. Pearsons correlation 
coefficient, Root Mean Square Error (RMSE), mean and standard devi
ation were calculated for each respective metric and technology. This 
assessment gave an indication of the success of wood and crown fuel 
separation that could be considered when interpreting the results across 
a larger area in plot T2. 

Differences between the representation of canopy fuels by each 
technology at the plot level were investigated through comparing met
rics (volume, distance between clumps and CBH) using Pearsons cor
relation coefficient, RMSE, Mean Bias Error (MBE), where TLS was 
assumed to provide the most accurate separation of canopy fuels. Sta

tistical differences between CBH and CTH were analysed using a Wil
coxon signed-rank test (as CBH was found to be non-normally 
distributed) and a paired t-test respectively. Both tests were performed 
at the significance level of α0.05. 

3. Results 

3.1. Validation and training accuracy in T1 

For the six of the nine trees selected for the reference calculations in 
T1 that were not used for parameter optimisation, automated classifi
cation of TLS point clouds had an average overall accuracy of 84.6% 
with overall accuracies for individual reference trees ranging from 
72.8% to 95.0% (Table 2). UAS LiDAR point clouds had an average 
overall accuracy of 81.1% with overall accuracies for individual refer
ence trees ranging from 51.5% to 95.1% (Table 3). 

Whilst the overall accuracy results are similar between the TLS and 
UAS LiDAR point clouds, the MCC scores highlight differences in the 
accuracy of classification (Fig. 3). The TLS point clouds had MCC scores 
ranging from 0.45 to 0.84 with an average overall MCC score of 0.63 
(excluding training trees), indicating moderate correlation between 
automated separation algorithms and reference separation. The highest 
MCC (0.84) was seen in tree 2 which had low errors of omission of crown 
fuel and wood (<6%) and low errors of omission of wood points (<5%). 
In trees (trees 4 and 6) that had lower MCC results (MCC <0.50), high 
errors of omission for crown fuel points (>25%) and commission in 
wood points were observed. 

The MCC scores in UAS LiDAR point clouds were lower in compar
ison to TLS point clouds with an overall MCC average of 0.46 (Fig. 3). 
Similar to the TLS point clouds, the highest MCC in UAS LiDAR point 
clouds (0.76) was seen in tree 2. In contrast to TLS point clouds, trees 
extracted from the UAS LiDAR point clouds which had lower MCC re
sults (MCC < 0.50) had higher errors of omission of wood points. This 
indicates that a large proportion of wood points are being misclassified. 
Of particular note is tree 6 which had a negative MCC value indicating 
that the automated separation was not successful on this point cloud. 

3.2. Volume, distance, and CrBH comparison of reference trees in T1 

Strong correlation of crown volume estimates (r > 0.97) were found 
between reference trees and automated separation in the TLS and UAS 
LiDAR point clouds (Fig. 4). The TLS point clouds had a lower RMSE of 
1.14 m3, in comparison to UAS LIDAR point clouds 1.34 m3. The mean 
volume of crown fuel points derived from the automatic separation for 
the TLS point clouds (5.57 m3) was lower than the reference volume 
(6.13 m3). In contrast the mean volume of crown fuel points derived 
from the automatic separation in UAS LiDAR point clouds (7.83 m3) was 
higher than the reference volume (6.65 m3). 

Similar to crown volume estimates, there was strong correlation (r >
0.96) observed between reference trees and automated separation of the 
CrBH in both the TLS and UAS LiDAR point clouds. The mean CrBH in 
the TLS reference (6.19 m) and automated (6.51 m) separation point 
clouds was lower than the UAS LiDAR point clouds (automated: 7.34 m). 
Visual inspection of the point clouds (Fig. 5) confirmed the lower canopy 
elements were more consistently represented in the TLS point clouds 
compared to UAS LiDAR point clouds, where points representing lower 
crown elements were not always present. 

The distance between clumps of crown points in the TLS point clouds 
was highly correlated (r: 0.68) between the reference and automated 
separation. Lower correlation (r: 0.48) and a greater RMSE of 0.71 m 
was observed between the distance between clumps of crown points in 
the reference and automated UAS LiDAR point clouds. In both the 
automated (3.33 m) and reference separation (2.92 m), the TLS point 
clouds recorded a greater distance between clumps in comparison to the 
UAS LiDAR point clouds (automated: 3.04 m). Visual inspection of the 
point clouds indicated that the TLS points clouds were able to form 
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tighter, more discrete clumps compared to UAS LiDAR. 

3.3. Volume, distance, and CBH comparison at the plot scale (T2) 

A comparison of plot canopy volumes highlighted strong correlation 
(r: 0.96, RMSE: 1.53 m3) between volumes derived from TLS and UAS 
LiDAR point clouds (Figs. 6 and 7). The total volume of canopy fuel at 
the site was lower in the TLS point clouds (332.09 m3) in comparison to 
the UAS LiDAR point clouds (365.75 m3). The average crown volumes 
derived for each technology also show that UAS LiDAR point clouds had 
a greater average volume at the tree level (5.08 m3) in comparison to 
TLS point clouds (4.61 m3). This finding was supported by a mean bias 
error of − 0.47 m3 indicating that UAS LiDAR point clouds over-predict 
the volume of crown fuels. 

Analysis of the average distance between clumps of crown fuel be
tween the TLS and UAS LiDAR point clouds showed a correlation of r: 
0.54 with an RMSE of 1.37 m (Fig. 6) at the plot scale. Additionally, TLS 
point clouds were shown to have greater distances between clumps 
evident through a positive MBE of 1.08 m. This was also reflected when 
the distance between clumps was averaged across the plot with a higher 
mean distance of 2.83 m in TLS point clouds in comparison to 1.75 m in 
UAS LiDAR point clouds. This suggests that the UAS LiDAR point clouds 
were detecting fewer clumps with smaller distances between each 
clump. 

The canopy coverage across the plot was similar between each 
technology (TLS: 55.5% and UAS LiDAR 54.8%). There was a strong 
correlation (r: 0.79) between TLS and UAS LiDAR estimates of CBH 
(Fig. 8). The mean CBH was higher in the UAS point clouds when 
compared to the TLS point clouds indicating less penetration through 
the canopy which was also reflected in the mean bias error of − 1.31 m. 
Examination of the p-value derived from the Wilcoxon signed-rank test 
highlighted that the null hypothesis should be rejected with the esti
mates of CBH between TLS and UAS LiDAR crown fuel points being 
statistically different (p-value: 9.46  e-13). Similarly, the CTH p-value 

derived from the paired t-test showed that the null hypothesis should be 
rejected with estimates of CTH between TLS and UAS LiDAR point 
clouds being statistically different (p-value: 8.13 e-16) with a higher 
mean height being observed in the UAS LiDAR points suggesting that the 
top of the canopy was captured effectively (TLS: 9.49 m, UAS LiDAR: 
9.78 m). 

4. Discussion 

Canopy fuel properties form a vital component of fire behaviour 
modelling inputs (Scott, 1999; Finney, 1998, 2006; Van Wagner, 1977; 
Alexander et al., 2006). To be able to provide such inputs, accurate, 
quantitative, and spatially explicit representations of different crown 
fuel elements and their properties are required. Variables such as vol
ume, distance between clumps, and CBH are suitable examples of the 
types of canopy fuel properties that can be measured using remote 
sensing technologies. Of course, the accuracy by which these variables 
can be measured are underpinned by how well different crown fuel el
ements can be distinguished. 

4.1. Automatic separation of canopy fuel and wood in from TLS point 
clouds 

This study has demonstrated the ability of an automated approach to 
separate crown fuel from wood in TLS and UAS LiDAR point clouds 
captured in a eucalyptus forest. Prior work has demonstrated the po
tential to use supervised and unsupervised classification approaches to 
separate leaf and wood points in point clouds of broadleaf, single stem 
trees endemic to the northern hemisphere (Li et al., 2018; Ma et al., 
2015; Zhu et al., 2018; Vicari et al., 2019; Wang et al., 2018; Krishna 
et al., 2019). The TLSeparation package developed by Vicari (2017) 
presented a simple, easy to use and flexible approach for use in this 
manuscript. Whilst the package was originally tested on broadleaf trees, 
the research presented in this manuscript extended the use of the 

Table 2 
Summary of the number of voxels classified as crown fuel or wood from the reference trees, overall accuracy, MCC, and errors of omission (Omm) and commission 
(Comm) for the automated separation of crown fuel and wood points for TLS point clouds. (*Trees not included in calculations).  

Tree Voxel Count Overall Accuracy (%) MCC Crown Fuel Wood  

Crown Wood   Omm (%) Comm (%) Omm (%) Comm (%) 

Tree 1 232,601 59,325 90.4 0.75 9.90 2.27 8.20 29.71 
Tree 2 843,465 165,038 95.0 0.84 5.07 1.01 4.95 21.41 
Tree 3* 1,223,939 306,768 88.9 0.67 8.23 5.82 22.61 29.80 
Tree 4 957,923 215,225 72.8 0.45 30.59 3.77 12.12 60.77 
Tree 5 155,915 42,280 93.1 0.79 3.44 5.27 19.81 13.68 
Tree 6 193,519 72,529 73.9 0.45 27.34 10.52 22.79 48.58 
Tree 7 481,401 150,904 82.2 0.53 14.00 9.88 30.07 38.98 
Tree 8* 1,062,163 197,529 80.4 0.38 15.55 8.30 41.12 58.68 
Tree 9* 1,437,316 273,735 87.7 0.59 9.56 5.30 26.58 40.60 
Average   84.6 0.63 15.06 5.45 16.32 35.52  

Table 3 
Summary of the number of voxels classified as crown fuel or wood from the reference trees, overall accuracy, MCC, and errors of omission (Omm) and commission 
(Comm) for the automated separation of crown fuel and wood points for UAS LiDAR point clouds. (*Trees not included in calculations).  

Tree Voxel Count Overall Accuracy (%) MCC Crown Fuel Wood  

Crown Wood   Omm (%) Comm (%) Omm (%) Comm (%) 

Tree 1 9,013 3,098 89.0 0.70 1.89 11.60 37.44 8.06 
Tree 2 46,486 6,837 95.1 0.76 0.62 4.78 33.90 6.03 
Tree 3* 42,481 7,787 88.1 0.45 1.93 10.99 66.62 24.09 
Tree 4 27,168 5,198 89.7 0.56 0.58 10.52 61.06 7.20 
Tree 5 3,239 1,022 80.9 0.42 7.26 16.14 56.56 34.61 
Tree 6 4,336 3,470 51.5 − 0.06 18.59 45.77 85.85 62.14 
Tree 7 11,794 4,214 79.5 0.40 1.56 21.08 73.61 14.20 
Tree 8* 13,420 2,588 87.4 0.43 0.95 12.47 73.18 15.57 
Tree 9* 56,048 6,028 92.7 0.49 1.08 6.66 65.66 22.59 
Average   81.1 0.46 5.08 18.31 58.07 22.04  
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Fig. 3. Figures showing a comparison between reference separation and automated separation in TLS and UAS LiDAR point clouds.  

Fig. 4. Figures showing correlation between reference volume and automated volume in T1 A) TLS point clouds with 0.05 alpha value, B) UAS LiDAR point clouds 
with 0.15 alpha value and C) UAS LiDAR automated point clouds compared to TLS reference volume. 
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package to separate crown fuel and wood points representing eucalypt 
trees. The eucalypt trees presented unique challenges with the presence 
of multiple stems, multi-layered canopies, clumped areas of leaves and 
erectophile leaf angle distribution. The classification of TLS point clouds 
into the leaf and wood points was achieved with high accuracy (84.6%). 
Similar accuracy was found by Vicari et al. (2019) in broadleaf trees 
(83%) and Wang et al. (2020) in tropical trees (91%). 

The results achieved here using TLSeperation, an unsupervised clas
sifier, are also similar to those achieved using other supervised and 
unsupervised classification approaches across a range of tree types 
(Vicari et al., 2019; Wang et al., 2020; Zhu et al., 2018; Ma et al., 2015). 
Zhu et al. (2018), for instance, used a supervised classifier to achieve 
classification accuracies above 80 percent. These algorithms utilise and 
handle different properties (both geometric and intensity based) of the 
TLS point cloud in order to classify points which could be beneficial for 
the separation of components of eucalypt trees. As such an area of future 
research would be to compare the outcomes of methods that consider 
different combinations of properties within the point cloud (such as Zhu 
et al. (2018, 2020)). 

4.2. Automatic separation of canopy fuel and wood points from UAS 
LiDAR point clouds 

The application of the packages within the TLSeparation were also 
shown to be effective at separating crown fuel and wood points in UAS 
LiDAR point clouds with overall accuracy of 83.8% and MCC of 0.46. 
This is a distinct advantage of using a geometric based approach to 
separate crown fuel and wood which is not reliant on intensity. This is 
because the UAS LiDAR sensor has a larger footprint which will be partly 
reflected and therefore make it difficult to distinguish between the 
materials. The majority (8 of the 9) of reference trees achieved high 
accuracy (>70%) of separation when compared to manually separated 
trees. Visual inspection of tree 6, which had poor accuracy (51.5%) and 
a negative MCC result (− 0.06), indicated that this tree had epicormic 
growth on the trunk with thin protruding branches that had been 
stripped bare of vegetation. These factors, which also resulted in 
reduced overall and lower MCC accuracy and an increase in wood 
omission in TLS point clouds, are amplified in UAS LiDAR with fewer 
points describing thin parts of the tree. This is consistent with prior 

Fig. 5. Volume comparison between TLS and UAS LiDAR point clouds of trees in T1.  

Fig. 6. Figure showing in T2 A) comparison of average distance between regions in each tree for TLS and UAS LiDAR point clouds; B) comparison between volumes 
for each tree derived from TLS and UAS LiDAR point clouds and C) comparison between CBH for each tree in TLS and UAS LiDAR point clouds. 
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studies which have shown reduced accuracy of modelling the volume of 
trunks and branches less than 30 cm with UAS LiDAR point clouds 
(Brede et al., 2019). Further work could investigate the development of 
crown fuel and wood separation algorithms that are able to generate 
relevant geometric representations of branches with lower point den
sity. To achieve this high internal geometric precision within the point 
cloud would be required. In this study a UAS LiDAR system utilising a 
low precision scanner (due to a large beam divergence and range un
certainty) was used and the separation of points relied on the higher 
point density offered by UAS systems. Higher grade scanners (either 
onboard manned or unmanned aircraft) with lower measurement un
certainty would result in point clouds with higher internal precision and 
improved geometric representations of the trees. When captured at 
similar pulse densities to those explored in this work the outcome from 
the UAS LiDAR analysis, either with TLSeparation or alternate algo
rithms, would likely be enhanced. 

4.3. Comparison of TLS and UAS LiDAR sensors 

This study also compared the ability of UAS LiDAR and TLS point 
clouds to estimate crown and canopy fuel properties. An inverse rela
tionship was observed between the TLS and UAS LiDAR point clouds in 
the respective omission and commission of crown fuel points. In the case 
of crown fuel points, TLS had a higher percentage of omission and UAS 
LiDAR had a higher percentage of commission. These differences are 
likely a function of the algorithm; where visual inspection of the point 
clouds showed, in the case of the TLS point clouds, that leaves within the 
canopy were mistakenly classified as wood causing a higher omission in 
crown fuel and commission in wood points. In contrast, visual inspection 
of the UAS LiDAR point clouds showed that thin branches were 
mistakenly classified as crown fuel causing a higher commission of 
crown fuel and omission of wood points. Despite this, classification ac
curacies between TLS and UAS LiDAR point clouds were similar (within 
0.15 MCC) which led to volume estimates of the crown fuel components 
derived from the TLS and UAS LiDAR point clouds being highly 

correlated with reference canopy fuel volumes. 
These observations were also evident in T2 (plot) with strong cor

relation between TLS and UAS LiDAR volumes at each tree and total 
volume of the plot. This suggests that despite a reduced accuracy in 
classification, UAS LiDAR point clouds are still able to detect a suitable 
number of crown fuel points in each tree to characterise the volume. A 
negative MBE when predicting canopy fuel volume is consistent with 
other UAS studies which have shown that UAS LiDAR over predicts the 
volume of fine scale vegetation (Brede et al., 2019; Madsen et al., 2020). 
As has been stated in Wallace et al. (2016), the use of a single alpha 
value likely results in variations in the canopy volume in some regions. 
Future work should consider the optimisation of the alpha value based 
on the size of the vegetation elements being observed and the purpose of 
the assessment. For example, for the determination of canopy volume, 
consideration of the alpha size should be balanced between the need to 
represent individual vegetation elements and the likely fire behaviour 
when fires consume the canopy. That is, the level of convection and 
radiation are high enough to preheat the fuels such that distance be
tween closely connected fuels is irrelevant. 

When analysing crown fuel points within T2, there were differences 
in structural attributes observed between TLS and UAS LiDAR point 
clouds. For points classified as crown fuel in the UAS LiDAR point cloud, 
a higher mean CTH percentile height was observed in comparison to TLS 
points classified as crown fuel. This finding is consistent with previous 
research which found that LiDAR point clouds captured from above the 
canopy more accurately represented the top most features of the canopy 
in comparison to TLS which is expected to be due to the viewing 
perspective (Brede et al., 2017; Hilker et al., 2010; Hillman et al., 2021). 
Further, by examining the Wilcoxon signed-rank test these differences 
were shown to be statistically different. Similarly, the ability of each 
sensor to be able to penetrate and detect the lower regions of the crown 
were reflected in the CBH which was higher in the UAS LiDAR point 
clouds and the differences between the CBH estimates of the TLS and 
UAS LiDAR estimates of CBH to be statistically significantly different. 
The findings in this study suggest that UAS LiDAR point clouds describe 

Fig. 7. Visual representation of alpha shapes in the TLS and UAS LiDAR point clouds captured from T2.  
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the lower canopy fuel to a lesser extent when compared to TLS. This is 
supported by prior work Hillman et al. (2021), García et al. (2011), 
Levick et al. (2021), Brede et al. (2019) which demonstrated the ability 
of TLS point clouds to provide more information content to describe 
below canopy vegetation characteristics. More information content 
within TLS point clouds is also seen in the analysis of the distance be
tween clumps which was shown to be higher in the TLS point clouds 
than the UAS LiDAR point clouds. This difference is likely a function of 
the alpha value utilised in the respective point clouds and the ability of 

UAS LiDAR point clouds to represent lower canopy elements. However, 
further work should consider the fidelity of the model and consider 
measuring factors which are relevant to fire behaviour (Duff et al., 
2017). That is, a less complete representation of canopy fuel such as that 
generated from UAS LiDAR point clouds with larger overall clumps may 
be adequate for representing crown and canopy fuel objects for fire 
behaviour modelling purposes which may take in broader abstractions 
of fuel properties (Duff et al., 2017; Gale et al., 2021). The advantage of 
the TLS point clouds is that they provide a reference for comparison and 

Fig. 8. Comparison of CBH (A and B) and Volume (C and D) of canopy fuel points in TLS and UAS LiDAR point clouds in T2.  
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potentially a greater level of analysis may be conducted in determining 
the minimum distance for which objects have to be located apart in 
order for flaming combustion to occur (Zylstra et al., 2016). 

4.4. Operational implications and future research 

Separation of fuel elements in the crown enables accurate calculation 
of fuel properties such as canopy fuel load, canopy bulk density, and fuel 
strata gap (Cruz et al., 2004; Mitsopoulos and Dimitrakopoulos, 2007). 
As the capacity of fire behaviour models to ingest new metrics and 
complex 3D data sets increases, approaches that more directly quantify 
canopy fuel characteristics may increase model accuracy, compared to 
the use of simpler regression-derived models of canopy fuel. The 
approach presented in this manuscript is particularly relevant to euca
lyptus forests where there is currently no method to assess the canopy 
fine fuel characteristics and traditional metrics (e.g. CBH, CFL) may not 
adequately describe the distributed nature of fuel across the relatively 
sparse canopy when compared with ‘thicker’ canopied conifer forests 
(Price and Gordon, 2016). Additionally, by separating out the stem, it 
becomes possible to consider the impact and contribution of bark on fuel 
hazard (Hines et al., 2010; Gould et al., 2008). Whilst not analysed in 
this work, it is recognised that future approaches should also consider 
the risk of bark fuels and build on the work mentioned by Pokswinski 
et al. (2020) in the analysis of fire brands. The accurate separation of 
fuel and non-fuel objects in the crown leads to potential opportunities to 
test the algorithm beneath the canopy in the intermediate and elevated 
fuel layers (Hines et al., 2010). The development of such an approach in 
combination with the ability to identify vegetation connectivity utilising 
the methods described in Hillman et al. (2021), Chen et al. (2016) would 
allow high resolution representation of fuels that contribute to the 
flaming combustion in the initial passing of a fire. Of note in the 
application of this approach beneath the canopy is the need to consider 
the vegetation element size. As highlighted in Vicari et al. (2019), the 
separation of fine fuels would require the adaption of the current 
workflow to enable the consideration of the different arrangement of 
vegetation. 

In the future, operational implementation of this research will be 
aided by improvements and simplifications to processing algorithms, 
establishing relationships to existing visual based assessments and ad
vancements in sensor-fusion technologies. 

Currently data preparation and processing requirements for manual 
segmentation are time intensive and require expert interpretation. To 
minimise time required for manual segmentation of trees in the point 
cloud, fully automated processes such as those presented in Wang et al. 
(2020) could be trialed or automated tree segmentation algorithms such 
as those developed in Jaskierniak et al. (2021), Tao et al. (2015b) could 
be integrated with the TLSeparation package (Vicari, 2017), which 
would simplify the workflow for operational implementation. The data 
collection and processing of the respective sensors is also important to 
consider for land managers. Both technologies require expert knowledge 
to collect and process data with the total time varying due to a number of 
different factors including but not limited to; vegetation complexity, 
desired scan density, scanner settings, software and computing re
sources. Overall it was found that in this case UAS capture and pro
cessing was more efficient than the respective TLS workflows. Findings 
in this study were consistent with Wilkes et al. (2017), Levick et al. 
(2021), Hillman et al. (2021), who also highlighted that TLS is more 
time intensive to collect in comparison to UAS which is more efficient 
data collection process. 

Comparing existing visual based assessments and allometric re
lationships (Skowronski et al., 2011; Duveneck and Patterson, 2007; 
Keane, 1998; Keane et al., 2000; Botequim et al., 2019) with the canopy 
fuel metrics derived from algorithms presented in this manuscript is an 
important piece of future work. This would enable the validation of 
canopy fuel metrics derived from TLS and UAS LiDAR point clouds in 
similar forests across the world (Botequim et al., 2019). 

Additionally, multi-scale remote sensing derived estimates of canopy 
fuel properties may potentially be used in conjunction with environ
mental variables to estimate canopy fuel properties across a broader 
area (McColl-Gausden et al., 2020). Future research should also focus on 
the potential to integrate an assessment of vegetation health with the 
structural separation of crown fuel components allowing for early 
detection of more flammable material. Research utilising multi- 
wavelength LIDAR systems which may potentially assist separation al
gorithms and UAS mounted multi-spectral and hyper-spectral sensors 
have shown strong overall classification accuracy in identifying 
declining tree health, bark beetle damage detection and early signs of 
stress (Danson et al., 2014; Mark Danson et al., 2018; Lehmann et al., 
2015; Michez et al., 2016; Näsi et al., 2015; Dash et al., 2017). Overall, 
by accurately separating crown fuels and assessing canopy fuel prop
erties at high resolution a potential paradigm shift is made possible in 
the way land managers are able to estimate fuel risk and predict the 
behaviour of fires. 

5. Conclusions 

Next-generation fire simulations provide unique opportunities for 
the fire community to produce metrics that are driven by fundamental 
fire behaviour. It is therefore important to investigate the potential of 
high resolution point clouds to represent fuel objects which are likely to 
be consumed in the initial passing of fire. This study demonstrates that 
crown fuel and wood points can be separated in TLS and UAS LiDAR 
point clouds to determine canopy fuel properties of eucalyptus trees. 
Results from the study demonstrate that TLS and UAS LiDAR point 
clouds were able to accurately classify crown fuel and wood points when 
compared to manually separated point clouds as reference data. TLS 
point clouds were shown to provide the most accurate form of separa
tion with thin branch diameter, epicormic growth and lower informa
tion content in UAS LiDAR point clouds impacting the accuracy of the 
calculation on some reference trees. Despite differences in the accuracy 
of classification of crown and woody fuel, crown volume estimates from 
automatically separated TLS and UAS LiDAR point clouds were highly 
correlated with volume estimates derived from reference trees. When 
scaled up to the plot, strong correlation between UAS LiDAR and TLS 
point cloud canopy volumes was observed. TLS point clouds were shown 
to represent the bottom of the canopy and information within the can
opy itself to a greater extent than UAS LiDAR as shown by a lower mean 
CBH and greater distance between clumps at the plot scale. This 
increased information content provided in the TLS point clouds should 
be balanced against the ability of fire behaviour modelling to utilise the 
increased information contained within these point clouds. Overall, this 
study demonstrates that separation of crown fuel and wood in euca
lyptus forests is operationally achievable and represents a unique op
portunity for the accurate derivation of canopy fuel properties. Further 
exploration in the application of this methodology to separate fuel 
beneath the canopy and sensor fusion, has the potential to enable a 
paradigm shift in the way fuels are estimated that is commensurate with 
fire simulation developments and requirements. 
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Michez, Adrien, Piégay, Hervé, Lisein, Jonathan, Claessens, Hugues, Lejeune, Philippe, 
2016. Classification of riparian forest species and health condition using multi- 
temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. 
Assessm. 188 (3), 146. 

Mitsopoulos, Ioannis D., Dimitrakopoulos, Alexandros P., 2007. Canopy fuel 
characteristics and potential crown fire behavior in aleppo pine (pinus halepensis 
mill.) forests. Ann. For. Sci. 64 (3), 287–299. 

Krishna, Sruthi M., Moorthy, Kim Calders, Vicari, Matheus B., Verbeeck, Hans, 2019. 
Improved supervised learning-based approach for leaf and wood classification from 
lidar point clouds of forests. IEEE Trans. Geosci. Remote Sens. 58 (5), 3057–3070. 
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