
 

Page 1 of 40 
 

Pathogenesis, clinical features of asthma COPD overlap (ACO), and 1 
therapeutic modalities  2 

Surajit Dey1, Mathew Suji Eapen1, Collin Chia2,1, Archana Vijay Gaikwad1, Peter A.B. Wark3,4, 3 

Sukhwinder Singh Sohal1*  4 

 5 
1Respiratory Translational Research Group, Department of Laboratory Medicine, School of 6 

Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7 

Tasmania, Australia, 7248 8 
2Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 9 

7250, Australia. 10 
3Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of 11 

Newcastle, New Lambton Heights, Australia. 12 
4Department of Respiratory and Sleep Medicine John Hunter Hospital, New Lambton Heights, 13 

Australia. 14 

 15 

 16 

*Corresponding Author 17 

 18 

Dr Sukhwinder Singh Sohal 19 

Respiratory Translational Research Group 20 

Department of Laboratory Medicine, School of Health Sciences, 21 

College of Health and Medicine, University of Tasmania 22 

Locked Bag – 1322, Newnham Drive 23 

Launceston, Tasmania 7248, Australia 24 

Telephone number: +61 3 6324 5434 25 

Email: sssohal@utas.edu.au  26 

 27 

Running title: Pathogenesis of asthma COPD overlap 28 

  29 

Downloaded from journals.physiology.org/journal/ajplung at Univ of Tasmania Lib (131.217.255.240) on November 9, 2021.



 

Page 2 of 40 
 

Abstract 30 

Both asthma and COPD are heterogeneous diseases identified by characteristic symptoms and 31 

functional abnormalities, with airway obstruction common in both diseases. Asthma COPD 32 

overlap (ACO) does not define a single disease but is a descriptive term for clinical use that 33 

includes several overlapping clinical phenotypes of chronic airways disease with different 34 

underlying mechanisms. 35 

This literature review was initiated to describe published studies, identify gaps in knowledge, 36 

and propose future research goals regarding the disease pathology of ACO, especially the 37 

airway remodelling changes and inflammation aspects. Airway remodelling occurs in asthma 38 

and COPD, but there are differences in the structures affected and the prime anatomic site at 39 

which they occur. Reticular basement membrane thickening and cellular infiltration with 40 

eosinophils and T-helper (CD4+) lymphocytes are prominent features of asthma. Epithelial 41 

squamous metaplasia, airway wall fibrosis, emphysema, bronchoalveolar lavage (BAL) 42 

neutrophilia and (CD8+) T-cytotoxic lymphocyte infiltrations in the airway wall are features 43 

of COPD. There is no universally accepted definition of ACO, nor are there clearly defined 44 

pathological characteristics to differentiate from asthma and COPD. Understanding etiological 45 

concepts within the purview of inflammation and airway remodelling changes in ACO would 46 

allow better management of these patients. 47 

Key Words 48 
Asthma, COPD, asthma-COPD overlap (ACO), airway remodelling, inflammation. 49 
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1.0 Introduction 50 

Asthma and chronic obstructive pulmonary disease (COPD) are chronic airway diseases with 51 

variable expiratory airflow limitations. Both diseases are associated with airway remodelling 52 

and chronic inflammation. However, the nature and site of inflammation differ between 53 

diseases and within the diseases themselves, resulting in different pathogenic mechanisms 54 

and clinical phenotypes, implying that they would also require different strategies for 55 

treatment (15, 19, 148, 154). At the Bronchitis Symposium, at Groningen, the Netherlands 56 

(the year 1960), Professor Orie and colleagues articulated an aetiological hypothesis under 57 

which asthma and COPD (then labelled as bronchitis) were suggested to have shared origins 58 

and clinical expressions. The disparity in the pathology was based on genetic information and 59 

environmental exposures, and the term “chronic non-specific lung disease” (CNSLD) initially 60 

described mixed pathological conditions. Later, this hypothesis was termed the “Dutch 61 

Hypothesis” by Fletcher and Pride (155) and referred to as such. Despite the influential 62 

paradigm of the “Dutch hypothesis”, opponents have vehemently opposed it (13, 208). In 63 

clinical practice, patients with asthma and COPD are treated under the “rubric of a fixed 64 

dichotomy” of separate diseases (123). The opposing “splitting view”, also known as the 65 

“British hypothesis”, proposed that asthma and COPD do not have a common origin and are 66 

perceived as distinct disease entities generated by different mechanisms caused by distinct 67 

pathogenesis. Over the years, considerable progress has been made in understanding the 68 

airway inflammatory (both innate and adaptive) cells driving airway pathology of asthma and 69 

COPD. Within these aspects, the current broad consensus is that asthma is majorly driven by 70 

a type 2 helper T Cell (Th2) response while COPD is biased more towards type 1 helper T 71 

Cell (Th1) phenotypic response. 72 

Asthma involves increased activity and infiltration of innate cells such as eosinophils and 73 

mast cells along with extensive airway remodelling, in particular reticular basement 74 
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membrane (Rbm) thickening and smooth muscle hypertrophy. On the other hand, COPD 75 

includes neutrophils and macrophages and small airway remodelling such as small airway 76 

wall fibrosis and squamous metaplasia (49, 83, 97, 104). Although these two diseases are 77 

viewed as clinically different entities, some patients share several overlapping features of 78 

asthma and COPD. Acknowledging this reality, both Global Initiative for Asthma (GINA) 79 

and COPD (GOLD) documents introduced the term asthma-COPD overlap syndrome 80 

(ACOS) to describe the existence of this patient cohort (69). However, this terminology is 81 

controversial since it is not representing a single disease entity (211); therefore, the term 82 

‘asthma-COPD overlap (ACO)’ according to the current GINA and GOLD guidance has been 83 

used in this review. 84 

Currently, it is estimated that about 30% of COPD and 26% of asthma patients have 85 

symptoms associated with ACO (21, 65, 88). Studies indicated that the ACO patients have an 86 

earlier onset of disease compared to COPD patients (39), and is more common in females 87 

than in males (205), more prevalent with individuals in lower socioeconomic status, and 88 

affects those with existing comorbidities (114). Exacerbation rates, emergency department 89 

visits and hospital admissions are also higher among ACO patients (61, 132), affecting the 90 

overall per capita healthcare cost (160). Despite the sizeable clinical implication, it is 91 

surprising that no consensus to a universally accepted definition or a clear diagnostic criterion 92 

for ACO exists. Moreover, excluding ACO patients from asthma and COPD clinical trials 93 

created inadequate evidence-based treatment regimens for these select group of patients (31, 94 

153). It is thus imperative that the disparity in the overlap epiphenomenon of asthma and 95 

COPD is critically analysed. Primarily, ACO patients' can be characterized by unravelling the 96 

inflammatory and remodelling processes involved in the lung compartments of these patient 97 

groups. A more thorough understanding can help develop better diagnoses and new 98 

therapeutic approaches to this disease. This review provides a comprehensive overview of the 99 
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existing literature on ACO pathology as a clinical phenotype, current therapeutic 100 

management, pathologically distinguishing similarities and differences in asthma, COPD, and 101 

ACO patients. 102 

2.0 Asthma COPD Overlap  103 

The asthma COPD overlap (ACO) is not a single disease entity (2, 3) and collectively 104 

describes the patients who have persistent airflow limitation and clinical features consistent 105 

with asthma and COPD. The ACO phenotype has been a matter of immense concern as most 106 

clinical trials exclude these patients, causing a paucity of evidence that leads to 107 

overtreatment, especially with inhaled corticosteroids (ICS), which could be more damaging 108 

than beneficial. The ACO phenotype remains undefined (211); the prevalence is also 109 

considerably variable, 0.9 to 11% in the general population, 11.1% and 61.0% in the asthma 110 

patients, and 4.6 to 66% in the COPD patients (2, 203). Even the criteria mentioned in 111 

guidelines for the diagnosis of ACO patients do not align among themselves. However, 112 

similarities exist among the essential aspects: the persistent airflow obstruction is consistent 113 

with COPDs with a history of asthma diagnosed before and after 40 years of age, and also the 114 

positive bronchodilator responsiveness, i.e., improvement of FEV1 by at least 15% and 115 

400 ml against the pre-bronchodilator value (200). A global survey by Jenkins C et al. (100) 116 

among the respiratory-allergy specialists and primary care practitioners found that patients 117 

with a history of asthma, allergy/atopy, smoking and toxic exposure or with respiratory 118 

symptoms such as dyspnoea, chronic cough, and chest tightness were primarily used for 119 

diagnosis and management of ACO. The ACO shares many risk factors established for 120 

asthma and COPD and many of these overlapping factors could have early origins in the 121 

disease. Also, over time the clinical signs and symptoms of asthma and COPD become 122 

similar due to prolonged exposure to environmental hazards such as cigarette smoking, 123 

smoke generated from burning of fossil fuel, and the very chronic nature of these diseases. 124 
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However, a prominent phenotype of one disease still be observed in these patients (131, 138, 125 

154). 126 

2.1 ACO Pathology 127 

The Debate 128 

A common debate on ACO pathogenesis is whether it is a unique pathogenic process as 129 

suggested by the British hypothesis or a synergistic pathological process of asthma and 130 

COPD as in the Dutch hypothesis. Neither of these two theories has sufficient evidence to 131 

prove or invalidate the mystery of ACO. Evidence suggests that the ACO is a specific 132 

treatable trait with a Th2 signature expressed by the blood eosinophil as a biomarker (202). 133 

Taken together, we believe that the ACO is a clinical phenotype that lies within the prism of 134 

both the “Dutch” and “British” theories and is undoubtedly different from those with either 135 

COPD or asthma. A well-designed study by Ghebre et al. (67) illustrated this point while 136 

investigating the predominant overlapping pathobiological characteristics by comparing 137 

spontaneous or induced sputum inflammatory mediators from ACO patients. Based on their 138 

clustering analysis, they identified 3 biological clusters. In the Cluster 1, there was 139 

dominance of Th2 cytokines and eosinophils with 95% in asthmatics and 5% in patients with 140 

COPD. Cluster 2 was identified with neutrophilia and high cytokine IL-1β in asthmatic 141 

COPD overlap patients, closer to the Dutch theory. COPD with mixed granulocytic airway 142 

inflammation and higher sputum IL-6 and CCL13 levels were identified in Cluster 3. These 143 

findings indicated the different origins of asthma and COPD, as stated by the British 144 

hypothesis. Nonetheless, the study had a shortcoming in reporting the bacteriological data, 145 

was exclusively based on culture-dependent methodologies and lacked supporting serological 146 

data.  147 
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Asthma or COPD to ACO Process  148 

The airway inflammatory patterns in asthma and COPD are distinct. A systemic 149 

inflammatory network analysis indicated a mixture of asthma and COPD inflammatory 150 

pattern in ACO with Th2 (IL-13 and IL-5) and non-Th2 cytokine expression (44). The study 151 

reported that the median values of IL-13 and IL-5 were highest in asthma, intermediate in 152 

ACO, and lowest in COPD. Interestingly, IL-8 was higher in patients with a smoking history 153 

(COPD and ACO) than asthma (44), attracting neutrophils and macrophages. Conventionally, 154 

asthma is viewed as a disease of variable airflow obstruction due to allergen exposure with 155 

airway hyperresponsive. Thus, it is easy to perceive that an asthmatic person who smokes 156 

tobacco eventually develops a s fixed airflow obstruction due to increased inflammatory 157 

response and consequent COPD (Figure 1). 158 

Sputum and endobronchial biopsy studies have revealed that smoking in asthma increases 159 

airway neutrophilia, a pattern similar to COPD, presumably by expressing cytokines such as 160 

IL-6, IL-8, and IL-17A (71, 156, 173). These cytokines have been implicated in neutrophil 161 

chemotaxis in smokers with asthma. In addition, IL-17 plays a crucial role in bronchial 162 

asthma driven by neutrophilic inflammation (173) and is also likely involved in stimulating 163 

MMP-9 secretion from macrophage in COPD (133). Further, a previous study by Ravensberg 164 

et al. (157) in airway pathology of smoking asthmatics found an increase in bronchial 165 

infiltration of CD8+ T cells, macrophages and epithelial remodelling akin to COPD. 166 

Interestingly, no difference was observed in neutrophil numbers when compared to 167 

non-smoking asthmatics, thus suggesting that CD8+ and macrophages are the dominant 168 

inflammatory cells in smoking asthmatics. Besides smoking, air pollution also affects the 169 

asthmatic airway in numerous ways, including increasing cellular oxidative stress, 170 

cytokine/chemokine release, innate immune cell activity through damage-associated 171 
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molecular pattern (DAMP) receptors such as TLR-2 and TLR-4, regulatory T-cells 172 

dysfunction, and alterations in DNA methylation (123).  173 

Abundant literature evidence is available for the single-nucleotide polymorphisms (SNPs) in 174 

asthma gene candidates. However, replication of these genes has been an issue, and only a 175 

few were replicated TNF, ADAM33, IL-4RA, MMP9, IL-12B, C3, and IL-13 (204). Further, 176 

genome-wide association studies (GWAS) of asthmatic adults and children have identified 177 

asthma with SNPs of GATA3, MUC5AC, KIAA1109, HLA-DR, IL-33, IL-1RL1IL-18R1, 178 

SMAD3, ORMDL3/GSDMB, and IL-2RB (137, 172). The locus ORMDL3/GSDMB on 179 

chromosome 17q21 is specific to the early-onset of asthma. The asthma exacerbation in ICS 180 

treated children is associated with APOBEC3B and APOBEC3C (77, 137). These genes are 181 

implicated in innate and adaptive immune responses and anomalies of epithelial barrier 182 

function in asthma. For example, the possible regulatory role of SMAD 3 and IL-2RB in the 183 

homeostatic and healing process and thus could have potential role in airway remodelling. 184 

Another important gene in asthma is GSTP1, the most abundant isoform of the GST gene in 185 

the lung epithelium. Genetic polymorphisms of this gene have been implicated in asthma 186 

pathogenesis. For example, GSTP1-105 polymorphism has been reported as a predictor for 187 

asthma in Taiwanese school children (120); GSTP1 Ile105Val susceptibility in childhood 188 

asthma in the Japanese population (109). Nonetheless, the GSTP1 homozygous Val/Val 189 

genotype was also associated with a 3.6-fold increased risk of having asthma in Turkey (199). 190 

Interestingly, findings by Piacentini et al. (151) questioned the sustainability of association of 191 

this gene with asthma as the author did not find any significant differences in the genotype 192 

distributions GSTP1 along with of the GSTM1 and GSTT1 genes between asthmatics and 193 

healthy controls from Italy. Overall, these findings remind the ethnicity factor in the genetic 194 

polymorphism. 195 
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One of the proven genetic determinants of COPD is severe alpha 1-antitrypsin (AAT) 196 

deficiency. The causative relationship between defective one single gene AAT (mutation of 197 

the SERPINA1 gene) and the development of pulmonary emphysema was first noted back in 198 

1963 (118). The AAT deficient patients with protease inhibitor (PI) type Z allele are at 199 

increased risk for severe, early-onset COPD (117). The COPD GWAS have identified and 200 

replicated SNPs at chromosome 15q25 spanning many genes, including CHRNA3-5 and 201 

IREB2 as the potential candidate in COPD susceptibility. Further, the HHIP locus is 202 

associated with fat-free mass, exacerbations among COPD patients, and FEV1/FVC (152). 203 

The CHARGE Consortium also found evidence of association of FAM13A locus with 204 

FEV1/FVC (209). Another identified genetic defect linked with COPD is the TERT gene 205 

mutations, a risk factor for emphysema in smokers predominantly female and approximately 206 

1% severe COPD had this deleterious mutation in TERT (198).  207 

The potentially shared genetic risk factors for asthma and COPD included TGFB1, TNFA, 208 

MMP9, GSTP1, IL-13, SERPINE2, SOX5, WNT5a, and DDX1 (11, 75, 78, 178, 206). Further, 209 

ADAM33 has been linked to both diseases and accelerated lung function decline (105). Thus, 210 

the shared gene theory suggested a common underlying genetic factor for both the onset and 211 

course of these two diseases. In addition, among the shared genes, ADMA33, SERPINE2, 212 

SOX5, and MMP9 are important for lung development and injury repair (89). 213 

The genetic work in ACO is at an early stage. Hardin et al. (75) GWAS study of asthma and 214 

COPD found no SNPs associated with ACO exceeding a significance level (p-value) of 215 

5×108. However, the most significant variant was in the CSMD1 gene on chromosome 8, 216 

followed by the intronic region in the SOX5 gene on chromosome 12. The top two SNPs 217 

(rs11779254 and rs59569785) associated with ACO were significant among the non-Hispanic 218 

(n=283) but in the African-American (n=167) due to small sample size. The meta-analysis 219 

identified the association between SNPs in the gene GPR65 (member of G2A G protein-220 
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coupled receptor family) and ACO. Gene GPR65 plays a crucial role in eosinophil activation 221 

during asthma and extracellular inhibition of proinflammatory cytokines. Recently, Joo et al. 222 

(106) identified 24 loci associated (p-value < 5e-8) with ACO, including well-known asthma 223 

and COPD loci such as ORMDL3/GSDMB and HHIP in a GWAS from UK biobank 224 

(502456 individuals aged 37 to 73 years). The genome-wide significant loci in ACO (not in 225 

asthma or COPD GWAS) included two near the HRNR and ID2 genes, and each of these 226 

peaks was nominally associated with asthma (p-value < 1e-6), suggesting that they are risk 227 

factors for ACO. Another large GWAS by John et al. (102), including 8068 cases and 228 

40360 controls of European ancestry from UK Biobank and other 12 additional cohorts, 229 

identified an intergenic signal on chromosome 5, rs80101740 previously associated with 230 

asthma, COPD, or lung function. The author also identified eight genome-wide signals for 231 

ACO with the nearest gene GLB1, IL17RD, FAM105A, LOC100289230, TSLP, C5orf56, 232 

HLA-DQB, and PHB. Overall, these findings contribute to understanding of genetic overlap 233 

between ACO and contributing diseases asthma and COPD. 234 

Allergen sensitization has been reported in elderly COPD patients, and the presence of high-235 

level serum IgE possibly causing allergic inflammation and associated symptoms in COPD 236 

(93). Further, cigarette smoking increases the total serum IgE levels; however, it decreases 237 

with increasing age. High IgE serum levels were detected in ACO patients compared to 238 

COPD (107, 145). Clustering analysis of Th2-gene signatures (POSTN, SERPINB2, and 239 

CLCA1) suggest that a more significant subgroup, approximately 20%, of COPD patients 240 

with a smoking history had high Th2 signatures (36). However, the asthma-like 241 

Th2-associated signatures are not predicted clinically by the history of asthma. The group 242 

also found that the Th2 signature in COPD was associated with tissue eosinophilia, blood 243 

eosinophilia, high bronchodilator responsiveness and a better response to ICS. Recently, 244 

Mertens et al. (134) reported the effect of IL-13 and whole cigarette smoke on the Th2-gene 245 
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expression POSTN, CLCA1, and SerpinB2 in primary bronchial epithelial cells by using air-246 

liquid interface cultures to explore the underlying mechanism of ACO. The study found that 247 

cigarette smoke inhibits IL-13 induced Th2-gene signature, especially the POSTN in primary 248 

bronchial epithelial cells.  249 

Recently Lange et al. (116) demonstrated a pathway of the inadequately developed lung for 250 

the genesis of COPD. The study included subjects from three independent cohorts according 251 

to lung function at the beginning and the presence or absence of COPD towards the end. The 252 

authors noted a significant mean decline in FEV1 of 17±18 ml per year in half of the 253 

population who had a low FEV1 in early adulthood, suggesting the lung function values 254 

reached during early adulthood are essential for diagnosing COPD later in life.  255 

Overall, we can infer that many shared genes in asthma and COPD are identified in general 256 

populations associated with maximally attained lung function, which might explain the 257 

commonality rather than shared pathogenesis in asthma and COPD as stated in the Dutch 258 

hypothesis.  259 

2.2 Distinguishing ACO from Asthma and COPD 260 

The crucial components of asthma and COPD disease include chronic but variable 261 

inflammation throughout the airway and link to airway wall remodelling. Therefore, these 262 

two components may also be active in the ACO. 263 

2.2.1 Inflammation  264 

The “Hygiene Hypothesis” of asthma pathogenesis asserts that the childhood exposure of 265 

allergens has a protective effect in the development of atopy, possibly by stimulating the Th1 266 

immunity (interleukin [IL]-2, interferon-γ and tumour necrosis factor [TNF]-α mediated) 267 

(144). In asthmatic individuals, interactions with infectious agents or allergens through 268 

macrophage and dendritic cells stimulate the proinflammatory thymic stromal 269 
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lymphoproteins (TSLPs) family of cytokines, activating a more poignant adaptive immune 270 

response (60). Atopic asthma individuals have inflammation largely orchestrated by CD4+ 271 

cells of T-helper type 2 (Th2) cells (Figure 2). Th2 cells release inflammatory cytokines IL-3, 272 

IL-4, IL-5, IL-9, and IL-13, which triggers IgE synthesis in B cells and stimulate recruitment 273 

of basophils, mast cells, and eosinophils, their differentiation maturation and survival (16, 274 

162). Further, group 2 innate lymphoid cells (ILC-2 cells), which produce Th2 cytokines such 275 

as IL-5 and IL-13, also contribute to eosinophilic inflammation (76). A typical inflammatory 276 

pattern also existed in non-atopic asthma wherein similar increases in eosinophils, mast cells, 277 

type 2 cytokines IL-4, IL-5, IL-9 and IL-13, and IL-4 receptor-expressing cells (18). Also, 278 

epithelial damage due to microbes or pollutants causes induction of ‘alarmins’ cytokines such 279 

as IL-25, IL-33, and TSLP, which again promote eosinophilic inflammation, even in the 280 

absence of allergic stimuli (162). Contrarily, Th2 low asthmatic inflammation is driven 281 

through Th1/type 17 helper T (Th17) or ILC3 cells response and are found in the presence or 282 

absence of neutrophilia (115, 174). The neutrophilic asthma is also linked to IL-17 pathways, 283 

(173) essentially producing chemoattractant (CXCL)-8 (IL-8), that attracts a large number of 284 

neutrophils at the site of inflammation (161). Lastly, IL-6 and IL-17 promote dual Th2 and 285 

Th17 cell phenotypes in mixed granulocyte asthma, wherein eosinophilic and neutrophilic 286 

asthma acts concertedly (92). Although it is now known that inflammation induces airway 287 

hyperresponsiveness (AHR), the exact mechanism between inflammation and AHR remains 288 

unclear (34). The AHR could result from epithelial damage likely through loss of barrier 289 

function, peptide inflammatory mediators degrading enzymes such as neutral endopeptidase, 290 

epithelial relaxant factor, and exposure of reflexing sensory nerves in the airways (14).  291 

Both innate and adaptive immune responses are involved in lung inflammation in COPD 292 

patients (Table 1). The progression of COPD increases with the increasing infiltration of the 293 

airways by inflammatory cells (80). Chronic exposure to cigarette smoke, air pollutants, and 294 
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biomass fuel directly activate the innate immune response by triggering TLRs or purinergic 295 

receptors. Subsequently, in the effector phase, proinflammatory cytokines and chemokines 296 

such as TNFα and chemokine CXCL8 are released by airway epithelial cells (Figure 3). 297 

Further, the expression of adhesion molecules on endothelial cells promotes the recruitment 298 

of macrophages and neutrophils to the lungs (26). Neutrophils release several serine 299 

proteases, which act on elastin, collagen, and fibronectin, affecting several clinical facets of 300 

COPD, including alveolar destruction. Further, these proteases also enhance the mucus 301 

secretion from submucosal glands and goblet cells (17). An increase in macrophage numbers 302 

in the airway lumen and airway wall has been established in smokers and COPD patients 303 

(51). Although mast cells are traditionally associated with atopic asthma, evidence indicates 304 

that mast cells may be implicated in COPD pathogenesis as shown by us and others (7, 192). 305 

The activation of the adaptive response starts later in the COPD disease course with the 306 

increase of T and B lymphocytes (20). CD8+ cells are predominant cells compared to 307 

CD4+ cells in the lungs and arteries of COPD smoker patients (53, 164). Although the CD4+ 308 

cells are involved in COPD pathogenesis, the information on the precise involvement of 309 

CD4+ cells are still evolving, and a possible role the involvement of cytokines IL-17 and 310 

IL-21 in this mechanism has been identified (214). Elevated airway eosinophilic 311 

inflammation is present in about 20%–40% of COPD cases despite treatment with ICS (166). 312 

The mechanisms of eosinophil elevation in COPD patients are likely to involve ILC2, 313 

possibly regulated by the IL-33, released due to epithelial cell injury (17). Oxidative stress, a 314 

COPD feature, occurs when exposure to free radicals or reactive oxygen species (ROS) 315 

overcomes the defence. The lung is continuously exposed to these ROS generated from 316 

exogenous sources such as air pollutants and cigarette smoke, from endogenous sources, e.g., 317 

mitochondrial respiration and the inflammatory responses to viral and bacterial infections. 318 

The airway epithelial cells have been shown to induce the production of mitochondria-319 
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derived ROS when exposed to the lipophilic part of cigarette smoke. ROS activate NF-κB 320 

and P38 MAPK, activating multiple inflammatory genes and proteases and may cause 321 

increased inflammatory response (17, 159). 322 

Periostin, an extracellular matrix protein of the fasciclin family and mammalian chitinase-3-323 

like protein 1 (CHI3L1) or YKL-40 glycoprotein (produced by various cell types, including 324 

macrophages, neutrophils, and airway epithelium) were found to play a vital role in the 325 

pathogenesis of airway inflammation, remodelling of tissue in asthma and COPD, 326 

respectively. Efforts have been made to differentiate ACO from asthma and COPD by 327 

assessing serum periostin and YKL-40 together (171); however, both of these markers are not 328 

consistently upregulated in asthma or COPD and are not the representatives of entire asthma 329 

and COPD populations. Therefore, the combined assessment of these two biomarkers alone 330 

may not be enough (95). Club cells are believed to play an important role in airway repair due 331 

to injury, secreting anti-inflammatory, and immunomodulatory proteins. Club cells secretory 332 

protein (CC-16) was significantly low in ACO patients, especially with higher smoking levels 333 

and airflow obstruction than asthma or COPD patients, suggesting severe inflammation and 334 

poorly controlled disease.  However, the study did not include the normal healthy controls 335 

and may have been confounded with selection bias (143). 336 

Sputum biomarker studies have provided the most specific information on ACO, asthma, and 337 

COPD (Table 1). For example, Gao et al. (63) found a higher level of neutrophil gelatinase-338 

associated lipocalin (NGAL), IL-6, and YKL-40 in ACO patients identified using the GINA 339 

and GOLD guidance documents as compared to healthy subjects. Only NGAL could 340 

differentiate the ACO patients from asthma and COPD. The neutrophil percentage was 341 

highest among the inflammatory cells in ACO compared to asthma, COPD, healthy or non-342 

smoker subjects. In another study, sputum neutrophil count was higher in COPD patients than 343 
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asthma and ACO, whereas the eosinophils were higher in asthma and ACO than the COPD 344 

patients without any apparent differences in eosinophils in between asthma and ACO. 345 

However, the sensitivity and specificities were different for the cellular markers (64). A study 346 

by Kitaguchi et al. (112) found that the COPD patients, alongside a history of asthma with a 347 

thickened bronchial wall, high peripheral and sputum eosinophils had a significant increase in 348 

FEV1 when treated with ICS. Thus, COPD patients with asthmatic symptoms with a high 349 

eosinophil count and thickened bronchial wall are more likely to respond to ICS. 350 

Interestingly, a high peripheral eosinophil concentration with elevated IL-4 was observed in 351 

firefighters with no previous history of asthma , from the dust exposure during the World 352 

Trade Center collapse, and were subsequently diagnosed as ACO, indicated through 353 

pulmonary function test (PFT) with BDR (FEV1 increase of >12% and 200 mL from baseline 354 

and FEV1/FVC ratio <0.7) (176). A high sputum eosinophil count was also found by 355 

Iwamoto et al. (94) in both asthmatic and ACO patients as compared to COPD and healthy 356 

subjects in a study evaluating inflammatory and lung-injury related biomarkers in these 357 

patients. The patients in this study were diagnosed in accordance with British Guidelines on 358 

Asthma Management and American Thoracic Society (ATS)/European Respiratory Society 359 

(ERS) recommendations. Currently there is scant evidence with regards to specific 360 

biomarkers for ACO, which suggests the possibility of variable inflammatory mechanisms 361 

across ACO patient population.  362 

Recently, Ghosh N et al.(68) established a comprehensive serum immunological profile using 363 

a combination of gas chromatography and mass spectrometry  for asthma, COPD, and ACO 364 

patients diagnosed using GINA and GOLD, 2014 and NHLBI/ATS, California Workshop 365 

2016 (1, 210, 211). They identified TNFα, and IL-1β, among the Th1 mediated cytokines and 366 

IL-5 as Th2 cytokine that was significantly upregulated in ACO, suggesting that these factors 367 

could distinguish asthma and COPD from the former. In addition, the study found an 368 
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increased presence of IL-6 expression in ACO, which was suggested as a possible diagnostic 369 

biomarker. Further, considering the elevated IL-5, the authors hinted at the possibility of 370 

using anti-IL-5 therapy similar to severe asthma as a treatment strategy for ACO. 371 

So far, only one endobronchial biopsy study has been conducted in ACO, asthma, and COPD 372 

patients, comparing the histological differences (147). In the study, COPD and asthma 373 

patients were diagnosed according to GOLD and GINA criteria and ERS/ATS guidelines, 374 

and ACO patients fulfilled the criteria in the published consensus documented by Sin et al. 375 

(175). All patients included were under ICS or long-acting β-agonists (LABA) treatment. The 376 

study did not find any difference in tissue lymphocyte infiltration, eosinophilic infiltration, 377 

number of granulocytes among COPD with or without asthma characteristics. However, 378 

asthma only patients had higher tissue eosinophils, and COPD only patients had higher 379 

granulocytes in the stroma.  380 

2.2.2 Airway Remodelling 381 

Airway remodelling refers to the structural changes in the airways of many chronic lung 382 

diseases, including asthma and COPD. In asthma, they occur in the mucosal areas of the 383 

airways with aberrant modifications of both epithelial and subepithelial areas, the smooth 384 

muscle layer and airway vascular structures. Structural changes in COPD generally involve 385 

thickening of large and small airways and parenchymal alveolar areas, with significant tissue 386 

morphological and physiological changes seen such as epithelial metaplasia, loss of epithelial 387 

cilia, a high number of goblet cells, and gland and smooth muscle hypertrophy and 388 

hyperplasia. 389 

Epithelial Alteration 390 

The bronchial epithelium is considered the frontline protective layer against toxic substances 391 

and microbes during inhalation and is crucial in maintaining tissue homeostasis. Any 392 
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imbalance in homeostasis accentuates inflammatory response and repair process that help 393 

mend the damage.  394 

Shedding the damaged epithelial surface in the asthmatic airway has been reported, although 395 

with high variability between cases (98) and without noticeable ciliary abnormalities (99). In 396 

general, shedding of epithelium is not reported in COPD; however, cigarette smoking 397 

damages the epithelium leading to squamous metaplasia. Increased goblet cells and loss of 398 

cilia are other important observations in COPD epithelial areas (80, 98, 165, 190). Goblet 399 

cells hyperplasia in COPD patients leads to airway lumen blockage due to increased mucus 400 

secretion and plug formation. At the same time, the reduction in cilia length would further 401 

disrupt the mucociliary clearance, retaining the mucus within the airway (122). In COPD 402 

patients, injury to the epithelium attracts inflammatory cells that alter cellular permeability. 403 

Further, altered epithelium increasingly produces growth factors such as TGFβ, epithelial 404 

growth factor (EGF) and vascular endothelial growth factor (VEGF) that can cause both 405 

physiological and genetic changes (56, 103, 194, 196).  406 

Minimal evidence is available concerning epithelial remodelling changes in ACO patients. 407 

However, lately, Ravensberg et al. (157) found a significantly higher percentage of intact 408 

epithelium in smoking asthmatics than non-smoking asthmatics, and the authors concluded 409 

that the epithelial remodelling was similar to the COPD feature. 410 

Changes in Reticular Basement Membrane (Rbm) 411 

In asthma, subepithelial fibrosis mainly involves thickening of Rbm due to increased 412 

deposition of extracellular matrix (ECM) proteins, including collagens I and III, tenascin, and 413 

fibronectin. Fibroblasts are the main source of collagen I and II and are released in response 414 

to TGF-β. The fibroblasts sheath plays a crucial role in synthesizing and depositing these 415 

matrix proteins to seal the barrier, and the process involves hyperproliferative fibroblast and 416 

Downloaded from journals.physiology.org/journal/ajplung at Univ of Tasmania Lib (131.217.255.240) on November 9, 2021.



 

Page 18 of 40 
 

the differentiation into myofibroblast. Brewster et al. (25) reported increased collagen 417 

thickness and myofibroblasts in asthmatic individuals and proposed that bronchial 418 

myofibroblasts responsible for the characteristic subepithelial fibrosis seen in allergic asthma. 419 

Further, increased deposition of ECM is associated with higher expression of submucosal 420 

MMP-9, a zinc-dependent endopeptidase capable of degrading collagen (86). Subepithelial 421 

fibrosis has been reported in different types of asthma, but degree of fibrosis did not provide 422 

the basis to differentiate from milder forms of asthma (37). Interestingly, fibrosis has  also 423 

been reported in subjects with rhinitis  but was found less marked than the asthmatics (32). 424 

In COPD, findings on Rbm thickness have been conflicting (113, 124). Liesker et al. (124) 425 

found that the Rbm is thickened in both COPD and asthmatic patients compared to the normal; 426 

however, the Rbm is not significantly different between asthma and COPD. Interestingly, the 427 

Rbm composition in asthmatic and COPD was different, suggesting different types of airway 428 

remodelling changes and underlying airway inflammatory patterns in both diseases. Further, 429 

no significant correlation was noted between Rbm thickness or extracellular matrix 430 

components in either COPD or asthmatic patients and lung function. 431 

On the contrary, Kosciuch et al. (113) reported a significantly low Rbm thickness in COPD 432 

patients compared to the asthmatics, with inflammation suggested as a critical factor impacting 433 

thickness. However, the study lacked a sufficient sample size to be conclusive. In addition, we 434 

have reported that the Rbm is quite fragmented in patients with COPD as part of the EMT 435 

process, which could explain the discrepancies in thickness measurements of the Rbm in the 436 

literature (182, 187, 189, 191, 193, 194).  437 

Limited studies are available on the airway remodelling changes in ACO. A 3D-CT study 438 

(110) of ACO patient lungs found significant airway wall thickening and narrowing than 439 

COPD. These ACO patients had a history of variable respiratory symptoms and expiratory 440 
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airflow limitation (FEV1% predicted >12% and FEV1 of >200 mL BDR or four weeks of 441 

anti-inflammatory treatment). Using the multidetector-row computed tomography, Niwa et al. 442 

(142) found a thicker airway wall in ACO than the asthmatic patients, indicating a prominent 443 

remodelling pattern than asthma. More recently, in asthmatic patients, a mild decrease in lung 444 

elastic recoil has been seen. Interestingly, loss of lung elastic recoil is often observed in 445 

COPD patients, and it was that the recurrent asthma attacks led to bronchiolar inflammation 446 

with activation of a proinflammatory pathway with the activation of protease, cathepsin G 447 

and MMP. All of these have a combined effect on the breakdown of parenchyma (66). A 448 

recent endobronchial biopsy study by Papakonstantinou et al. (147) suggests that the thick 449 

basement membrane in COPD could reveal ACO phenotype that might respond to 450 

ICS/LABA; however, the study lacked statistical power and did not include the normal 451 

healthy control. A similar result was found by Al-Kassimi et al. (4), demonstrating Rbm 452 

thickening in 11 out of 14 non-emphysematous COPD patients displaying asthma features, 453 

whereas, in comparison, emphysematous COPD patients had lesser thickened Rbm.  454 

Airway Smooth Muscle 455 

The potential roles of airway smooth muscle in the pathogenesis of asthma symptoms and 456 

relation to airway hyperresponsiveness have previously been comprehensively reviewed (22, 457 

96). Both hypertrophy and hyperplasia of ASM are seen in asthmatics, possibly due to 458 

stimulation of ASM by growth factors such as platelet-derived growth factor or endothelin-1 459 

released from inflammatory or epithelial cells (14). Further, ASM is capable of perpetuating 460 

airway inflammation functions through biologically active chemokines and cytokines (e.g., 461 

TNF-α) as well as through cell adhesion molecules (CAMs) such as intercellular adhesion 462 

molecule-1 and vascular cell adhesion molecule-1 (5). Additionally, an imbalance between 463 

the expression of MMPs and MMP inhibitors TIMPs within the ASM could cause a 464 
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degenerative environment with increases in aberrant ECM deposition (8). Moreover, such an 465 

environment promotes aberrant fibrosis, leading to structural and mechanical abnormality (5). 466 

COPD progression is strongly correlated to increased airway wall due to increased muscle 467 

layer apposing other morphological remodelling parameters (52). Increased muscle layer 468 

could contribute to airway responsiveness and negatively correlate with lung function in 469 

COPD (81). Although Hogg et al. (82), in their landmark paper, showed the increased smooth 470 

muscle in small airways of older COPD patients, other studies showed mixed results of either 471 

increase or no significant changes (24, 96, 201). Only mild smooth muscle hypertrophy was 472 

reported (59), whereas, in the small airway, we have recently reported significantly thickened 473 

smooth muscle in COPD current and ex-smoker patients compared to normal controls. Also 474 

noted was an increase in αSMA+ myofibroblasts in the SA wall of COPD patients related to 475 

pathological changes in the ECM scar proteins, collagen-1 and fibronectin (52). 476 

Unlike asthma and COPD, the evidence on airway smooth muscle in ACO patient cohorts is 477 

again minimal. While Papakonstantinou et al. (147), reported no differences in airway 478 

smooth muscle cells in ACO patients compared to either asthma or COPD, Sha et al. (170), in 479 

a case report, suggested changes to the airway smooth muscle histology as a valuable but 480 

underutilized biomarker in disease phenotyping. They presented a case study of a 65-year-old 481 

woman who was initially diagnosed with COPD but following endobronchial biopsy 482 

histopathology, marked smooth muscle hypertrophy with thickened Rbm with squamous 483 

metaplasia was noted, and her treatment approach altered to advanced therapies for severe 484 

asthma. Thus, it highlighted the importance of smooth muscle histology for accurate 485 

phenotyping airway disease, especially with challenging ACO domains. 486 
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Vascular Changes 487 

The vascular alteration in asthma includes increased angiogenesis and vessel numbers/size in 488 

the airway (22). Prominent features of fatal asthma are dilatation of blood vessels in 489 

bronchial mucosa, congestion, and oedema in the airway wall (47). The VEGF is an 490 

important controller of angiogenesis; presumably, it also increases the permeability of the 491 

blood vessels leading to dilation and oedema, which contributes to airway narrowing (35, 48, 492 

85, 87). Angiogenesis has been reported in mild asthma and severe corticosteroid-dependent 493 

asthma (98). 494 

The main vascular remodelling changes in COPD involve increased pulmonary muscular 495 

arterial intimal thickness due to proliferating longitudinally oriented smooth muscle cells 496 

without significant any differences in cellular and extracellular matrix components (elastin, 497 

collagen, proteoglycans) and increased medial thickening, leading to reduction of arterial 498 

luminal diameter (167, 168). The other changes include hypo-vascular lamina propria and 499 

hyper-vascular Rbm in the large airways of smokers and COPD, as we previously reported 500 

(182, 194, 195, 197). In addition, Reimann et al. (158) reported an enhanced S100A4 501 

expression in remodelled pulmonary arteries of COPD patients, which are upregulated in 502 

fibrosis (181). Therefore, higher S100A4 expression in the pulmonary vasculature of COPD 503 

patients indicates that the process of the endothelium to mesenchymal transition may be 504 

active and may have a possible role in vascular remodelling and fibrosis in COPD. The 505 

evidence of vascular remodelling in ACO is still evolving. 506 

Epithelial to Mesenchymal Transition 507 

Epithelial to mesenchymal transition (EMT) is when epithelial cells lose their epithelial 508 

functionality and characteristics, i.e., cell-cell adhesion and apico-basal polarity, and attains a 509 

mesenchymal phenotype that includes migration, invasion, and increase in ECM components. 510 
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EMT has been classified into 3 types (103). The Type I EMT occurs at the early development 511 

stage; the Type II EMT leads to organ fibrosis and obliteration; and the Type III EMT can 512 

induce the formation of pre-malignant stroma when associated with angiogenesis (108, 186). 513 

When active, the Type II EMT is devoid of angiogenesis and is the distinguishing compared 514 

to Type III EMT, which is angiogenesis prominent. Some in-vitro studies suggest an increase 515 

in EMT activity with induction lead by either TGF-β or EGF in epithelial cells derived from 516 

asthmatics and normal subjects (42, 72). Although micrographs of endobronchial biopsy of 517 

asthmatic children shown in a case series indicated the possibility of EMT, further in vivo or 518 

patient studies are warranted to verify whether EMT is active process asthma (101, 191).  519 

We have previously shown that EMT is an active process in the large airways of smokers and 520 

patients with COPD, as indicated by reticular basement membrane (Rbm) fragmentation and 521 

hypercellularity (187). The Rbm fragmentation is the key structural tissue hallmark of active 522 

EMT, facilitating the epithelial transition and migration into the underlying lamina propria. 523 

We have reported   clefts within the Rbm with cells expressing MMP-9 and the early 524 

fibroblast transition marker, S100A4, also in the basal epithelium and epithelial activation 525 

marker EGFR, all suggesting active EMT. Important pathological implications of EMT in 526 

COPD are fibrosis and obliteration of small airways and lung cancer (50, 52, 58, 125, 130, 527 

179, 180). The key cell population in fibrosis is myofibroblasts, which could be derived from 528 

several sources, including circulating fibrocytes, epithelium, endothelial cells, pericytes and 529 

resident lung stromal cells(79). As we published previously, Type III EMT is active in 530 

smokers and patients with COPD, responsible for malignant transformation in these patients, 531 

leading to lung cancer (128, 130). In addition, EMT can significantly change the airway wall 532 

ECM characteristics, making the airway more vulnerable to compression and obstruction 533 

expiratory dynamics. Therefore, the role of active Type II EMT in airway fibrosis or 534 

obliteration cannot be ruled out. Indeed, Milara et al. (135) reported that the EMT process in 535 

Downloaded from journals.physiology.org/journal/ajplung at Univ of Tasmania Lib (131.217.255.240) on November 9, 2021.



 

Page 23 of 40 
 

the small bronchi among smokers and COPD patients could potentially contribute to the 536 

small airway wall thickening. 537 

EMT in COPD is potentially driven by the “canonical” TGFβ pathways via the 538 

phosphorylated (p) SMAD transcription factor fingerprint as indicated with higher TGFβ 539 

expression the airway wall of COPD patients, high expression of pSMAD2/3 and a reduced 540 

pSMAD 7 expression which is positively associated to airflow obstruction (127). We also 541 

reported that vessel associated TGFβ increases in the Rbm, which may have implications for 542 

driving both Type II and III EMT in smokers and patients with COPD (195). Furthermore, 543 

the transcription factor clusters of β-catenin/Snail1/Twist, which implicates EMT, were 544 

upregulated in COPD and associated with airflow obstruction (129). Therefore, blocking 545 

EMT in COPD possibly brings substantial therapeutic potential. Previously, we have reported 546 

the suppression of EMT-related changes in large airways of COPD patients treated with 547 

fluticasone propionate in a randomized controlled study. We found a reduction in Rbm 548 

fragmentation, EGF receptor, basal epithelial and RbmS100A4, and MMP-9 expression in the 549 

treatment group compared to placebo (188). However, we observed that vascular changes 550 

related to the Rbm did not go away after the treatment, suggesting more extended treatment 551 

requirements for hypervascularity (196). Taken together, we believe that EMT is a critical 552 

process in COPD, contributing towards airway fibrosis and lung cancer and could have an 553 

essential role in ACO but this warrants further work. So far, no studies have been conducted 554 

to identify EMT in ACO; however, given increasing evidence of its prominent role in COPD, 555 

it would be natural to presume that EMT as a phenomenon is crucial to ACO pathogenesis.  556 

3.0 Treatment options for ACO 557 

Undoubtedly, the management of asthma and COPD is currently at an advanced stage, with 558 

several treatment strategies currently available to control disease progression (2, 3, 9, 57, 559 
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185). The mainstream asthma pharmacotherapy includes treatment with short-acting β2 560 

agonist (SABA) (e.g., albuterol), LABA (e.g., formoterol, salmeterol, and vilanterol), ICS 561 

along with anticholinergics, oral corticoids (OCs) (e.g., prednisone), and anti-inflammatory 562 

biologics (Table 2). Constant bronchodilation continues to be the major objective of COPD 563 

management that includes treatment with SABA (salbutamol, terbutaline, and fenoterol) and 564 

LABA (salmeterol, formoterol, and indacaterol). Treatment with short-acting (ipratropium 565 

and oxitropium) and long-acting muscarinic receptor antagonists (LAMA) (tiotropium) is 566 

also effective on symptoms, airflow limitation, and exacerbations (3). The GOLD document 567 

does not recommend long term monotherapy with ICS as well as OCs. Adding up LAMA 568 

with LABA/ICS therapy is beneficial in reducing the exacerbation and improving the lung 569 

functions. 570 

There is no firm therapeutic approach available for ACO treatment due to the lack of 571 

evidence in this patient population, making it difficult for clinicians to make certain informed 572 

treatment recommendations. Clinicians’ treatment decisions are based on the more prominent 573 

phenotype, i.e., asthma or COPD like features, that may or may not be present in the ACO 574 

patients (46, 200). The GOLD 2020 advised people with ACO to follow recommendations 575 

for asthma therapeutic approaches. In all patients with chronic airways diseases, advice 576 

focuses on smoking cessation, ensuring appropriate inhaler technique, optimising adherence 577 

to therapy, identifying and avoiding the risk factors, appropriate treatment for comorbidities, 578 

utilizing pulmonary rehabilitation, and vaccinations (207). The GINA 2020 mentions using 579 

low or medium-dose ICS as the initial treatment but reminds prescribers about the potential 580 

occurrence of adverse events such as pneumonia and considering the add-on treatment with 581 

LABA and LAMA for managing the COPD features (2, 54, 55, 183, 184). The 582 

LAMA/ICS/LABA triple combination, once-daily treatment, has shown significant 583 

improvements in lung function from the baseline in ACO patients compared to ICS/LABA 584 
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dual therapy (90). Treatment with ICS+LABA combination once daily was also demonstrated 585 

a substantial improvement in lung functions in ACO patients with episodic respiratory 586 

symptoms, increased airway variability (AHR or BDR), and incompletely reversible 587 

obstruction in the airway (91). Very limited data are available for the appropriate first-line 588 

therapy for ACO patients. Treatment with ICS is considered for ACO patients, and the 589 

available literature does indicate that the ICS response is related to the prognostic values in 590 

asthma and COPD. However, no evidence reflects the ICS response in ACO patients when 591 

defined by the reversible FEV1.  592 

Monoclonal antibodies (anti-IgE, anti-IL-5, anti-IL-5ra, and anti-IL-4) targeting the patients 593 

with prevalent Th2 inflammation could be promising for ACO. In a post hoc, exploratory 594 

efficacy analysis of omalizumab in the ACO (asthma patients with COPD diagnosis or self-595 

reported, n=56) and non-ACO (asthma patients, n=681) patients, the improvement in the 596 

asthma outcomes were noted in both ACO and non-ACO patients. Of note, no significant 597 

differences in the baseline demographic profiles of these groups were noted (74). Further, the 598 

study of mepolizumab, an anti-IL-5 (Table 2), in patients with COPD eosinophilic phenotype 599 

was found to reduce the eosinophil counts and annual exacerbation rate (150). It is to be 600 

noted that the study lacked asthma and ACO patients; however, COPD patients were 601 

stratified according to blood eosinophil counts (≥150/mm3 at screening or ≥300/mm3 at any 602 

time during the previous year), that is a Th2 inflammatory marker. Although trial with 603 

benralizumab in COPD patients with eosinophil counts of less than and greater than 220/mm3 604 

and frequent exacerbation showed substantial blood and sputum eosinophils, they did not 605 

correspond to the substantial decrease of exacerbation rates. Interestingly, the trial also 606 

excluded asthmatic patients and ACO patients (40). Therefore, the responder may be 607 

identified Th2 phenotypes, and it is possible that these therapies could benefit individuals 608 
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with ACO. Oher potential monoclonal antibodies for ACO treatment are reslizumab and 609 

dupilumab; however, the evidence on efficacy in ACO is still evolving.  610 

The PDE4 inhibitors such as roflumilast could be a potential treatment option for ACO 611 

patients as an alternative to the bronchodilator and ICS. Roflumilast is an approved drug for 612 

treating COPD but not asthma, although a recent metanalysis of the major database found 613 

that roflumilast (500 μg) significantly improved FEV1, peak expiratory flow, asthma control 614 

and exacerbations (126).  615 

Macrolides are helpful to treat COPD patients because of their anti-inflammatory, 616 

immunomodulatory, and antibiotic effects (149); however, there is a lack of evidence of their 617 

effectiveness in asthma patients. A Cochrane review reported that the macrolides in 618 

managing chronic asthma were no better than the placebo (111). Interestingly, recent 619 

evidence of long-term treatment with erythromycin in ACO patients found reduced airway 620 

inflammation, total cells, neutrophils, and neutrophil ratio in induced sputum in addition to 621 

the significant reduction of exacerbations (141). Hence, macrolides could be an effective 622 

option for treatment of ACO patients with neutrophilic inflammation.  623 

Wu et al. (212) recently found a protective association between metformin and decreasing 624 

respiratory exacerbation rate in ACO patients (n=510), defined as simultaneous physician-625 

diagnosed asthma before 40 years of age, and COPD from the Genetic Epidemiology of 626 

COPD study cohort. However, randomized clinical trials are required to verify these findings 627 

and warrant detailed prospective investigations. 628 

4.0 Conclusion 629 

In this review, asthma and COPD related research from the last decade have been surveyed. 630 

Notably, we have summarized the pathological aspects of ACO, asthma and COPD, 631 

emphasizing the role of both innate and adaptive immunity, and presented the importance of 632 
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airway remodelling in individual disease phenotype. The interplay of immune systems and 633 

airway wall changes seems to be important but remains understudied in these chronic airway 634 

diseases. It is urgent to format a consensus that can better explain ACO pathological 635 

characteristics as a distinct disease phenotype. Most ACO research conducted is either 636 

systemic or sputum based, and there is a poor prognosis on the specific site-related 637 

inflammation and remodelling changes. Discovering the pathobiology of ACO would provide 638 

further understanding and help to identify diagnostic criteria, allowing clinicians to identify 639 

these select patient populations, thus providing better therapeutic interventions. 640 
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Figure 1 Pathological Features of Asthma COPD Overlap: Possible mechanisms for the 1250 

asthma-COPD overlap (ACO). According to the Dutch hypothesis (which states the shared 1251 

origin of asthma and COPD) if asthmatic patients are exposed to toxic inhalants such as 1252 

cigarette smoke or biomass fuel, that causes COPD, may develop ACO. Similarly, COPD 1253 

patients may develop asthma like features when the patients are sensitized with allergens. 1254 

Inversely, the British hypothesis states that both the asthma and COPD are distinctively 1255 

unique diseases. Impaired lung function could have an early origin. Progression from prenatal 1256 

insult to paediatric disease and finally to obstructive airway disease in adulthood may have a 1257 

complex interaction between genetics and epigenetics. Thus, early childhood events such as 1258 

impaired lung functions may lead to ACO and further, the genetic susceptibility e.g., SNP in 1259 

CSMD1 demonstrated implications for ACO. Abbreviations: IL: Interleukin; CC-16: Club 1260 

cell secretory protein. Created with BioRender.com 1261 

 1262 

Figure 2 Immunopathological Features of Asthma: Abbreviations: CXCL8=C-X-C motif 1263 

chemokine ligand 8, IL: interleukin, ILC2: type 2 innate lymphoid cell, ILC2=type 3 innate 1264 

lymphoid cells, PDG2: prostaglandins D2, Th: T helper, TSLP: thymic stromal 1265 

lymphoprotein. √√ represents most common, √ represent presence, and X represents absence. 1266 

Created with BioRender.com.  1267 

 1268 

Figure 3 Inflammatory Cascade and Features of COPD: Adapted from Sapey et al. (169) 1269 

CXCL=C-X-C motif chemokine ligand, IL: interleukin, ILC2: type 2 innate lymphoid cell, 1270 

Th: T helper, The precipitating event such as bacterial or cigarette smoke or an environmental 1271 

trigger causes inflammation of the airway epithelium, subsequently activating the  resident 1272 

immune cells including macrophages and T cells leading recruitment of neutrophils, but also 1273 

T cells, B-cells and eosinophils in the lung tissue, following chemokines released by 1274 

epithelial, endothelial, and resident immune cells. Macrophages and epithelial cells (EMT) 1275 

release growth factors that activate fibroblasts. Recruited immune cells secret cytotoxic 1276 

granular contents, ROS and proteinases into the tissue and these events generally associated 1277 

with the development of mucus secretion, emphysema, and small airways remodelling thus 1278 

progression of COPD. 1279 
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Table 1 Comprehensive summary of inflammatory cells including innate and adaptive immune cell in asthma, COPD and ACO. 

Disease 
type/references 

Cell type Sample type/ 
technique used

Subjects Findings

Asthma 
(119). CD4+ and CD8+ lymphocytes Induced sputum and 

whole blood/ 
flowcytometry

NC (nonatopic) 6, 
COPD CS 7, Asthma 
NS 8

Sputum T lymphocytes are predominant phenotype (CD103+ 
CD69+) with normal numbers of CD4+ and CD8+ T cell 
populations.

(173) IL-17A, IL-8, IL-6, neutrophils, 
and eosinophils 

Endobronchial 
biopsy/IHC, ELISA 

Asthma CS 8, Asthma 
NS 8, and Asthma ES 2 

Significant elevation of neutrophil, IL17A, IL6 and IL8 in 
bronchial mucosa of asthmatic smokers as compared to no-
smokers. 

(23) CD8, CD4, NK cells, dendritic 
cells (DC), Myeloid derived 
suppressor cells (MDSC), 
regulatory T cell 

BAL/ 
flowcytometry 

Asthma (atopic) 24 Elevated expression of CD30 on Treg; increased eosinophil but 
no significant increase in IL-4; significantly high CD4+ T 
lymphocytes while a significantly low in CD8+ T lymphocytes; 
significantly high plasmacytoid dendritic cells (pDC) after 
allergen challenge 

(213) CD8, CD4, and CD127 Blood, sputum, 
bronchial biopsies, and 
BAL/ Fluorescence-
activated cell sorting 

Healthy 37, 
eosinophilic severe 
asthmatic 34, non-
eosinophilic severe 
asthmatic 54

CD8+ is markedly increased in eosinophilic patients both in 
blood and airway. Airway CD4+ cells and blood CD127+were 
not significantly increased.  

(10) CD45+, CD3+, CD4+, CD8+, 
mast cells, eosinophils, 
neutrophils, CD25+ (IL2) 

Mucosal biopsies/IHC NC (nonatopic) 9, 
Asthma (atopic) 11, 
healthy 10 

Increased CD45, CD3, and CD4- and CD8-positive cells, 
eosinophils, CD+ cells in asthmatics. No significant mast cells, 
neutrophils, or Leu-M3 + cells in the airway mucosa of 
asthmatics.

(73) Macrophage, eosinophil, 
neutrophilCD8+CD28−, 
CD8+CD56+, perforin, INF-γ 

Sputum/IHC, 
Flowcytometry 

NC 10, severe 
asthmatic, mild 
asthmatic 12 

Significant elevation of eosinophils and lymphocytes in severe 
asthmatics. Increased CD8+CD28−, CD8+CD56+ cells in 
severe asthmatics, compared to healthy subjects and mild 
asthmatics with parallel decrease of the CD8+CD28+. 
CD8+CD28− cells produced high perforin and low INF- γ in 
sever asthmatic patients. 

(6) Eosinophils, neutrophils, mast 
cells, CD3+, CD4+, CD8+, and 
CD25+ (IL2) 

Bronchial biopsy 
tissue/IHC 

NC 7, asthma (atopic 
13; non atopic 9) 21  

In atopic asthma patients had elevated eosinophils, mast cells, 
and T lymphocytes (CD4+), whereas nonatopic asthmatics 
mainly showed high neutrophils and mast cells.

COPD 
(45) DC Resected lung 

tissue/IHC 
Sputum/ 

Never smoker 10, 
smoker without COPD 
9, smoker COPD 

Significantly high DC number in the epithelium and adventitia 
of small airways in COPD compared with never-smokers and 
smokers without COPD 
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Disease 
type/references 

Cell type Sample type/ 
technique used

Subjects Findings

Flowcytometry (GOLD I 10, GOLD II 
16, GOLD III-IV 10) 

(7) Mast cells Resected tissue/ 
IHC 

NC 8, smokers 7, 
COPD-CS 5, COPD-
ES 20

The density of connective tissue mast cells in patients with very 
severe COPD was significantly higher than in controls. 

(163) Neutrophils, eosinophils, mast 
cells, macrophages, CD4+ and 
CD8+  

Lung tissue, pulmonary 
arteries/ 
IHC 

NS 8, NLFS 6, smoker 
COPD 

Smokers with COPD have an increased number of CD8+ cells. 
Arteries infiltrated by neutrophils, eosinophils, mast cells, 
macrophages, and CD4+ cells were not significantly different 
in examined groups.

(51) Macrophage (M1/M2) Resected tissue and 
BAL/ 
IHC and ELISA 

NC (BAL 11, SA 10), 
NLFS (BAL 13, SA 
11), COPD CS (BAL 
16, SA 9), COPD ES 
(BAL 13, SA 11)

Decrease in M2 and increase in M1 macrophages in the small 
airway in COPD and NLFS compared with normal with a 
reciprocal decrease in M2 macrophages 

(156) Neutrophil Biopsy tissue/ 
IHC, In Situ 
Hybridization  

Stable COPD 7 
(smokers), exacerbated 
COPD 15 (smokers), 
NC 15

Both stable and exacerbated COPD had significant increase in 
neutrophils with an association with upregulation of both 
CXCL5 and CXCL8. 

(70) B Cells (CD20+) Bronchial biopsies 
from large airway/ 
IHC

COPD 114 (CS 72, ES 
42), NC (CS 27. ES 1) 

High B-cell numbers in patients with COPD as compared to 
controls and higher in patients with GOLD severity stage 3 
than stage 2

(41) CD4+ and CD8+ T cells, 
macrophage, (CD80+ CD163- 
and CD80+ CD163+), monocytes 

Fresh lung tissue and 
venous blood/ 
flowcytometry, 
Transcriptomic 
analysis

NS 12, smokers 9, 
COPD ES 16, COPD 
CE 28 

COPD CS had significant reduction in the proportion of T-cells 
that involved both CD4+ and CD8+ T cells; increase in the 
proportion of macrophages (CD80 + CD163+ and CD80 + 
CD163-) lung monocytes distributed differently between the 
study groups due to an increase of monocytes in COPD-CS.

(43) ILC1, ILC2, NCR+ ILC3 and 
NCRILC3 (CD45+); CD45+ 
LinCD127+ 

Resected tissue/ 
flowcytometry 

NC 5 (NS 3, CS 2), 
COPD 11 (CS 5, ES 6) 

High frequency of NCR+ILC3 with increase in IL-17A and IL-
22 expressing ILC in COPD compared with controls, whereas 
IFN-γ and IL-5 expressing ILC were similar in control and 
COPD.

(33) CD4 and CD8 T cells Biopsy tissue/I 
HC in large airways

NC 15 (ES 3), COPD 
CS 7, COPD 20 ES  

Increased expression of CD4 and CD8 cells expressing IL-17 
cytokines.

(62) CD8+ and CD4+ co-expressing 
TLR 

Lung resected tissue/ 
Flow cytometry

NLFS 14, COPD (ES 
15, CS 5)

Increase in CD8+ T cells expressing TLR1, TLR2, TLR4, 
TLR6 and TLR2/1 over smokers without COPD.

(164) neutrophils, macrophages, CD4+ 
and CD8+ T-cells 

Resected tissue/ 
IHC

NC 7, COPD 9 (with 
smoking history)

Increased number of CD8+ T-lymphocytes
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Disease 
type/references 

Cell type Sample type/ 
technique used

Subjects Findings

(165) Macrophages, neutrophils, 
CD45+ cells, CD4+ and 
CD8+ cells 

Resected tissue/ 
IHC 

NS 9, NLFS 6, COPD 
Smoker 10 

Significant increase in CD45 cells, macrophages, and 
CD8+ cells in COPD patients as compared to non-smokers 

(53) neutrophils, CD68+ and CD8+ 
cells 

Small and large airway 
biopsy tissue/ 
IHC

NC 35, NLFS 31, 
COPD-CS 21, COPD 
ES 24

Decreased neutrophil, macrophage in large airway and a 
significant increase of CD8+ cells in small airway. 

Asthma COPD Overlap (ACO) 
(12) IL-4, IL-5, IL-9, IL-13, IL-1b, IL-

6, and TNF-α 
Sputum, Serum/  
ELISA and 
flowcytometry 

Asthma 23, COPD 28, 
ACO 24 

Both serum and sputum, IL-4, IL-5, IL-9, and IL-13 in COPD 
as compared to asthmatic and TNF-a, IL-1b, IL-6 in bronchial 
asthmatic as compared to COPD were highest. lowest CD4: 
CD8 ratio was found in the bronchial asthma patient group and 
the highest ratio was found in the COPD patient group.

(107) CD3+, CD4+, CD8+, 
CD4+/CD8+, CD19+, 
CD16+56+, IgE, TNF-α, IL-4, 
and IFN-γ, 

Serum/ 
ELISA, flowcytometry 

Control 20, COPD 44, 
Asthma 39, ACO 12 

Increase in CD3+CD8+ lymphocytes, B lymphocytes, LTB4 in 
ACO patients as compared to control, asthmatic, and COPD 
alone.   

(63) Eosinophil, neutrophil, IL-6, 
NGAL, YKL-40, IL-13, MPO 

Sputum/ 
ELISA 

NS 14, Healthy-CS 14, 
Asthma-ES 9, -CS 6, 
COPD-ES 7, -ES 12, 
ACO-ES 11, -CS-7

IL-13 and MPO were higher ACO patients compared to healthy 
and discovery cohort. NGAL, IL-6, and YKL-40 were elevated 
in ACO as compared to NS.  

(64) Eosinophil, neutrophil, 
lymphocyte, macrophage 

Sputum/ 
staining and 
microscopic

Asthma 142, COPD 
160, ACO 72, all 
smokers

Higher neutrophils in COPD, higher eosinophils in asthma and 
ACO, eosinophilic difference in asthma and COPD are not 
apparent, elevated macrophage in asthma compared to ACO

(147) Lymphocyte, eosinophil, 
granulocytes  

Endobronchial biopsy/ 
stain 

COPD 129 (CS-47), 
Asthma-19, COPD 
with asthma 18 (CS 16) 

No difference in lymphocytes, eosinophils, or granulocytes 
infiltration in tissue among the COPD patients with or without 
asthma.

Abbreviations: BAL: Bronchoalveolar lavage; CD-cluster of differentiation; CS- Current Smokers; COPD: Chronic obstructive pulmonary 

disease; DC-Dendritic cell; ELISA: Enzyme-linked immunosorbent assay; ES- Ex Smokers; IHC- Immunohistochemistry; IL-Interleukin; ILC: 

Innate lymphoid cells; LTB4-Leukotriene B4; NCR: Natural cytotoxicity receptor; NC- Normal Control; NGAL-Neutrophil Gelatinase-

associated Lipocalin; NLFS- Normal Lung Function Smokers; PB- Peripheral blood; PMO-myeloperoxidase; SA: Small airway; TLR-Toll-like 

receptor family; TNF-α-Tumour Necrosis Factor alpha; UA- Unavailable; YKL-40: Chihtinase-3-like protein 
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Table 2 Representative Therapies in Use/under Investigation for Asthma, COPD and in overlap.  

Reference Treatments Target Patient population Outcomes
(146) Mepolizumab, 

injection for 
subcutaneous use 
 

anti–interleukin-5 Severe asthmatics with at least 2 exacerbations 
previous year and treated with glucocorticoids; 
peripheral BEC ≥150 cells/μl at screening or 
300 cells/μl in the previous year 

Significant reduction is exacerbation as compared to 
placebo and increase in FEV1 values as compared to 
baseline. 
Similar safety profile as seen in placebo 

(30) Reslizumab injection, 
for intravenous use 

anti–interleukin-5 Asthmatics inadequately controlled by medium-
to-high ICS; BEC 400 cells/μL or higher and 
one or more exacerbations in the previous year.

Significant reduction in the asthma exacerbation rate. 
Common adverse events on reslizumab were similar 
to placebo.

(139) Benralizumab 
injection, for 
subcutaneous use 

interleukin-5 receptor 
alpha- 

Severe asthmatics with BEC ≥150/mm3  Significant decrease exacerbation/year, improved 
symptom controls 

(29) Dupilumab, injection 
for subcutaneous use 

interleukin-4 and 13 Sever asthmatics above 12 years old with 
current treatment with medium-to-high ICS + 
up to two additional controllers; BEC <300 or 
≥300/ mm3 

Significantly lowers rates of exacerbation as 
compared to placebo; better lung function and asthma 
control. Greater benefit in patients with high baseline 
eosinophil. The safety profile was comparable with 
placebo

(136) Omalizumab/ 
rhuMAb-E25 
injection, for 
subcutaneous use 

immunoglobulins E (IgE) Moderate or severe allergic asthma Improvements in daily asthma symptom score.  
No significant difference in adverse events profile 
comparing the placebo. 

(38) Tezepelumab*, 
subcutaneous injection 

TSLP Severe Uncontrolled adult Asthmatics treated 
with LABA and medium-to-high ICS dose 

Significant reduction of asthma exacerbation rate, that 
occurred irrespective of baseline BEC

(84) Etanercept* TNF-α moderate-to-severe persistent asthmatics No statistically significant clinical efficacy between 
the treatment and placebo group, however the adverse 
event profile remains similar to that of placebo.

(27) Imatinib, 200 mg/day 
2 weeks and then 400 
mg/day, oral 

KIT proto-oncogene 
receptor tyrosine kinase 
and mast cells 

Severe, refractory asthmatic uncontrolled with 
inhaled beclomethasone, and at least one 
additional controller medication, score on 
Asthma Control Questionnaire (ACQ-6) of at 
least 1.5.

Imatinib reduced AHR, mast-cell, and tryptase 
release. 
Muscle cramps and hypophosphatemia were more 
common in the imatinib group than in the placebo 
group

(140) CSJ117*, an Anti-
TSLP mAb fragment 
(46 kDa) 

TSLP - -

(121) Montelukast, 10 mg 
tablets; oral 

cys-LT receptor (LRA) 
antagonist 

Non-smokers (15-45 years) asthmatics for more 
than one year using inhaled β2 agonist with 
decreased FEV1 after methacholine challenge 

Significant protection in QD treatment against 
exercise induced asthma over a 12-week period with 
less required β2 agonist. 
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and exercise challenge No significant differences between treatment and 
placebo group in the frequency of clinical or 
laboratory adverse effects.

(150) Mepolizumab 100 mg 
and 100 mg 
Subcutaneous injection 

anti–interleukin-5 COPD for at least 1 year; history of moderate 
or severe exacerbations when taking ICS-based 
triple maintenance therapy; BEC ≥300/ mm3 
and ≥150/ mm3 at screening

Mepolizumab (100 mg) had reduction on the annual 
rate of moderate or severe exacerbations among 
patients with higher BEC at screening as compared to 
placebo. Safety profile was similar to that of placebo.

(28) Roflumilast 500 μg 
once a day, oral 

Phosphodiesterase-4 
(PDE4) inhibitor 

COPD >40 years old, with severe airflow 
limitation; chronic cough and sputum 
production. 

In roflumilast significant increase of 
prebronchodilator FEV1, moderate to severe 
exacerbation rate reduced significantly.in a subset of 
COPD patients.  
Class-related adverse effects that usually arise soon 
after initiation of treatment.

(177) CHF6001*/ inhale 
route 

novel PDE4 inhibitor COPD patients with post-bronchodilator 
FEV1/FVC ratio < 0.70 and FEV1 ≥ 30% 
and ≤ 70% predicted, CAT score ≥ 10, and a 
history of chronic bronchitis, receiving triple 
inhaled therapy

Reduction of sputum biomarkers such as leukotriene 
B4, CXCL8, MIP-1β, MMP9, and TNFα also 
significantly decreased SP-D levels in the blood. 
Reduced number of PDE4 class related adverse 
events.

 

* Under investigation.  

Abbreviations: AHR: Airway hyperresponsiveness; BEC: Blood eosinophil count; CAT: COPD Assessment Test; COPD: Chronic obstructive 
pulmonary disease; CXCL8: C-X-C motif chemokine ligand 8; FEV1:  Forced expiratory volume in 1 second; FVC: forced vital capacity; ICS: 
Inhaled corticosteroids; MIP: Macrophage inflammatory protein; MMP: Matrix metallopeptidase; SP-D: Serum surfactant protein; TNF: Tumor 
necrosis factor; TSLP: Thymic stromal lymphopoietin. 
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