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Abstract: Global warming and altered precipitation patterns pose a serious threat to crop production
in the North China Plain (NCP). Quantifying the frequency of adverse climate events (e.g., frost, heat
and drought) under future climates and assessing how those climatic extreme events would affect
yield are important to effectively inform and make science-based adaptation options for agriculture
in a changing climate. In this study, we evaluated the effects of heat and frost stress during sensitive
phenological stages at four representative sites in the NCP using the APSIM-wheat model. climate
data included historical and future climates, the latter being informed by projections from 22 Global
Climate Models (GCMs) in the Coupled Model Inter-comparison Project phase 6 (CMIP6) for the
period 2031–2060 (2050s). Our results show that current projections of future wheat yield potential
in the North China Plain may be overestimated; after more accurately accounting for the effects of
frost and heat stress in the model, yield projections for 2031-60 decreased from 31% to 9%. Clustering
of common drought-stress seasonal patterns into key groups revealed that moderate drought stress
environments are likely to be alleviated in the future, although the frequency of severe drought-stress
environments would remain similar (25%) to that occurring under the current climate. We highlight
the importance of mechanistically accounting for temperature stress on crop physiology, enabling
more robust projections of crop yields under future the burgeoning climate crisis.
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1. Introduction

Global warming and altered rainfall patterns induced by rising greenhouse gas emis-
sion are predicted to cause more widespread and extreme weather events [1], thereby
threatening agricultural production and global food security [2]. A recent global study
projected that a twofold increase in the wheat-growing area will be threatened by extremely
high temperatures during critical developmental stages in a typical year by 2050 [3]. It is
thus necessary to quantify the impact of extreme climate events on crop yields, to assess the
risk to food security and to develop targeted adaptive strategies to alleviate climate change.

China is the world’s largest consumer and producer of wheat. Given that it is one of
the primary wheat cropping regions in China, wheat productivity in the North China Plain
(NCP) has been declining due to increased extreme weather events (e.g., drought stress
and temperature stress) driven by climate change, especially in the southern part [4]. These
extreme weather events cause large wheat yield variability in the NCP [5]. With climate
change, more cropping regions like NCP will face a greater risk of abiotic stress due to
higher frequencies and greater magnitudes of extreme temperature and rainfall events [6].
Therefore, there is a need to develop and implement adaptation strategies that alleviate the
adverse effects of these events.

In the NCP, temperature and drought stress may occur at critical crop development
stages. Understanding temporal and spatial variability in these stress-risk, wheat-cropping
zones would benefit the model-assisted design of climate change adaptation strategies [7–9].
Modelling tools have been used to characterise both the water-deficit and the waterlogging
stress patterns experienced by a crop at a regional or national level in many cropping
zones [10,11]. More importantly, this approach has proven useful for breeding improved
abiotic stress tolerance in crops adapting to climate change [12–14].

The interactions of climate change and management options can be analysed with
process-based crop simulation models [15,16]. Future climate projections after downscaling
from different general circulation models (GCMs) can serve as inputs for process-based
models [17,18]. Numerous crop modelling studies have attempted to evaluate potential
climate change impacts on wheat production in the NCP [19–21], but few studies have
evaluated the frequency of adverse climate conditions (e.g., frost, heat and drought) in
future climates and how those extreme climate events would affect wheat yield. To fill this
knowledge gap, we aim to (a) evaluate the impact of future temperature stress on wheat
yield across wheat cropping regions in Shandong province in the NCP, and (b) examine
how drought-stress frequencies and seasonal typologies would influence yield under future
climate change scenarios.

2. Materials and Methods
2.1. Field Experimental and Phenotyping

Field experiments were conducted at Yanzhou (35◦34′ N, 116◦51′ E, 53.0 m altitude)
from 2015 to 2018 in Shandong province, China (Table 1). The soil in the upper 20 cm
at the experimental site was calcareous alluvial with the following properties: pH 6.7,
20.7 g kg–1 organic matter, 635.8 mg kg–1 alkali-hydrolysable N, 29.7 mg kg–1 available P,
and 128.9 mg kg–1 available K. Soil property data were collected each year and averaged
across the three years.

Table 1. Detailed information for field experiments conducted at Yanzhou in Shandong province.

Year Sowing Date
(d-m-y)

Flowering Date
(d-m-y)

Maturity Date
(d-m-y)

Fertilisation
(kg N ha−1)

Seeding Rate
(Plants m−2)

Irrigation
(mm)

2015–2016 13 October 2015 14 April 2016 14 May 2016 105 (basal) + 105 (ZS31) 180 60 (ZS31) + 61 (ZS60)
2016–2017 12 October 2016 13 April 2017 13 May 2017 105 (basal) + 105 (ZS31) 180 44 (ZS31) + 38 (ZS60)
2017–2018 23 October 2017 24 April 2018 20 May 2018 105 (basal) + 105 (ZS31) 270 45 (ZS31) + 45 (ZS60)

A winter wheat cultivar, Jimai22 with medium vernalisation and photoperiod response,
was used in the field experiment. This high-yielding cultivar has mid-to-late maturity and
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is widely planted in Shandong province. The plants were planted in 2 × 6 m plots with a
row spacing of 25 cm. Experiments were arranged in a randomized, completed block de-
sign with three replications. The plants were sown with a seeding rate of 180 seeds m−2 in
autumn and were harvested the next summer. The sowing date was 13 October 2015, 12 Oc-
tober 2016 and 23 October 2017, respectively. Plants were fertilised with 105 kg N ka ha−1,
65 kg P ha−1 and 93 kg K ha−1 as basal fertiliser for the three experimental seasons. Dur-
ing the growth periods, all the plots were top-dressed with 105 kg N ha−1 at the jointing
stage (ZS31). Irrigation was applied at ZS31 with 60 mm and at anthesis with 44 mm to
alleviate water stress. Weed control was performed from emergence to harvesting by hand
hoeing. No incidence of pest or disease infection occurred in either experiment.

Crop phenology was measured every two weeks following the Zadoks Stage. The
dates of sowing, anthesis and maturity were recorded for each year. At anthesis and
maturity (ZS90), 30 plants were taken to measure the total aboveground biomass. The
biomass weight of leaves and stems were determined after oven-drying at 70 ◦C to a
constant weight. At maturity (ZS90), plants from 4 m2 areas were harvested for the
determination of grain yield (at 13% grain moisture) and yield components.

2.2. Model Simulation
2.2.1. APSIM-Wheat

In this study, simulations were conducted using APSIM-Wheatv7.9 [22]. The perfor-
mance of APSIM-wheat has been widely tested and verified for cropping system simula-
tions across China. In an APSIM-Wheat module, phenological development is described
in terms of thermal time accumulation using 11 crop stages and 10 phases (time between
stages). The duration of each stage is determined by the accumulation of thermal time,
calculated as the sum of the average daily temperature above a base temperature, which
is defined as the temperature under which no significant crop development is expected.
The daily thermal time values are likely to be further influenced by photoperiod, vernal-
isation and other environmental factors such as drought and heat stress. Potential daily
biomass production is calculated using radiation use efficiency (RUE), which is defined as
the amount of dry matter produced per unit of photosynthetically active radiation that is
intercepted by the crop canopy. Grain yield, which is a function of crop growth and crop
development, is impacted by RUE, transpiration efficiency and leaf nitrogen concentrations;
these parameters are accounted for in the model. In APSIM, grain yield is determined by
the kernel set number and the average kernel weight at maturity, as these are the main
grain yield determinants in most crops.

2.2.2. Model Parameterisation and Validation

Parameterisation (Table 2) was performed by minimising the sum of squared errors for
measured and simulated phenology, biomass and yield following the approach outlined by
Harrison et al. [23]. Field data measured at Yanzhou in 2015 were used for parameterisation
while data obtained in 2016 and 2017 were used for validation. We applied the evaluation
criteria outlined by Harrison et al. [23], where the ideal root-mean square error (RMSE)
and mean bias (MB) values are represented by 0.0; MB < 1 and MB > 1 represent model
underestimation and overestimation of observed data, respectively. Relative root-mean
square error (RRMSE) values of <5% = excellent, 5–10% = very good, 10–30% = good and
>30% = poor. The ideal variance ratio (VR) is 1; VR > 1 indicates greater variation in the
actual data compared with the simulated data. Calibrated genetic parameters showed in
Table 3.

2.2.3. Factorial Simulations

Factorial simulations were conducted for 1981–2010 (hereafter referred to as baseline)
at four locations representing the major wheat producing areas across Shandong province
(Figure 1). Parameterised genotype was used to conduct long-term simulations. Wheat
was sown at 180 plants m−2, at a depth of 3 cm with a row spacing of 25 cm. Nitrogen
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(N) was applied as urea with a fertiliser rule, with a first dose of 105 kg N ha−1 applied at
sowing and a second dose of 105 kg N ha−1 applied when the first node of the stem was
visible (ZS 31). To elicit the effects of sowing time on phenology, yield and other agronomic
indicators, sowing windows were simulated using five-day increments from 1 October to
21 October each year. To ensure crops were successfully germinated across all sowing dates,
15 mm of irrigation was applied for each simulation. The initial soil conditions were reset
each year to exclude any ‘carry-over’ effects from previous seasons. Soil parameters for
each of the ten 20 cm thick soil layers were set at reference values according to International
Soil Reference and Information Centre [24].

Figure 1. Four sites (Shenxian: SX; Yanzhou: YZ; Feixian: FX; Weifang: WF) located in Shandong
province used for simulations in this study.

Table 2. Verification statistics of APSIM-Wheat simulations. Data shown are mean observed and
simulated values in 2016–2017 and 2017–2018.

Variables RMSE R2 MB RRMSE VR

Flowering days (d) 2.1 0.91 −0.1 4% 1.06
Maturity days (d) 3.2 0.97 0.2 3% 0.95

Maturity biomass (kg ha−1) 281 0.95 −1.3 4.2% 1.01
Grain yield (kg ha−1) 321 0.95 −3.6 4.5% 1.03
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Table 3. Calibrated genetic parameters of a winter wheat, Jimai22.

Parameters Definition Unit Value

tt_end_of juvenile Thermal time from sowing to end of juvenile ◦C day−1 450
tt_start_grain_fill Thermal time from start grain filling to maturity ◦C day−1 655

grains_per_gram_stem Kernel number per stem weight at the beginning of grain filling g 30
potential_grain_filling_rate Potential daily grain filling rate g grain−1 day−1 0.003

max_grain_size Maximum grain size g 0.045
vern_sens Vernalisation sensitivity 3.0

Photo_sens Photoperiod sensitivity 2.5
rue from ZS30 to ZS90 Radiation use efficiency g MJ−1 1.49

2.2.4. Simulating the Effect of Frost and Heat Damage on Yield

To estimate the effect of frost and heat damage during sensitive growth stages on yield,
we used the damage function developed by Bell et al., (2015) [25] for wheat. The tempera-
ture ranges were categorised into mild, medium and severe stress with a corresponding
impact on yield during different development stages, as shown in Table S1. Following
the default version of APSIM-Wheat [26] and Bell et al., (2015) [25], yield on day i was
modelled as:

Yi = Ywl,i × cumulative frost multiplieri × cumulative heat multiplieri

where

Y wl,i = water-limited yield on day i
cumulative frost multiplieri = cumulative frost multiplieri−1 × frost multiplieri
cumulative heat multiplieri = cumulative heat multiplieri−1 × heat multiplieri
Daily frost or heat multipliers were read from Flohr et al., (2017) [27] in the model according
to Zadoks stage. More details are described in our previous study [15].

2.2.5. Climate Data

Historical daily climate data of the four representative agro-meteorological stations were
obtained from China’s Meteorological Administration (CMA). Future climate (2031–2060;
hereafter refer to 2050s) projections were based on 22 global climate models (GCM, Table 4)
from CMIP6 (https://esgf-node.llnl.gov/projects/cmip6/; (accessed on 2 October 2021)).
These climate projections were driven by a new set of integrated assessment models (IAMs)
based on the Shared Socioeconomic Pathways (SSPs) and the Representative Concentration
Pathways (RCPs) [28]. In this study, we used future climate projections for one integrated
scenario (combining SSP5 with RCP8.5, defined by SSP585). SSP585 envisions fossil-fueled
development pathway with rapid technological progress and development of human
capital [28], and RCP8.5 is a high radiative forcing pathway (8.5 W m−2 in 2100).

During the baseline period, CO2 concentration was set to 380 ppm for all simulation
years in the model. Under the SSP585 scenario, CO2 concentrations will continuously rise
to 936 ppm by 2100 [29], which was fitted with a calendar year based on Wang et al., (2019):

[CO2]year = 1034.3 +
267.78− 1.618 ∗ y

4.0143 + 53.342
y5.2822

+ 21.746 ∗
(

y− 2010
100

)3
+ 100.65 ∗

(
y− 1911

100

)3
(1)

where y was the calendar year from 1900 to 2100 (y = 1900, 1901, . . . , 2100).
To produce future climate data, observed climate data were required to correct biases

of monthly GCM outputs as part of the statistical downscaling procedure [30]. Here, we
used a statistical downscaling method developed by the Department of Primary Industries
of New South Wales, Australia [17]. This method used bias-corrected monthly GCM
climate data (temperature, rainfall and radiation data) to generate realistic time series of
daily climate data for each study site based on a modified weather generator.

https://esgf-node.llnl.gov/projects/cmip6/
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Table 4. List of 22 global climate models (GCMs) used in this study.

No. GCM Abbreviation Institution Country

1 ACCESS-CM2 ACC1 CSIRO–ARCCSS Australia
2 ACCESS- ESM1-5 ACC2 CSIRO–ARCCSS Australia
3 BCC-CSM2-MR BCC BCC China
4 CanESM5 CAN1 CCCMA Canada
5 CanESM5-CanOE CAN2 CCCMA Canada
6 CNRM-CM6-1 CNR1 CNRM France
7 CNRM-CM6-1-HR CNR1 CNRM France
8 CNRM-ESM2-1 CNR2 CNRM France
9 EC-Earth3-Veg ECE1 EC–EARTH Europe
10 EC-Earth3 ECE2 EC–EARTH Europe
11 FGOALS-g3 FGO FGOALS China
12 GFDL-ESM4 GFD NOAA–GFDL America
13 GISS-E2-1-G GIS NASA–GISS America
14 INM-CM4-8 INM1 INM Russia
15 INM-CM5-0 INM2 INM Russia
16 IPSL-CM6A-LR IPS IPSL France
17 MPI-ESM1-2- HR MPI1 MPI-M Germany
18 MPI-ESM1-2- LR MPI2 MPI-M Germany
19 MIROC6 MIR1 MIROC Japan
20 MIROC-ES2L MIR2 MIROC Japan
21 MRI-ESM2-0 MRI MRI Japan
22 UKESM1-0-LL U0L UKESM U. K

2.2.6. Last Frost Day, First Heat Day and Target Flowering Windows

For each site, the last frost day (LFD) was defined as the last day of the year with a
minimum air temperature below 0 ◦C [31], and the first heat day (FHD) was calculated as
the first day with a maximum air temperature greater than 35 ◦C [32]. The frost and heat
risks of each site were calculated in both cases using the 70th percentile, such that LFD
refers to the date having a 30% chance of 0 ◦C, while the FHD corresponds to the date with
30% chance of experiencing a 35 ◦C day. LFD and FHD dates were computed for each site
using climate data from 1981 to 2010 and 2031 to 2060. The ‘target flowering window’ for
each site and genotype was then calculated using the LFD and FHD specified above, such
that flowering of a given genotype at a specific site occurred between LFD and FHD [33].

2.2.7. Long-Term Seasonal Water Stress Typologies and Frequencies

The time series of the ratio of crop water supply to demand for each site × soil × year
simulation were centered on flowering and averaged 100 ◦C every day from emergence
to maturity, following Harrison et al. [9] and Liu et al. [7]. Cluster analysis was applied
to all simulated time series using the k-means clustering algorithm (R Development Core
Team, 2011) to identify mean drought-stress seasonal patterns. Four drought-stress seasonal
patterns accounted for more than 75% of the variance across all baseline or 2050 simulations.
Further details of this method are described by [10,34].

3. Results
3.1. Validation of APSIM-Wheat Model

The simulated anthesis and maturity were consistent with the observed dates based
on model calibration and validation results (Figure 2A). The R2 between simulated and
observed phenology dates was greater than 0.91 and RMSE was 2-3 d (Table 2). The
simulated yields also closely followed the observations, with R2 = 0.95 and RRMSE = 5%
(Table 2). The results indicated that the APSIM-Wheat could effectively simulate wheat
growth and development under rain-fed conditions in the NCP. The calibrated parameters
are shown in Table 3.



Agronomy 2022, 12, 145 7 of 15

Figure 2. Simulated and observed phenology (A), maturity biomass (B) and grain yield (C) for
“Jimai22” in 2016–2017 and 2017–2018 at Yanzhou.

3.2. Wheat Productivity under Future Climates

Without considering the effects of extreme climate stress (e.g., heat and frost stress),
wheat yields are projected to show an increasing trend (Figure 3) across sites in the near
future (2050s). The average long-term yield increases in this study were 31% across sowing
dates and sites, with the largest increase at Yanzhou (38%) and the smallest increase
at Shenxian (27%). Simulated yield decreased with sowing dates under the baseline
(Figure S1), but the fluctuation of yield under future climates is minor; thus, the relative
change of water-limited potential yield increased with sowing dates (Figure 3).

After including the effect of frost and heat stress in the model, averaged water-limited
yield decreased by 17% across sites and sowing dates, and the yield reduction was mainly
caused by heat stress (i.e., heat-limited yield). Simulated yield loss caused by heat stress
was much higher than that caused by frost due to climate warming across sites. The yield
increase in water-limited potential yield in the 2050s decreased from 31% to 9% (heat and
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frost limited yield). This difference was especially pronounced at Weifang and Shenxian,
while Feixian and Yanzhou are affected by heat and frost stress to a lesser extent.

Figure 3. Yield changes in the period of 2030–2061 (referred as 2050s) under SSP585 compared with
the water-limited potential yield of baseline period (1981–2010). Water-limited potential yield (i.e., not
limited by frost and heat). Frost-limited yield (i.e., water-limited potential yields are reduced due to
frost stress during the sensitive period). Heat-limited yield (i.e., water-limited potential yields are
reduced due to heat stress during the sensitive period). Frost and heat limited yield (i.e., water-limited
potential yields are reduced due to both heat and frost stress during the sensitive period).

3.3. Cumulative Probability of Heat and Frost Stress during the Flowering Window

Low-risk windows were calculated to avoid yield damage caused by frost and heat.
Then, sowing dates would be determined in order to meet the sensitive period during
flowering that coincided with this low-risk period (shaded zone in Figure 4). For each
location, low-risk sowing window was defined as the range of sowing dates allowing
flowering to occur within the low risk of heat and frost stress.

There were large differences in the timing and duration of low-stress windows across
sites. In the current time, flowering windows generally coincided with the low-risk period
and the cumulative probability of heat and frost stress during the flowering periods were
lower than 30% across sites. The longest flowering window was at Shenxian (from 30 April
to 27 May, Figure 4C) and the shortest at Weifang (from 20 April to 17 May, Figure 4E).
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Figure 4. Impact of sowing date on the timing of flowering compared to the occurrence of extreme-
temperature events under the periods of 1981–2010 (baseline) and 2031–2060 (2050s) across sites
((A,B) Feixian; (C,D) Shenxian; (E,F) Weifang; (G,H) Yanzhou). The boxplot shows the variation in
flowering date (x-axis) for different sowing dates (left y-axis) over 30 years. Probabilities of last frost
days (left blue solid line), and first heat days (right red solid line) are calculated as the percentiles
of last frost and first heat days for baseline and 2050s. The low-risk period for frost and heat and
preferred flowering window is highlighted in grey. The upper horizontal dashed red line indicates
the 30% risk of first heat and frost day.

In the future climate scenarios, low-risk flowering windows shifted forward (4 days
and 14 days earlier for first day of frost and last days of heat stress, respectively) across
sites due to increased temperatures. For these frost-free sites, the largest shift occurred
at Weifang (Figure 4F), where both the maximum and minimum temperatures increased
by 2.2 ◦C and the cumulative probability of heat stress during flowering windows was
greater than 30% across sowing dates. Feixian (from 28-March to 17-May) and Yanzhou
(from 4-April to 1-May) still coincided with the low-risk period under future climates
(Figure 4B,H).
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3.4. Seasonal Drought Stress under Future Climates

Our cluster analysis based on all simulations across four sites revealed three dominant
drought-stress response (Figure 5A,B) patterns. Under historical climate conditions, around
46% of simulations experienced low drought stress (DT2), with a median yield across
all simulations of 6528 kg ha−1 (Figure 5C). The remaining 54% were classed into two
categories according to the timing of onset and intensity of drought stress. Severe stress
with late recovery drought (DT3, 25% of cases) was most detrimental for yield (median
yield approx. 2701 kg ha−1), followed by early moderate stress (DT2, median yield approx.
5706 kg ha−1) (Figure 5C).

Figure 5. Crop drought-stress trajectories (1 = no stress and 0 = full stress) and trend over crop
development stage expressed as thermal time (tt) before or after anthesis under historical (A) and
future climates (B). (See individual site in Supplementary Figures S2–S5). Three types of drought-
stress patterns (DT1: early-onset severe stress; DT2: severe stress with late recovery; DT3: moderate
stress with late recovery) identified by k-means clustering. Cumulative simulated yield frequencies
across all sowing dates in each drought patterns are shown for current ((C), 1981–2010) and future
((D), 2031–2060) climates. Points on curves indicate median yield for each drought pattern in each
climate scenario. Vertical arrows are included for comparison across climate scenarios. Curly brackets
indicate yield gap between different drought types.

Clustering of all simulations under future climates indicated that the magnitude of
drought stress was projected to be alleviated. In spite of this, it was projected that the
frequency of DT3, which has the most detrimental effects on yield, would remain the
same (25%) in the near future. More importantly, such drought type was expected to
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cause a larger yield gap in the 2050s. The yield gap between DT1 and DT3 increased from
3827 kg ha−1 in baseline periods to 5052 kg ha−1, and from 3006 kg ha−1 to 3875 kg ha−1

between DT1 and DT2. The typology of three seasonal drought patterns remained similar
to those occurring historically.

4. Discussion

Numerous crop modelling studies have attempted to evaluate potential climate change
impacts on wheat production in the North China Plain, but few studies have evaluated the
frequency of adverse climate conditions (e.g., frost, heat and drought) under future climates
and how these extreme events would affect wheat yield. In this study, we evaluated the
adverse effects of heat and frost stress on wheat yields by integrating yield reduction
multipliers caused by heat and frost events during temperature sensitive stages into an
APSIM-wheat model. Our results showed that current projections of future wheat yield
potential in the NCP were overestimated due to an ignorance about the role of climate
extremes. We used a cluster analysis approach to characterise drought-stress patterns of
winter wheat crops and thus determined how such patterns may differ in future. Clus-
tering all drought-stress patterns into key groups revealed important differences between
typologies and frequencies of the major stress patterns occurring in the study area.

In many parts of the world, climate change will result in decreased rainfall, at least in
the crop growing season (e.g., Australian Wheatbelt). In the current study, however, future
climates predicted by 22 GCMs in CMIP6 showed that most study sites will face a larger
increase in temperature and rainfall, coupled with a decrease in solar radiation under the
SSP585 scenario (Figure 1). This positive insight for future climate change contradicts most
other studies, which herald negative implications of climate change. However, such benefi-
cial effects are not observed in some studies in the NCP. For example, a detailed analysis
of China based on global gridded crop model outputs has also reported a future 10–30%
reduction in the mean yield in the NCP, except for on its northern border [35]. Another
simulation driven by 30 GCMs from the CMIP5 reported that the wheat mean yield would
decrease by 2.4–12.3% under RCP 8.5 [36]. Using decomposed and reassembled climate
change scenarios, Liu et al., found that climate change is projected to reduce wheat yield
by 17% under RCP8.5 [5]. These negative effects of climate change on yields are exagger-
ated because these studies neither account for increased atmospheric CO2 concentrations,
which can offset negative effects of climate change on yield, nor management practices
(e.g., fertilisation or irrigation input).

If CO2 fertilisation effects is accounted for in the model, wheat yields are projected
to show an increasing trend (Figure 4) across sites for the near future (2050s), where the
average long-term yield increased by 31%. Such positive effects are in agreement with
many previous studies [19,37–39]. These results were somewhat too optimistic because
temperature stress is not accounted for in the model, which can cause a severe yield
reduction during the sensitive stages. In the current study, after including the effect of
frost and heat stress, the magnitude of the increased yield in the 2050s became small
(9%, Figure 2). Our results suggest the importance of including temperature stress effect
on wheat yield in the climate change impact assessment since climate warming is an
indisputable fact [40].

Globally, rising temperatures and heat stress are the main drivers of projected negative
climate change impacts on crop yields [41,42]. In this study, we found that the yield
reduction was mainly caused by heat stress and that the simulated yield loss caused by
heat stress was much higher across sites than the simulated yield loss caused by frost stress
(Figure 2). A short period of 100 ◦C before anthesis and up to 7 days after anthesis (while
grains are still forming) can significantly reduce grain yield by increasing the proportion of
aborting grains [43,44]. Our study showed that several sites (e.g., Shenxian and Weifang)
were projected to face a high risk of heat stress during the flowering periods under future
climates (Figure 3). In the two regions, early sowing of short-season varieties is preferable
for flowering in minimal risk periods. In the other environments (e.g., Feixian and Yanzhou),
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which have lower late season (terminal) water, there would be a lower risk of heat stress
during the flowering periods and thus higher yields, because lower abiotic stress exposure
near the end of the growing season would be conducive to greater biomass and grain
production. Climate warming is leading to early springs and delayed autumns in colder
environments, allowing plants to grow for a longer period of time during each growth
period, which encourages farmers to delay the winter wheat sowing date in the NCP. Late
sowing might become quite a common way of coping with climate change under future
climates, but at a high risk of heat stress during the flowering periods. Thus, assessing
wheat potential to mitigate the adverse effects of future rising temperatures and heat stress
in the NCP still should be a focus for future studies.

In addition to heat and frost stress, drought stress is another factor limiting yield
potential in the NCP. These regions are projected to suffer a high frequency of DT1, which
is most detrimental for yield, in the near future, and the extreme drought stress might
cause more severe yield penalties (Figure 5). To breed genotypes with improved drought
tolerance, it is necessary to characterise the typology and frequency of drought patterns
experienced by crops both under historical and future climates [45–47]. Our results showed
that drought-stress patterns expected under future conditions will be similar to those
occurring under present conditions (Figure 5). This result has many important implications
for breeding drought-tolerant genotypes. If the major drought-stress patterns expected
under future conditions were unlike those experienced currently, then crop breeding for
future conditions would be difficult, as seasonal patterns in future climates might not occur
under field conditions at frequencies high enough to influence the direction of germplasm
development in breeding trials. In such cases, crop adaptation to specific drought-stress
seasonal patterns would need to be performed under controlled-stress environments, as
suggested by Bänziger et al. [48]. However, as the typologies of the key drought-stress
seasonal patterns occurring under present conditions are likely to be similar to those
expected in future climates, selection of elite wheat germplasm for superior yield under
present conditions using field trials should be an appropriate method for developing
germplasm suitable for the near future. Despite the higher temperatures and increased
winter precipitation predicted in the NCP for the 2050s, the impact of drought stress on
simulated wheat yield is predicted to be smaller in most cases (32–43%; See DT2 and DT3 in
Figure 5B,D). However, the probability of heat stress around flowering that might result in
considerable yield losses is predicted to increase significantly (Figure 4). Breeding strategies
for the future climate might need to focus on wheat varieties tolerant to high temperatures
more than to drought.

In this study, we used a multiple model ensemble method to address the uncertainties
from climate models. To assess the impacts of extreme temperature on wheat yield, we
integrated yield reduction multipliers caused by heat and frost events during temperature
sensitive stages into an APSIM-wheat model based on relevant research reports. Due to
limited data for model evaluation, our modelling results might over- or underestimate the
magnitude of yield losses resulting from heat and frost stress, as Chen et al., (2020) [49]
did before. Nonetheless, capturing heat and frost losses to grain yield in some way could
provide guidance for developing adaptation strategies to reduce climate risks [25,50].
Further improvement of the definitions and physiological basis of this approach would
enhance the accuracy of these predictions. In this study, we only used three years of
field experimental data to validate the APSIM Wheat module. This might cause some
uncertainties in simulated phenology due to unexplained abiotic or biotic factors affecting
the phenology of crops in the field. More verification data may be useful to improve the
validity of APSIM Wheat in simulating the phenology of Jimai22. We used only one crop
model in our study, which might omit the uncertainty of yield projections caused by crop
model structure [51]. Moreover, in the APSIM-wheat model, the increased photosynthesis
due to elevated atmospheric was reported mainly from controlled, semi-controlled and
open-field experiments [52]. Therefore, the crop model might overestimate the positive
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effects of elevated atmospheric. As such, we acknowledge that the results presented here
depend on the scenario and crop model chosen.

5. Conclusions

In this study we evaluated the adverse effects of heat and frost stress on wheat yields
by integrating yield reduction multipliers caused by heat and frost events into an APSIM-
wheat model. Our results showed that after including the effect of frost and heat stress in
the model, the yield increases in wheat potential yield in the 2050s decreased from 31% to
9%. In addition, clustering all drought-stress seasonal patterns into key groups revealed
that the magnitude of drought stress was projected to be alleviated in the future but that the
frequency of DT1 (most detrimental stress for yield) would remain the same (around 25%)
in the near future. These results provide important information for assessing the impacts of
climate extremes on wheat yield and highlight the fact that adopting heat-tolerant cultivars
should be a priority to cope with climate change in the NCP.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy12010145/s1, Figure S1: Boxplot showed yield in the period of 1981–2010 (referred as
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and trend over crop development stage before or after anthesis under historical and future climates
in Feixian, Figure S3: Crop drought-stress trajectories and trend over crop development stage before
or after anthesis under historical and future climates in Shenxian, Figure S4: Crop drought-stress
trajectories and trend over crop development stage before or after anthesis under historical and future
climates in Weifang, Figure S5: Crop drought-stress trajectories and trend over crop development
stage before or after anthesis under historical and future climates in Yanzhou.
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