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Impact statements 38 

• This review examines the effects of various forms of sensory stimulation on apnoea mitigation 39 

in preterm infants, namely localized tactile, generalized kinesthetic, airway pressure, auditory, 40 

and olfactory stimulations.  41 

• Amongst the 31 studies reviewed, each form of sensory stimulation showed some positive 42 

effects, although the findings were not definitive and comparative studies were lacking.  43 

• We find that the development of automated closed-loop sensory stimulation systems for apnoea 44 

mitigation is warranted, including the possibility of stimulation being applied preventatively 45 

and in a multimodal form. 46 
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Abstract 64 

Apnoea, a pause in respiration, is ubiquitous in preterm infants and often associated with physiological 65 

instabilities which may lead to longer term adverse neurodevelopmental consequences. Despite current 66 

therapies aimed at reducing the apnoea burden, preterm infants continue to exhibit apnoeic events 67 

throughout their hospital admission. Bedside staff are frequently required to manually intervene with 68 

different form of stimuli, with the aim of re-establishing respiratory cadence and minimizing the 69 

physiological impact of each apnoeic event. Such a reactive approach makes apnoea and its associated 70 

adverse consequences inevitable, and places a heavy reliance on human intervention. 71 

 72 

Different approaches to improving apnoea management in preterm infants have been investigated, 73 

including the use of various sensory stimuli. Despite studies reporting sensory stimuli of various forms 74 

to have potential in reducing apnoea frequency, non-invasive intermittent positive pressure ventilation 75 

is the only automated stimulus currently used in the clinical setting for infants with persistent apnoeic 76 

events. We find that the development of automated closed-looped sensory stimulation systems for 77 

apnoea mitigation in preterm infants receiving non-invasive respiratory support is warranted, including 78 

the possibility of stimulation being applied preventatively, and in a multimodal form.  79 

 80 

 81 

 82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 
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 92 

 93 
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1 Introduction 97 

Apnoea reflects the immaturity of respiratory control in preterm infants and is observed in essentially 98 

all preterm infants born at < 30 weeks gestation. (1) Apnoeic events occur most prominently at two to 99 

four weeks of life, a time when infants are usually requiring non-invasive respiratory support. (1) 100 

Apnoeic events often lead to physiological instability including hypoxia and/or bradycardia, which has 101 

been associated with adverse neurodevelopmental outcomes. (2) 102 

 103 

Current approaches to reduce apnoea burden in preterm infants include caffeine administration and use 104 

of non-invasive respiratory support. (3, 4) Despite such preventative clinical management, apnoeic 105 

events continue to be observed during a preterm infant’s admission in the neonatal intensive care unit 106 

(NICU). Bedside staff caring for preterm infants are often required to intervene urgently in response 107 

to detected apnoeic events by providing additional interventions such as tactile stimulation, airway 108 

optimization, and positive pressure ventilation, with the goal of re-establishing the infant’s respiratory 109 

efforts.  Such a reactive management system creates a response delay and is laborious for bedside staff, 110 

makes apnoea-associated physiological instability inevitable, and heightens the risk of longer-term 111 

consequences.  112 

 113 

Beyond current measures used in clinical practice, previous studies have investigated several forms of 114 

sensory stimulation for apnoea prevention and mitigation in preterm infants. Sensory stimuli explored 115 

include localized tactile, generalized kinesthetic, olfactory and auditory, as well as non-invasive 116 

intermittent positive pressure ventilation (NIPPV). These forms of stimulation have been delivered 117 

either in an automated closed-looped system or manually by nurses, and either preventatively or 118 

reactively (upon detection of an apnoeic event). Furthering our understanding of sensory stimulation 119 

for apnoea mitigation can contribute to improving the respiratory care of preterm infants. This paper 120 

explores the potential for sensory stimuli to mitigate apnoeic events in preterm infants, reviewing 121 

previous studies and their inherent limitations, identifying gaps in knowledge and important 122 

considerations that may help to optimize this mode of therapy. For the purpose of this review, we have 123 

excluded treatments considered part of standard management for preterm infants with respiratory 124 

insufficiency (caffeine therapy and nasal continuous positive airway pressure (nCPAP)). We have also 125 

excluded methods such as carbon dioxide insufflation and pharyngeal catheters that would be unlikely 126 

to have widespread practical applications.  127 

 128 

2 Sensory stimuli for apnoea of prematurity 129 
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2.1 Localized tactile stimulation 130 

Nurses commonly apply localized cutaneous (by touching the infant’s skin) and/or proprioceptive (by 131 

moving a major joint) stimulation to preterm infants in a site-targeted fashion, after being alerted to an 132 

apnoeic event. (5) These localized tactile stimuli may produce their effect via cortical arousal and the 133 

reflexive coupling of cutaneous and/or proprioceptive stimulation to ventilation, whereby 134 

somatosensory stimulation has been demonstrated to influence respiratory rate and pattern in patients. 135 

(6-10) 136 

 137 

2.1.1 Preventative application of tactile stimulation 138 

Various forms of tactile stimulus have been previously applied in a continuous fashion in preterm 139 

infants, investigating its effect on apnoea frequency. Four studies reported a decrease in apnoea 140 

frequency when tactile stimulation was applied, despite these studies having applied the tactile 141 

stimulation for a different duration, regularity, and intensity to different sites (Table 1). (11-14) Jirapaet 142 

further found preventative tactile stimulation to be more effective in reducing central and mixed 143 

apnoeic events than obstructive apnoeic events. (12) 144 

 145 

2.1.2 Reactive application of tactile stimulation 146 

A tactile stimulus can alternatively be applied in a reactive manner, whereby the stimulus is delivered 147 

only upon the detection of an apnoeic event, analogous to current NICU nursing management (Table 148 

1). (15-18) While systems used by Pichardo et al (16) and Lovell et al (18) required bedside staff to 149 

identify the need for the stimulus to be delivered, others have used an automated closed-looped delivery 150 

system whereby tactile stimuli was delivered upon apnoea detection without requiring staff input. (15, 151 

17) Even though methods of detecting apnoeic events differed, with Frank et al and Pichardo et al using 152 

thoracic impedance monitoring and Camargo et al having used a custom-built system for apnoea 153 

detection, the tactile stimuli applied to preterm infants in these studies were of similar duration and 154 

intensity. (15-18) Reactive tactile stimulation of this form has been found – with varying success rates 155 

– to lead to re-establishment of respiratory efforts to a varying degree, and performed comparably to 156 

manual nursing intervention (Table 1). (15-18) 157 

 158 

While these results of preventative and reactive localized tactile stimulation show some promise, it is 159 

important to consider the effects of confounders associated with using tactile stimulus, for example, 160 

the coexistence of an auditory stimulus. Sound, often a soft hum, is generated if a vibrating mechanism 161 

is used and can be perceived by the infant via air or bone conduction. In the absence of sound 162 
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monitoring during the interventional periods, the reported effectiveness in reducing or terminating 163 

apnoeic events may not be solely attributable to the tactile stimulus. 164 

 165 

Tactile stimulation has been applied to different anatomical sites in previous studies, in large part 166 

without a clear rationale for the choice of one site over another (Table 1). Further understanding of the 167 

most effective site for the application of a tactile stimulus to maintain and/or re-establish respiratory 168 

effort in preterm infants will be important in guiding device design for clinical implementation. 169 

 170 

2.2 Generalized kinesthetic stimulation 171 

Generalized kinesthetic stimulation delivered using different forms of vibratory mattresses aims to 172 

mimic the constant movements experienced by a fetus in utero. Such generalized stimuli are thought 173 

to produce subcortical arousal via somatosensory afferents, leading to augmentation of breathing and 174 

diminution of inhibitory reflexes. (19-22) Additionally, preterm infants on oscillating mattresses have 175 

been found to experience shorter periods of rapid eye movement (REM) sleep phase during which 176 

apnoeic events are usually more prevalent. (23, 24) 177 

 178 

Previous studies of kinesthetic stimulation applied preventatively in preterm infants have for the most 179 

part reported modest reductions in apnoeic event frequency (Table 2). (19, 22, 24-31) Notwithstanding 180 

the small sample sizes and application of stimuli of varying intensity, displacement, and duration, 181 

previous studies do appear to demonstrate the potential for kinesthetic stimulation to reduce apnoea 182 

frequency in preterm infants (Table 2). (19, 22, 24-31) Meaningful comparisons between studies are 183 

limited by the different definitions for apnoeic events used in each study (Table 2). (19, 22, 24-30) 184 

 185 

It will be important to more fully explore the possible side effects of prolonged and/or repeated 186 

kinesthetic stimulation, such as restlessness and increased blood pressure. (24, 25, 29) The optimal 187 

characteristics of the kinesthetic stimulus also require investigation in future comparative studies. 188 

 189 

2.3 Airway stimulation via application of intermittent positive pressure ventilation 190 

CPAP delivered via nasal mask or prongs, is a common form of non-invasive respiratory support used 191 

for preterm infants admitted to the NICU with respiratory insufficiency. Amongst other effects, the 192 

applied positive airway pressure stents the upper airway reducing upper airway resistance, as well as 193 

providing a stimulus. (3)  194 

 195 
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An alternative form of non-invasive support, NIPPV, is used to a variable extent in NICUs worldwide. 196 

During NIPPV, brief positive pressure inflations are superimposed on the background of nCPAP, at a 197 

pre-determined rate and/or when triggered by the infant’s inspiratory efforts. (32) This results in phasic 198 

distension of the nasopharynx, which has been proposed to restore respiratory cadence by activating 199 

the pharyngeal dilator muscles, as well as by stimulation of Head’s paradoxical reflex where rapid lung 200 

inflation triggers a deep inspiration. (33-35) 201 

 202 

Previous studies comparing the effects of NIPPV with nCPAP alone in preterm infants have found 203 

periods of NIPPV to be associated with a lower frequency of apnoeic events (Table 3). (32, 36-38) 204 

Gizzi et al further reported that synchronized NIPPV, whereby the superimposed positive pressure 205 

inflations were delivered in synchrony with inspiratory efforts, significantly reduced the frequency of 206 

apnoeic events when compared to unsynchronized NIPPV. (36) 207 

 208 

While previous evidence supports the use of NIPPV to reduce apnoea burden in preterm infants, it is 209 

important to note the relatively short duration of the study epochs in these reports, ranging from 4 to 6 210 

hours (Table 3).  (32, 36-38) The effectiveness of prolonged NIPPV in apnoea mitigation remains to 211 

be determined. Additionally, there is limited description in the studies regarding the differentiation of 212 

actual infant-initiated respiratory activity from recorded respiratory excursions induced by positive 213 

pressure ventilation, with the latter potentially masking central apnoea. Further investigations with a 214 

larger sample size, and longer study duration are needed to examine if the effects of NIPPV in reducing 215 

apnoea frequency can be maintained over time.  216 

 217 

Extending the concept of NIPPV as a nasopharyngeal stimulus, further considerations should be given 218 

to reactive application of positive pressure inflations, where additional positive pressure inflation is 219 

only delivered when impending apnoea is predicted, (39) or in the early stages of a detected pause in 220 

respiration. Such an approach may help to maintain or restore respiratory cadence via reflex 221 

mechanisms, mitigating adverse apnoea-associated physiological consequences while minimizing the 222 

risks associated with unremitting application of NIPPV in preterm infants. (40) 223 

 224 

2.4 Auditory stimulation 225 

Preterm infants demonstrate neurological responses to auditory stimuli, with an inherent tendency to 226 

entrain their physiological rhythms to the tempo of the stimulus. (41, 42) The effects of auditory 227 

stimulation on immature autonomic functions, including apnoea frequency, in preterm infants have 228 
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been studied using various targeted sounds, such as lullabies, the mother’s voice, and live music (Table 229 

4). (43-47)  230 

 231 

Infants were found to have a lower rate of apnoeic events when exposed to targeted auditory stimuli, 232 

although the differences between intervention and control epochs were non-significant in three of the 233 

studies. (43-47) Duration and volume of the auditory stimuli used varied considerably between studies 234 

(Table 4). (43-47) The low frequency of apnoeic events is likely a contributory factor to the findings, 235 

related to inclusion of infants still weaning from mechanical ventilation (43), or conversely relatively 236 

mature infants no longer requiring any respiratory support. (45, 46)  237 

 238 

Given the previously mixed methodology and sample populations, further studies are required to more 239 

fully explore and understand the potential for targeted auditory stimuli to reduce apnoea burden in 240 

preterm infants requiring non-invasive respiratory support. Future studies will need to explore the 241 

effectiveness of different types, volume, and duration of sounds used, as well as the timing of stimulus 242 

delivery (i.e. preventative vs. reactive application).  243 

 244 

2.5 Olfactory stimulation 245 

Exposure to odorants has been demonstrated to modulate respiratory rate in both term and preterm 246 

infants, particularly during REM sleep. (23, 48, 49) Odours perceived to be pleasant by adults, such as 247 

vanillin (a pure olfactory stimulus) and lavender (a trigeminal stimulus), have led to an increased in 248 

respiratory efforts. (49, 50) On the other hand, odours perceived as unpleasant to adults, including 249 

ammonium sulfide (a pure olfactory stimulus) and vetiver (a trigeminal stimulus), have led to a 250 

diminution of respiratory activity. (49, 50) Regardless of the substance used, exposure to odorants has 251 

been associated with an initial transient decrease in tidal volume. (49, 50) Term infants exposed to 252 

vanillin have also demonstrated an increase in orbito-frontal blood flow and oxyhaemoglobin levels, 253 

although the mechanism of action of vanillin in producing these responses is still unclear. (51, 52) 254 

 255 

The use of olfactory stimulation to quell apnoeic events in preterm infants was initially reported by 256 

Marlier et al in 2005, who demonstrated a reduction in apnoea frequency when infants were exposed 257 

to vanillin. (53) Subsequent studies exposing preterm infants to different concentrations of vanillin 258 

and/or other odours have replicated these findings in infants with persistent apnoeic events (Table 5). 259 

Furthermore, Kanbur and Balci reported a sustained decrease in apnoea frequency for the initial 24 260 

hours after infants were no longer exposed to vanillin. (54) 261 
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 262 

With the promising findings that an olfactory stimulus may be a feasible means of reducing apnoea 263 

frequency, it is important to acknowledge that these studies were in large part conducted in infants of 264 

more advanced post-natal age who were breathing spontaneously. (53-57) The frequency and severity 265 

of apnoeic events in such infants may well differ from more immature infants receiving non-invasive 266 

respiratory support. (1) Additional studies in this latter group are needed, and will entail the 267 

development of a method for olfactory stimulus delivery to preterm infants receiving non-invasive 268 

respiratory support in a reactive manner.  269 

 270 

3 Further considerations 271 

As outlined above, various sensory stimuli have been found to have some effect in decreasing apnoea 272 

frequency in preterm infants, but the current evidence is far from compelling. Beyond the small sample 273 

sizes and a lack of intervention blinding (with exception to studies of olfactory stimuli), several 274 

previous studies also relied on apnoea reporting by bedside staff, a limitation that can be addressed 275 

with the availability of real-time physiological data collection. In the following section, we consider 276 

factors that may limit the effectiveness of stimulation (e.g. habituation, reactive stimulus delivery), and 277 

propose some potential improvements to this form of therapy.  278 

 279 

3.1 Habituation 280 

Habituation is the observed diminution or extinction of a response following repeated exposure of an 281 

individual to a selected stimulus over several short periods, or a single long period. (58, 59) Preterm 282 

infants are continuously exposed to an array of stimuli throughout their stay in the NICU, and would, 283 

over time, be expected to habituate to repetitive inconsequential stimuli. (58, 59) While habituation 284 

may be beneficial to avoid sleep deprivation, this process can also diminish the response to stimulation 285 

applied with protective intent. (59) Preterm infants have also been shown to habituate more readily to 286 

sound than to visual or tactile stimuli. (58) 287 

 288 

As has been described above, the various forms of stimuli investigated for their effect on apnoea in 289 

preterm infants for the most part have been applied in a continuous fashion, regardless of the infant’s 290 

respiratory state. Furthermore, most of these studies with preventative application of a stimulus have 291 

been of relatively short duration, and none of the studies have investigated whether preterm infants 292 

habituated to the applied stimulus evidenced by diminution in its effectiveness in reducing apnoea 293 

frequency over time. (58) While Bloch-Salisbury et al found apnoea frequency to be halved when 294 
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generalized kinesthetic stimulation only lasted for 10 minutes at a time, Smith et al, using the same 295 

method of stimulus, found little differences in apnoea frequency between intervention and control 296 

periods when stimulation lasted longer. (22, 31) The extrapolation of previous study findings to the 297 

situation of continuous prolonged use of a monotonic and unimodal stimulus is thus fraught, and 298 

consideration of alternating types and duration of sensory stimuli to avoid habituation will be essential. 299 

Future studies should use longer investigative epochs and apply analytical methods that allow any 300 

effects of habituation to be identified.  301 

 302 

3.2 Reactive delivery of stimuli for apnoea mitigation 303 

At current, the only reactive stimuli delivery to mitigate apnoeic events are provided by nursing staff. 304 

With technological advances, the development of automated closed-looped stimulus delivery systems 305 

to react to apnoeic events in preterm infants is within reach. Given that longer-lasting apnoeic events 306 

are more challenging to terminate, such systems could be programmed to intervene early, soon after 307 

the onset of a respiratory pause, to minimise and/or delay habituation. Development of these devices 308 

will require coupling of stimulus delivery to reliable respiratory monitoring device(s). 309 

 310 

Reactive delivery of a stimulus (i.e. delivering stimulus only upon detection of apnoea) to apnoeic 311 

events has thus far been limited to the application of tactile stimulation, and the relevant studies have 312 

been for short durations. (15-18) The lack of a device capable of reactive stimulus delivery is in large 313 

part related to technological limitations preventing other forms of stimulus to be coupled with a 314 

respiratory monitor, particularly in the setting of non-invasive respiratory support where flow sensing 315 

of respiratory activity is unreliable. Further studies and technological developments aimed at enabling 316 

different types of stimuli to be delivered in an automated reactive fashion for preterm infants will allow 317 

more generalizable findings and be more acceptable for translation of research to clinical 318 

implementation. 319 
 320 
3.3 Stimulation delivery coupled with prediction of impending apnoeic events 321 

Whilst delivery of a stimulus soon after the onset of a respiratory pause may curtail the downstream 322 

hypoxic or bradycardic consequences, ideally, stimulation could begin when an impending apnoeic 323 

event is predicted, with the aim of maintaining, rather than restoring, respiratory cadence. Systems to 324 

predict apnoea in preterm infants are starting to be developed (39, 60) and have the potential to be 325 

linked in feedback loops to devices applying stimulation of various forms.  326 

 327 
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An automated closed-looped multi-stimuli delivery system coupled with a reliable respiratory monitor 328 

and a predictive system of apnoeic events in preterm infants would be ideal to allow for the stimuli 329 

delivery to commence just prior to, or close to the onset of, a respiratory pause and be maintained for 330 

only the required duration to maintain respiratory cadence. In this way, continuous stimulation and its 331 

associated risks may be avoided, whilst at the same time intervening at an ideal time before respiration 332 

has actually ceased. 333 
 334 
3.4 Stimulus selection based on apnoea sub-types 335 

Apnoeic events are classified into three main sub-types: central apnoea where there is a lack of central 336 

respiratory drive; obstructive apnoea where airflow is impeded by a mechanical upper airway 337 

obstruction, often with glottic closure; and mixed apnoea which involves a combination of both central 338 

and obstructive components in a single event. With physiological differences between the apnoea sub-339 

types, it is natural to consider the possibility that some forms of stimulation may be more effective than 340 

others in mitigating a particular sub-type of apnoea. This difference had been previously reported by 341 

Jirapaet where when compared to standard care, vibrotactile stimulation was able to reduce central and 342 

mixed apnoeic events more significantly in preterm infants than obstructive apnoeic events. (12) 343 

 344 

Future studies investigating the effects of potential stimuli on different apnoea sub-types will guide a 345 

more effective selection of stimulus, or combination of stimuli, to decrease apnoea burden in preterm 346 

infants.  347 
 348 

3.5 Multi-modal stimulation 349 

The effectiveness of each type of stimulus in apnoea mitigation has until now almost exclusively been 350 

examined in isolation, comparing a single form of stimulation with standard care. Given the observed 351 

capacity for habituation in preterm infants, consideration and further investigation of multi-modal 352 

stimulation is warranted. (58)  Such stimuli could be used in combination (i.e. multiple stimuli used 353 

simultaneously), or in rotation, where only one stimulus is provided at a time in a pseudo-randomised 354 

order. 355 

 356 

Garcia and White-Traut have preliminarily examined the effect of multi-modal stimulation, comparing 357 

a combination of tactile, gustatory and olfactory stimulation with an isolated tactile stimulus in 358 

otherwise well preterm infants who were not requiring any respiratory support. (61) The multi-modal 359 

stimulus was a lemon-glycerine swabstick applied to the infant’s lip and tongue, while the unimodal 360 
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tactile stimulus was a brief shaking of the infant’s leg by a researcher. (61) The study found that infants 361 

re-established respiratory cadence sooner when exposed to multi-modal stimulation rather than an 362 

isolated tactile stimulus (multi-modal stimulation: 5.99 ± 0.49 sec; isolated tactile stimulation: 6.59 ± 363 

0.47 sec, p-value = 0.01). However, the observed mean difference was only in the order of 0.6 sec. (61) 364 

  365 

An important limitation of the study by Garcia and White-Traut is that the effect of the various 366 

components of the multi-modal stimulus were not examined in isolation. (61) Nonetheless, the results 367 

do support the concept of multi-modal stimulation, and encourage further studies of this approach for 368 

re-establishing respiratory efforts in preterm infants with apnoea, especially those receiving non-369 

invasive respiratory support.  370 

 371 

4 Conclusion 372 

Various sensory stimuli have been previously found to be variably effective in mitigating apnoea in 373 

preterm infants, although further compelling evidence are still needed. Current limitations include our 374 

rudimentary understanding of habituation, and a lack of devices to deliver sensory stimuli in an 375 

automated closed-looped system and in a multimodal form for preterm infants receiving non-invasive 376 

respiratory support. However, these limitations are undoubtedly surmountable with ongoing research.  377 

Expanding our current repertoire of management tools for apnoeic events in preterm infants through 378 

the application of alternative sensory stimulation may help avoid apnoea-associated physiological 379 

instability, whilst at the same time reducing nursing workload. 380 

 381 

--------------------------------------------------------------------------------------------------------------------------382 
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