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a b s t r a c t

With the increasing global attention to environmental protection, microgrids with efficient usage of
renewable energy have been widely developed. Currently, the intermittent nature of renewable energy
and the uncertainty of its demand affect the stable operation of a microgrid. Additionally, electric
vehicles (EVs), as an impact load, could severely affect the safe dispatch of the microgrid. To solve
these problems, a multi-objective optimization model was established based on the economy and
the environmental protection of a microgrid including EVs. The linear weighting method based on
two-person zero-sum game was used to coordinate the full consumption of renewable energy with
the full bearing of load, and balance the two objectives better. Moreover, the adaptive simulated
annealing particle swarm optimization algorithm (ASAPSO) was used to solve the multi-objective
optimization model, and obtain the optimal solution in the unit. The simulation results showed that
the multi-objective weight method could diminish the influence of uncertainty factors, promoting
the full absorption of renewable energy and full load-bearing. Additionally, the orderly charging and
discharging mode of EVs could reduce the operation cost and environmental protection cost of the
microgrid. Therefore, the improved optimization algorithm was capable of improving the economy
and environmental protection of the microgrid.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the increase in global demand for electricity, problems
egarding energy and the environment have become important
ocial problems worldwide. Fossil fuel combustion in traditional
hermal power plants has caused severe environmental pollution,
nd the traditional power grid has the disadvantages of high cost
nd low efficiency. Therefore, electric vehicles (EVs) that support
lean energy by utilizing renewable energy to generate electricity
ave been favoured all over the world. A microgrid is a small
ower generation and distribution system involving renewable
nergy and energy storage devices. It plays an important role in
ower systems on account of its strong security, high utilization
ate of renewable energy, and low operation cost (Tabar et al.,
017). However, the intermittence and fluctuation of renewable
nergy and the uncertainty in demand pose great challenges to
he supply and demand balance of the microgrid, and the safe
nd economic dispatching of the system. Due to the development
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nc-nd/4.0/).
of EVs, they can be added to microgrid scheduling as an impor-
tant distributed power supply. Therefore, an increasing number
of scholars have begun studying the optimal scheduling of the
microgrid including EVs.

EVs can be regarded as mobile energy storage device partici-
pating in the operation of the microgrid, that could become the
impact load on the demand side. If it is not managed, the EVs
will charge disorderly, leading to the superposition of peak load.
When V2G (Vehicle to grid) technology is used to guide it to par-
ticipate in the dispatching of the microgrid, it is regarded as the
supply side, which not only reduces the uncertainty of renewable
energy, and but also meets the load demand of the microgrid.
With the increase in the access rate of EVs, it is necessary to for-
mulate a dispatch plan to reduce the operating cost of a microgrid
system including EVs. Sedighizadeh et al. (2020) considered EVs
in dispatching and found that the corresponding operation cost
was reduced. Jiang et al. (2019) studied the economic scheduling
process of the microgrid under ordered and disordered modes of
large-scale EVs, and the results showed that the ordered charge–
discharge mode could effectively reduce costs in the microgrid.
Hui et al. (2020) analysed the orderly charging and discharging,
and random charging of EVs to study the impact of the charging
and discharging behaviours of EVs on microgrid scheduling, and
the results showed that the charging and discharging behaviours
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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f EVs could effectively improve the economy of the microgrid
nd reduce environmental pollution. From the aforementioned
iterature, it is seen that the orderly dispatching of EVs is of great
ignificance for reducing the cost of the microgrid and improving
ts environmental benefits.

In previous research of microgrid dispatching, most scholars
ften considered multiple objective functions to optimize the
ispatching results. Commonly used multi-objective functions
nclude the generation cost and environmental cost of the micro-
rid (Alomoush, 2019), full life cycle cost and wind abandonment
ate (Ding et al., 2020), operation cost and reliability (Chaman-
oust et al., 2020). For a grid connected microgrid, the reliability
f microgrid operation has been greatly improved by the support
f the distribution network. However, the energy of a distribution
etwork is mainly generated from fossil energy, which cause
erious pollution to the environment. Thus, microgrids consist
f renewable energy and fuel devices. Although the addition
f renewable energy reduces the usage of fuel and improves
he environmental protection of the microgrid, the cost of these
enewable energy devices is high. Hence, to make the microgrid
conomic and environmental friendly, economy and environ-
ental protection are the main objective functions. Geng et al.

2021) and Meng et al. (2018b) solved the day-ahead scheduling
lan by combining the generation cost and environmental cost
f microgrid operation. The optimal unit output obtained not
nly improved the environmental protection of the system, but
lso the utilization rate of renewable energy. Li and Xia (2019)
nd Shayeghi and Shahryari (2017) considered the optimal total
ost of the system and the lowest pollution gas emission as
he objective functions, and the scheduling results showed that
scheduling plan considering the economy and environmental
rotection yielded better comprehensive benefits for the sup-
ly side, demand side, and natural environment simultaneously.
rom the aforementioned literature, it is seen that for the supply
ide and the demand side, a dispatching plan considering the
conomy reduces the power generation cost of the microgrid,
nd the electricity consumption cost of the consumers. For the
atural environment, a dispatching plan considering environmen-
al protection is more beneficial for the environment. Therefore,
onsidering both economy and environmental protection is of
reat practical significance to the scheduling plan of a microgrid.
There are two main methods for solving multi-objective opti-

ization problems. One method involves solving the Pareto so-
ution set using a multi-objective optimization algorithm, and se-
ecting the optimal solution similar to the ideal solution, through
rioritization technology (He et al., 2019; Mehrabadi and Sathi-
kumar, 2020; Zheng et al., 2020). Liu et al. (2019) targeted the
ser’s comfort level, operation cost, and environmental protection
ost, and used the non-dominated sorting genetic algorithm II
NSGA-II) to obtain the Pareto solution set; the analytic hierarchy
rocess (AHP) was used to obtain the optimal solution from all
he Pareto solutions, but its subjectivity was too strong. Javid-
harifi et al. (2018) proposed an intelligent evolutionary multi-
bjective improved bird-mating optimization algorithm, to solve
he multi-objective optimization problems of environment and
conomy. The Pareto solution set was obtained, and the method
f obtaining the optimal solution from all Pareto solutions was
iven. This multi-objective optimization algorithm could avoid
djusting the weight of each goal, and directly solve all the
areto solutions. However, it could not provide a unique opti-
al solution for the decision-maker. Therefore, multi-objective
ecision-making technology was required to overcome this de-
ect. The second method for solving multi-objective optimiza-
ion problems includes weighing the multiple objectives (Elattar,
018; Meng et al., 2018a), so as to convert the multi-objective
ptimization problem into a single objective optimization prob-
em. Lu et al. (2018) converted the three optimization objectives
4513
of system operation cost, environmental cost, and load change
into one optimization objective by adopting the linear weighting
method and analysed the scheduling results selected with differ-
ent weights. The results showed that operators could use cost
weight factors to control the scheduling results. To ensure the
more economical and environmentally friendly operation of the
microgrid, and fully utilize the advantages of distributed gener-
ation, Huang et al. (2019) proposed the two objective functions
of minimum system operation cost and minimum environmental
cost, which were transformed into a single objective using the
linear weighting method, and their weights were determined by
the preference of decision-makers. In the aforementioned studies,
although the linear weighting method was used to transform the
multi-objective optimization problem into a single-objective op-
timization problem, and finally provide the decision maker with
a unique solution, the weight setting among multiple objectives
poses a huge challenge to the decision maker.

When using the linear weighting method to coordinate mul-
tiple optimization objectives, the weights of different objectives
represent the importance of each objective, and have a significant
impact on the scheduling results. Currently, the commonly used
weight determination methods include AHP (Li et al., 2015), the
dualistic factor contrast method (Yang et al., 2018b) and expert
scoring method (Wang et al., 2019). However, these methods
have the disadvantage of strong subjectivity, and are influenced
by uncertain factors acting on the system scheduling results.
Yu et al. (2019) established an optimal dispatching model of
a power system which comprehensively considered the power
grid purchase cost and power generation coal consumption, and
introduced the zero-sum game idea to resolve the dispatching
model, which solved the subjective problem of multi-objective
weight selection. Xu et al. (2016) proposed a multi-objective
optimization method based on the two-person zero-sum game
weight coefficient method, for a grid-connected composite energy
storage microgrid including photovoltaics, liquid flow batteries
and lithium batteries, to maximize the utilization of renewable
energy and minimize the impact of grid-connected operation of
the microgrid. Therefore, it was seen that the two-person zero-
sum game could solve the problem of multi-objective weight
selection in the micro-grid energy dispatching strategy, and could
reduce the influence of uncertain factors.

An intelligent optimization algorithm can effectively solve
most optimization problems. Intelligent optimization algorithms
have been widely used in the scheduling of the microgrid.
Ebrahim et al. (2020), Monteiro et al. (2020), Moradi et al. (2015)
and Vivek et al. (2017) used the particle swarm optimization
(PSO) algorithm to solve several optimization problems related
to the microgrid. The PSO algorithm has fast convergence speed;
however, because all particles fly in the direction of the opti-
mal solution during convergence, the particles tend to become
identical and lose their diversity, which makes the algorithm
fall into the local optimum easily and thus do not yield the
global optimal solution (Chen et al., 2013). The weight in the
particle swarm was improved to balance the convergence speed
and optimization ability of the PSO algorithm (Xue et al., 2019).
Furthermore, Lu et al. (2017) improved the inertia weight and
learning factor of the PSO algorithm and used it to solve the
optimization model. Jeong et al. (2010) proposed a novel binary
PSO algorithm based on quantum computing, named quantum
particle swarm optimization algorithm, which improved the con-
vergence and stability of the algorithm, but it still possessed the
defect of falling into the local optimal solution. Additionally, Zhao
et al. (2020b) used differential evolution to introduce quantum
PSO, used the improved algorithm to solve the problem, has and
yielded better performance. Currently, the improved PSO algo-

rithms do not effectively solve the problem of easily falling into
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Fig. 1. The structure of microgrid.
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he local optimum, thus, further improvement of the algorithm is
f great significance.
Therefore, to realize full consumption of renewable energy and

ull load-bearing, and improve the efficiency of the microgrid,
microgrid system including the power of EVs was established

n this paper. Currently, the main direction of microgrid opti-
ization dispatching is economy and environmental protection.
o improve the benefits of the microgrid, the operating cost
nd environmental maintenance of the microgrid were selected
s objective functions in this paper. Furthermore, to achieve
more objective balance among multiple objectives, and pro-
ide a unique solution for decision-makers, we used the linear
eighting method based on the two-person zero-sum game, for
ransforming the multi-objective optimization problem into a
ingle-objective optimization problem. Additionally, we proposed
he adaptive simulated annealing particle swarm optimization
lgorithm (ASAPSO), and the adaptive weight and optimization
echanism of simulated annealing were used to improve the
SO algorithm, to prevent the algorithm from falling into a local
ptimal solution, and obtain the optimal scheduling plan.
In summary, the main contributions of this work in compari-

on to existing literature include the following:

• A microgrid system with a five-port output of EVs was
established. The disordered charging of EVs was analysed,
and the real-time electricity price was used to guide the
orderly charging and discharging of EVs, to realize peak load
reduction and valley filling in the microgrid.

• In the determination of multi-objective weights, the two-
person zero-sum game was used to consider the economy
and environmental protection of the microgrid, which made
the selection of weights more objective, reduced the inter-
ference of uncertain factors, and reduced the purchase of
electricity from the distribution network.

• To improve the optimization ability of the algorithm and
obtain a global optimal solution, the PSO algorithm was
improved, and ASAPSO was used to optimize the scheduling
strategy of the microgrid.

he remainder of this paper is organized as follows. The mi-

rogrid system model is presented in Section 2. In Section 3,

4514
the multi-objective scheduling system, the actual constraints, and
the charging and discharging strategies of EVs are introduced.
ASAPSO is proposed in Section 4. In Section 5, we introduce
the optimization model of microgrid dispatching. Finally, the
conclusion of the work is presented in Section 6.

2. Model of the microgrid

The microgrid studied in this paper, included wind turbine
(WT), battery (BT), fuel cell (FC), micro gas turbine (MT), and EVs.
The models of the WT, BT, FC, and MT were referenced from Lu
et al. (2017) and Yang et al. (2018a). Fig. 1 shows the structure of
the microgrid.

In this study, we assumed that the driving habits of electric
car users were identical to those of traditional petrol-powered car
users. The last round-trip time of EVs was obtained using normal
distribution approximation (Hui et al., 2020), and according to Lu
et al. (2018), the probability density function of starting charging
time was set to 24 scheduling periods. 96 scheduling periods
were adopted in this paper, the travel time was t0 ∼ N

(
µt , δ

2
t

)
,

nd its probability density function was expressed as follows:

1(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4

√
2πσ1

e
−

(t+96−µ1)
2

2σ2
1 0 ≤ t ≤ µ1 − 48

4
√
2πσ1

e
−

(t−µ1)
2

2σ2
1 µ1 − 48 < t ≤ 96

(1)

here µ1 = 70.4 is the expectation at the beginning of charging
f EVs, and σ1 = 3.40 is the standard deviation of the charging
ime of EVs.

The mileage, S of EVs obeyed lognormal distribution, that
s, S ∼ logN

(
µs, δ

2
s

)
, and its probability density function was

expressed as follows:

fs (x) =
1
x

1

δs
√
2π

exp
(

−
(ln x − µs)

2

2δ2s

)
(2)

where µs = 3.20 is the expected daily mileage of EVs, and
σ = 0.88 is the standard deviation of the daily mileage of EVs.
1
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. Multi-objective scheduling system

.1. Objective function

In this paper, the microgrid system operated in the grid-
onnected mode. Under the consideration of the economy and
nvironmental protection of the microgrid, a multi-objective eco-
omic dispatch model with the goal of minimizing the operating
ost and environmental protection cost of the microgrid was
stablished.

.1.1. Objective function 1: Operation cost of microgrid is minimum
C1 is the operation cost of the microgrid, which includes the

fuel cost of MT and FC, the operation and maintenance cost, and
depreciation cost of each power supply device, the interaction
cost between the microgrid and the distribution network, and the
electricity purchase cost of the microgrid from EVs. Therefore, it
was expressed as follows:

C1 = Cfuel + Com + Cdp + Cgrid + aCev (3)

When EVs are connected to the microgrid disorderly, a = 0.
When EVs are connected to the microgrid orderly, a = 1.

The fuel cost is mainly generated from MT and FC. Therefore,
fuel cost of the microgrid was described as follows:

Cfuel = CMT + CFC (4)

where CMT , CFC are the fuel costs of MT and FC, respectively.
In the operation process of distributed power generation, it is

necessary to check and maintain regularly to ensure the stable
and reliable operation of distributed power generation equip-
ment. Therefore, its operating cost, Com and maintenance cost, Cdp
were described as follows:

Com =

T∑
t=1

N∑
i=1

Kom,iPi(t)∆t (5)

Cdp =

T∑
T=1

N∑
i=1

ADCCi

Pcci × 8760 × ki
Pi(t)∆t (6)

ADCCi = ccos t,i
ri(1 + ri)li

(1 + ri)li − 1
(7)

where Kom,i, ADCCi, ccos t,i, ri, ki, li, and Pcci are the operation and
maintenance coefficient, annual depreciation cost, initial installa-
tion cost, capacity factor, annual depreciation cost, depreciation
life, and rated power of type i distributed generation, respectively,
and Pi(t) is the output power at t .

Microgrids can guide the users’ electricity consumption be-
haviour through electricity prices to ensure that it operates in a
more economically. This was expressed as follows:

Cgrid =

T∑
t=1

(cbuy(t)Pbuy(t) − csell(t)Psell(t))∆t (8)

where cbuy(t) and csell(t) are the prices of electricity purchase and
sale, at time t , respectively; Pbuy(t) and Psell(t) are the powers
purchased and sold, at time t , respectively.

If the EVs must be connected to the microgrid orderly, to
minimize its own cost, the owner will charge it as much as
possible when the electricity price is low under the influence of
real-time electricity price, and sell electricity to the microgrid
when the electricity price is high, such that ‘‘cutting peak and
filling valley’’ is achieved (Zhao et al., 2020a). From the user side,
the charge and discharge costs of EVs include the charging cost
and power sales revenue of EVs. From the microgrid, the power
purchase cost of microgrid to EVs includes the power purchase
expenditure and power sales revenue of the microgrid to EVs.
 p

4515
The cost of purchasing electricity from EVs by microgrid was
expressed as follows:

Cev =

T∑
t=1

Cp(t) |Pev(t)| ∆t (9)

where Cp(t) and Pev(t) are the electricity purchase price and
electricity purchase power of EVs from the microgrid at time t ,
respectively. When Cp(t) > 0, the microgrid purchases electricity
from the EVs; when Cp(t) < 0, the microgrid sells electricity to
the EV; when Pev(t) > 0, the EV is charged; when Pev(t) < 0, the
EV is discharged.

3.1.2. Objective function 2: Environmental protection cost of micro-
grid is minimum

C2 is the cost of environmental pollution control by the micro-
grid, including the environmental compensation cost of FC and
MT, and the environmental compensation cost of fossil energy
combustion in the distribution network. In this paper, the pol-
lutants mainly referred to CO2, SO2,NOX , and the corresponding
objective functions were defined as follows:

C2 = Cfc + Cmt + Cg (10)

fc =

T∑
t=1

3∑
i=1

αjβfc,jPi(t)∆t

mt =

T∑
t=1

3∑
i=1

αjβmt,jPi(t)∆t

g =

T∑
t=1

3∑
i=1

αjβg,jPi(t)∆t

(11)

here αj is the unit treatment cost of pollutant j, βmt,j, βfc,j, βg,j
re the jth pollutant emission coefficients of MT, FC, and distri-
ution network, respectively, and Pi(t) is the generating power at
ime t .

.1.3. Overall objective function
The objective function of the scheduling model is to reduce

he operation cost and environmental protection cost. Since the
imensions of the two objective functions were the same, to
acilitate the solution, the linear weighting method was used to
onvert the multiple objectives into a single objective. Therefore,
he overall objective function was defined as follows:

in C = ω1C1 + ω2C2 (12)

here ω1 + ω2 = 1, and ω1 and ω2 are the weights of C1 and C2,
espectively.

.2. System constraints

To ensure the stable and reliable operation of the microgrid,
he microgrid must meet the following constraints:

Under the constraint of supply and demand balance, the gen-
ration power of the microgrid at each moment should be equal
o the load demand of the microgrid.

wt (t) + Pbt (t) + Pgrid(t) + Pev(t) + Pmt (t) + Pfc(t) = Pload(t) (13)

here Pload(t), Pwt (t), Pbt (t), Pgrid(t), Pev(t), Pmt (t) and Pfc(t) is the
onventional load demand, the power of WT, the power of BT, the
ransmission power between the distribution network and the
icrogrid, the power of EVs, the output of MT, and the output
f FC, at time t , respectively.
The generation capacity of each dispatching unit was limited

o

≤ p ≤ p (14)
i,min i i,max
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here pi,min and pi,max are the upper and lower limits of the
utput power of the generating unit, respectively.
The constraints of energy exchange with power grid were as

ollows:

grid,min ≤ pgrid ≤ pgrid,max (15)

here pgrid,min and pgrid,max are the upper and lower limits of
xchange power of microgrid and distribution network, respec-
ively.

The climbing rate ri refers to the increase or decrease of the
utput power of distributed generation in unit time, which was
escribed as follows:

Pi,t − Pi,t−1
⏐⏐ ≤ ri (16)

he charging and discharging power constraints of the battery in
ne hour were as follows:
t
ch ≤ Pch,max, P t

dis ≤ Pdis,max (17)

here P t
ch and P t

dis are the charge and discharge power of the
attery, respectively, and Pch,max and Pdis,max are the maximum
harge and discharge power of the battery, respectively.
The battery capacity constraints were described as follows:

OCmin
j ≤ SOCj ≤ SOCmax

j (18)

here SOCmax
j and SOCmin

j are the upper and lower limits of the
tate of charge, respectively, and SOCj is the state of charge of the
attery.

.3. Charging and discharging strategies for EVs

When EVs are in a state of disordered charging, their charg-
ng behaviour will be completely decided by the owners. The
harging power curve of EVs could be simulated by using the
onte Carlo method. When the EV is disorderly connected to

he microgrid, it will affect the stable operation of the microgrid
s an impact load. If it is to be connected to the microgrid in
n orderly manner, the economic attribute of the owner must
e considered. Under the influence of real-time electricity price,
he owner will want to charge when the electricity price is low,
nd sell electricity to the microgrid when the electricity price
s high, to minimize their own costs. To optimize the charging
nd discharging strategy of EVs, the real-time electricity price
echanism was adopted for the microgrid.
4516
Real-time electricity selling price, ρRT
Sell(t) and electricity pur-

chasing price, ρRT
Purc(t) were expressed as follows:

RT
Sell(t) = ρ init

Sell (t) · exp{κSell
[Pwt (t) − P rigid

Load (t)] − P flex
Load(t)

P flex
Load(t)

} (19)

ρRT
Purc(t) = ρ init

Purc(t) · exp{κPurc
[Pwt (t) − P rigid

Load (t)] − P flex
Load(t)

P flex
Load(t)

} (20)

here κSell is the electricity selling price coefficient, κPurc is the
lectricity purchasing price coefficient, and Pwt (t)−P rigid

Load (t) is the
xpected flexible load of the microgrid at time t . When the flex-
ble load is equal to the expected value, the output of renewable
nergy forms a balance with the load. Under this condition, the
deal working state of the system is attained where additional
eneration equipment is not required. [Pwt (t)−P rigid

Load (t)]−P flex
Load(t)

s the difference between the expected flexible load and the
ctual flexible load at time t . The smaller the difference, the lower
he involvement of other generating equipment required.

The price of electricity was subject to rational constraints of
ar owners and microgrid operators:

1ρ
init
Sell (t) ≤ ρRT

Sell(t) ≤ λ2ρ
init
Sell (t) (21)

1ρ
init
Purc(t) ≤ ρRT

Purc(t) ≤ λ2ρ
init
Purc(t) (22)

1ρ
init
Sell (t) is the lowest price that the microgrid operator can

fford at time t , and λ2ρ
init
Sell (t) is the highest price that the user

an accept at time t .
By raising or lowering the price of electricity, EVs could be

uided to charge and discharge in an orderly manner. Fig. 2(a)
nd (b) shows the real-time electricity prices.

.4. Microgrid dispatching strategy

In the dispatching of the microgrid system, since wind tur-
ines generate electricity from renewable energy, they do not
ause environmental pollution, and their output curve could be
redicted using prediction technology. Additionally, the curve of
Vs could be simulated using the Monte Carlo method, such that
hey are given priority to meet the predicted load. Secondly, the
ystem judges the capacity and working mode of the energy
torage device, such that MT and FC are economically and en-
ironmentally scheduled and traded. To maintain the reliability
f the microgrid, the microgrid is connected to the grid, and
he distribution network is used as the standby capacity in the
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trategy. In this paper, the scheduling direction of load, and the
mount of shortage of wind turbines and EVs was divided into
wo directions: the supply was greater than the demand, and the
upply was less than the demand. The scheduling strategy of the
icrogrid was determined according to the cost at every moment.

. Optimization method

.1. Linear weighting method based on two-person zero-sum game

Multiple targets can be solved using many methods. The linear
eighting method is a typical one, which converts the multi-
le targets into a single target by setting different weights for
ach target. The objective function is converted to the following
ormula:

in f (x) =

n∑
i=1

λifi (x)

.t. G(x) ≤ 0, H(x) ≤ 0
(23)

owever, the disadvantage of this method is that it is difficult
o determine the weight of each target, and the current methods
o determine the weights has great subjectivity. Additionally,
he microgrid system used in this paper contains renewable en-
rgy, which will interfere with the scheduling because of its
andomness. Therefore, to avoid the interference of uncertain
actors, and obtain objective weights, we used a method of weight
etermination based on the two-person zero-sum game.
From the perspective of game theory, there are two deci-

ion makers in the optimal dispatching of power system with
enewable energy. One is the manual decision maker, and the
nstructions issued can realize the complete consumption of wind
ower; the other is nature, it will determine the output of the
T, which will affect the output of other devices in a microgrid.
n this basis, nature is personified as a player to play a game
ith decision-makers, and then the microgrid scheduling is ob-
ained. This scheduling is not only objective, but also reduces the
nterference of nature in the scheduling. Therefore, the weight
etermination method used in this paper was the two-person
ero-sum game method.
We assumed that the original multi-objective optimization

roblem had n objectives: f1, f2, . . . , fn. When the objective i is
ptimized separately, the optimal solution of the original problem
s recorded as x∗

i , and the set of the optimal solution is recorded
s X∗. Furthermore, we assumed that there were two participants
n the game, the first participant selected a strategy from fi as its
trategy, and the second participant selected a solution from the
et of optimal solutions as its strategy. The typical two-person
ero-sum game model is expressed as follows:
1) Participants: Participant 1 and Participant 2 (virtual partici-
ants)

2) Policy setting:
fi ∈ {f1, f2, . . . , fn}

xi ∈ {x∗

1, x
∗

2, . . . , x
∗

n}
3) Payment: fi (xi) and −fi (xi)

Since the dimensions of each objective function in the original
roblem were not the same, the objective function needed to be
ormalized as follows:

′

ij =
fi(x∗

j )

fi(x∗

i )
, i, j = 1, 2, . . . , n (24)

′

i represents the probability that participant 1 chooses fi as its
trategy, and µ′

i be the probability that participant 2 chooses x∗

j as
ts strategy. The expected payment of participant 1 was expressed
s follows:

′
=

n∑ n∑
f ′

ijλ
′

iµ
′

j (25)

i=1 j=1

4517
f F ′ denotes a certain cost, then the goal of participant 1 is to
inimize, and the goal of participant 2 is to maximize, that was

axµ′ minλ′F ′
= maxλ′ minµ′F ′

.t.
n∑

i=1

λ′

i = 1, λ′
≥ 0

n∑
i=1

µ′

i = 1, µ′
≥ 0

(26)

he solution of the game problem was equivalent to solving the
wo following linear programming problems:

ax
n∑

i=1

ri

s.t. ri ≥ 0
n

i=1

f ′

ijri ≤ 1, j = 1, 2, . . . , n

(27)

in
n∑

j=1

sj

.t. sj ≥ 0
n

j=1

f ′

ijsj ≤ 1, i = 1, 2, . . . , n

(28)

he optimal payoff obtained by solving the above two optimiza-
ion problems was as follows:

∗
=

1∑
r∗

i
=

1∑
s∗j

(29)

he mixed strategy Nash equilibrium of the game problem was
xpressed as follows:
′
∗

i = F∗r∗

i , µ
′
∗

j = F∗s∗j (30)

hen, the weight coefficient of each objective of the original
ptimization problem was expressed as follows:

i =
λ′

i

fii
∑n

i=1(λ
′

i/fii)
, i = 1, 2, . . . , n (31)

This weight coefficient could be introduced into the original prob-
lem, and the multi-objective problem could be transformed into
a single-objective optimization problem for solution. Therefore,
this method overcame the deficiency of the general weighted
coefficient method relying on the subjectivity of decision-makers.

4.2. Adaptive simulated annealing particle swarm optimization

PSO is an algorithm that imitates the process of birds flying
and foraging. It considers each individual as a particle that flies
at a certain speed, then updates its position and speed according
to experience, dynamically adjusts from the best position of the
individual to the best position of the group, and finally outputs
a global optimal solution (Ma et al., 2018). Since PSO is affected
by inertia weight and learning factor, it can easily to fall into
the local optimum. Therefore, it is often necessary to improve its
inertia weight and learning factor to obtain the global optimum.

The idea of a simulated annealing (SA) algorithm originates
from the cooling process of a solid. If the temperature of the solid
is high, its energy will be higher, and the particles in the solid
will be in a state of disordered motion. SA includes the annealing
process and the Metropolis criterion. Annealing refers to the
process of gradually cooling an object. The SA algorithm starts
from a higher initial temperature. If the temperature gradually
decreases, the solution of the algorithm will gradually tend to be
stable, but the solution at this time is the local optimal solution,
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Fig. 3. Flow-chart of adaptive simulated annealing particle swarm optimization.
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and the Metropolis criterion must be used to help the algorithm
jump out of the local solution, and achieve the global optimal (Ge
and Ak, 2021).

According to the Metropolis criterion, the SA algorithm deter-
mines whether the optimal solution of each iteration can replace
the individual optimal solution, which is expressed as follows (Jza
et al., 2021) :

pi(k) =

{
1 , Ei(k) ≤ E(g)

e−
Ei(k)−E(g)

Ti , Ei(k) > E(g)
(32)

where Ei(k) represents the energy of the i particle in the kth
iteration, it is the fitness value of the particle. E(g) represents the
optimal energy of the current population, and Ti represents the
current temperature.

Therefore, in this paper, we used ASAPSO to optimize the
scheduling results, and conducted adaptive processing on the
inertia weight and learning factor of particle swarm (Zhou et al.,
2021) as follows:

ω = (ωmax + ωmin) /2
+ tanh −4 + 8 ∗ (k − k)/k ω + ω /2 (33)
( max max) ( max min)

4518
c1 = c1_start +
(c1_end − c1_start ) ∗ n

N
c2 = c2_start +

(c2_end − c2_start ) ∗ n
N

(34)

here ωmax and ωmin are the maximum and minimum values
f the weight coefficient, respectively. In this paper, c1_start =

, c1_end = 1, c2_start = 1 and c2_end = 3.
The Metropolis criterion in the SA algorithm involves the

hange of temperature, and the initial temperature must be de-
igned according to the fitness function. With the increase in the
umber of iterations, the temperature decreases with a certain
ooling coefficient, and the specific expression was as follows:

(k) =

{
E(Pbest )/ log(0.2), k = 1

T (k − 1) ∗ µ , k > 1
(35)

here the cooling coefficient, µ = 0.95.
After each iteration, the probability of accepting the new solu-

ion is calculated according to Eq. (32) and compared with rand()
o determine whether to accept the new solution. Thus, the ability
f the algorithm to jump out of the local optimal solution can be
mproved.

Fig. 3 shows the specific steps of the ASAPSO algorithm.
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Table 1
Basic data of distributed generation.
Type Lower limit

of output/kW
Output ceiling
/kW

Shipped to maintain
several(Kom,i)

Capacity
factor (%)

Depreciable
life (year)

Initial installation cost
per unit capacity (¥/kW)

WT 0 200 0.0296 22.13 10 23750
FC 0 60 0.0293 36.73 10 42750
MT 0 60 0.0419 54.99 15 16090
BT 0 40 0.0450 32.67 10 8700
Fig. 4. Power curve.

Table 2
Discharge coefficient data of pollutant treatment.
contaminant αj/(¥/kg) βfc /(g/kWh) βmt (g/kWh) βg /(g/kWh)

CO2 0.21 489.4 184 889
SO2 14.842 0.003 0.001 1.8
NOX 62.694 0.014 0.619 1.6

5. Case studies

The microgrid mainly uses wind power generation. BT, FC, MT,
nd EVs are auxiliary power sources, and the main grid is used
s standby capacity. To improve the economy and environmental
rotection of the microgrid, the operation cost and environmental
rotection cost of the microgrid were considered, and the micro-
rid dispatching strategy was optimized while the uncertainty of
upply and demand was considered.

.1. Scenario design

Fig. 4 shows the wind power and load in the microgrid used
n this paper. We considered different operation modes of EVs,
nd selected the two following scenarios. Scenario 1: EVs are in
isorderly charging; Scenario 2: EVs are charged and discharged
rderly under the guidance of real-time electricity price. Accord-
ng to the user’s charging behaviour and market price, the power
urve was simulated using the Monte Carlo method, and 80 EVs
ere selected for simulation. Fig. 5(a) and (b) show the disor-
ered charging, and orderly charging and discharging simulated
sing the Monte Carlo method, and Fig. 6 shows its equivalent
oad curve. Table 1 lists the basic data of the microgrid distributed
eneration adopted in this paper, and Table 2 lists the pollutant
reatment emission coefficient data. Fig. 7 shows the peak–valley

lectricity price traded with the distribution network.

4519
Table 3
Zero-sum game payoff matrix.
Objective function xp xc

f1/¥ 882.3384 1057.828
f2/¥ 282.3136 101.5335

5.2. Simulation results

5.2.1. Optimization results of this paper
In this paper, we analysed scenario 2, where some EVs were

in an orderly charge and discharge state. Firstly, two objective
functions were transformed into a single objective function by a
two-person zero-sum game, and then the scheduling strategy was
optimized using ASAPSO. When the load deficiency was less than
zero, the excess electricity was charged to the BT, and if there
was surplus electricity, it was sold to the distribution network.
When the load deficiency was greater than zero, the BT, FC, and
MT could generate electricity to meet the load within the rated
power, and if the load was not satisfied, power was purchased
from the distribution to meet this part of the load.

First, we considered operation cost and environmental gov-
ernance cost of the microgrid as the optimization objectives,
used ASAPSO to optimize their objective functions to obtain the
optimization results, which were recorded as xp and xc , respec-
tively, and the corresponding operation cost f1 and environmental
governance cost f2 were calculated. Then, the two virtual players
were introduced, and the corresponding game strategies were
f1, f2 and xp, xc ; thus, a two-person zero-sum game problem was
formulated. Table 3 lists the zero-sum game payoff matrix of the
optimization problem.

Then, the output of each target was normalized, and the pay-
ment matrix was expressed as follows:

f ′
=

[
1 1.2138

2.2089 1

]
The Nash equilibrium of mixed strategy was solved.

λ∗

1 = 0.8497, λ∗

2 = 0.1503

Finally, the weight coefficient of each objective function in the
original optimization problem was obtained.

λ1 = 0.3981, λ2 = 0.6019

Multi-objective weights were used in scheduling, and ASAPSO
was used to optimize the scheduling strategy. Fig. 8(a) shows the
scheduling diagram.

As seen from Fig. 8(a), when the supply was greater than
the demand, the BT was charged, and the surplus electricity
was sold to the distribution network. EVs were charged in an
orderly manner under the guidance of the price of electricity,
and the renewable energy from wind power was fully absorbed.
Furthermore, when the supply was less than the demand, renew-
able energy from wind power was preferred, and the remaining
load was mainly met by BT, MT, and FC. Under the guidance
of electricity price, EVs underwent orderly discharge, and the
distribution network served as the reserve capacity to achieve full
load-bearing.
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Fig. 5. Chart of disordered charging (a) and orderly charging and discharging of EVs (b).
.

Fig. 6. Equivalent load diagram.

5.2.2. Comparative analysis of weight optimization algorithms
To verify the performance of the weight determination

method used in this paper, ASAPSO was used as the optimization
algorithm, and the weights obtained in this paper were compared
and analysed by using the single objective function with the best
economy, the single objective function with the best environ-
mental protection, the multi-objective function with the same
weight of economy and environmental protection, the weight
determined by the dualistic factor contrast method (Yang et al.,
2018b), and the entropy method (Tan et al., 2016).

The dualistic factor contrast method considered the impor-
tance level of environmental protection to be ‘‘slightly’’ above
economy. After establishing the importance qualitative ranking
scale matrix and consistency test, it converted the fuzzy tone
operator into the non-normalized weight vector of member-
ship index: [0.739,1], and the normalized index weights, λ1 =

.425, λ2 = 0.575. The entropy method used information entropy
ethod to calculate the entropy value of each index, and got the
eights according to the entropy value. When the value differ-
nce of an index is large, the entropy value is small, indicating
hat the effective information provided by the index is large,
4520
Fig. 7. Time-of use (TOU) electricity price.

and its corresponding weight is also large. In the experiment,
there were two indicators: operating cost and environmental
maintenance cost. We took six groups of economic costs and
environmental protection costs to form a matrix, used these data
to calculate the entropy weight, and further obtained the weights
as follows: λ1 = 0.375, λ2 = 0.625.

Fig. 8(b), (c), (d), (e) and (f) respectively show the scheduling
curves of the microgrid with the best economic performance, the
best environmental protection, the same weight of economic and
environmental protection, the dualistic factor contrast method,
and the entropy method. Table 4 lists the scheduling results under
different weights.

Fig. 8(b) shows that when supply exceeded demand, the
scheduling curve trend was consistent with that shown in Fig. 8(a)
In the case of short supply, the BT, MT, FC, and distribution
network jointly met the shortage load. Since the best economic
state was to reduce the operation cost of the system as much as
possible under the condition of ensuring the power demand, and
the power purchase cost of the distribution network was lower
than that of MT and FC, it was necessary to purchase power from
the distribution network as much as possible during dispatching.
It is seen from Fig. 8(c) that when the supply exceeded the
demand, the scheduling curve trend was consistent with that
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Fig. 8. (a) Scheduling results under the two-person zero-sum game method, (b) Scheduling results under economy, (c) Scheduling results under environmental
protection, (d) Scheduling results under environmental protection and environmental protection, (e) Scheduling results under the dualistic factor contrast method,
(f) Scheduling results under the entropy method.
shown in Fig. 8(a). When the supply was less than the demand,
the BT, MT, FC, and distribution network met the shortage load,
and the best state of environmental protection was to reduce the
environmental maintenance cost of microgrid. Due to the high
pollution gas treatment cost of the distribution network, BT, FC
and MT were used to meet the load, and the distribution network
was used as standby capacity. It is seen from Fig. 8(d), (e) and (f)
4521
that the trend of dispatching curves were consistent with that
shown in Fig. 8(a).

Table 4 lists the data of six experiments. When the economy
was considered, the average operating cost was the lowest and
average environmental protection cost was the highest; When
the environmental protection was considered, its average envi-
ronmental protection cost was the lowest, the average operation
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Table 4
The costs for different weights.
Method Weight Average operating cost/¥ Average environmental cost/¥ Total cost/¥

Extremum method (1,0) 883 286 1169
Equal weight (0.5,0.5) 985 151 1136
Extremum method (0,1) 1063 102 1165
Dualistic factor contrast method (0.425,0.575) 994 137 1131
Entropy method (0.375,0.625) 1005 124 1129
Two-person zero-sum game method (0.3981,0.6019) 1001 122 1123
Fig. 9. Performance comparison of the algorithms.

ost was the highest; When the economy and environmental
rotection were considered equally important, and the weights
ere obtained from the dualistic factor contrast method and the
ntropy method, the average operating cost and average envi-
onmental protection cost were midway in between the values
btained while considering the economy and environmental pro-
ection separately, and the total cost was lower. When the weight
as determined using a two-person zero-sum game, the average
peration cost and average environmental protection cost were
lose to that when the weight was equal, the dualistic factor
ontrast method, and the entropy method; however, the total
ost was lesser, which indicated that the weight determination
ethod was more objective, and it reduced the interference of
ncertain factors in the system.

.2.3. Comparison of optimization algorithms
To validate the performance of ASAPSO, PSO, standard PSO

SPSO), adaptive PSO (APSO), and simulated annealing PSO
SAPSO) were compared and analysed in the experiment. The
ive algorithms were maintained consistent in certain parameter
ettings to obtain accurate comparison results. To prove the
ffectiveness of the algorithm, six experiments were carried out,
nd the comparison of the fitness values of the six experiments
s shown in Fig. 10, Fig. 11 shows the scheduling cost of each
lgorithm, Fig. 12 shows the state of charge (SOC) curve of
he BT of five algorithms, and Table 5 lists the average and
tandard deviation of the fitness values and total cost of the six
xperiments.
It is seen from Fig. 9 that there was no essential difference

etween the different algorithms in the initial stage; however, the
onvergence speed of each algorithm varied with the increase in
he number of iterations. The order in which the different algo-
ithms obtained the optimal results was: SPSO, PSO, APSO, SAPSO
nd ASAPSO; and the order of their convergence of fitness values
rom high to low was: PSO, SPSO, APSO, SAPSO and ASAPSO. From
4522
Fig. 10. Cost diagram of the optimization algorithm.

the convergence speed and objective value, it was seen that the
convergence speed of ASAPSO was slow, but the objective value
was lower than those of the other algorithms. This implied that
the other algorithms fell into a local optimal state. Hence, ASAPSO
could jump out of the local optimal solution, and had better global
search ability. As seen from Fig. 10, the cost of APSO was lower
than that of SPSO, and the cost of SPSO was lower than that of
PSO, which implied that the improvement of the weight factor
and learning factor in particle swarm could improve the ability of
the algorithm to find the global optimum. Additionally, the cost of
SAPSO was lower than that of the PSO algorithm, which indicated
that SA could improve the ability of the PSO algorithm to jump
out of the local optimum. Furthermore, the cost of ASAPSO was
lower than that of APSO and SAPSO, which indicated that the
ASAPSO algorithm had higher global search ability, and could
obtain the global optimal value.

As seen from Table 5, the average value and standard deviation
of the fitness value and the total cost of ASAPSO was the lowest,
which implied that its optimization performance and stability
performance were better, and thus, could make the dispatching
results more stable, economic, and environmental friendly. Fig. 11
shows the SOC of the BT in the scheduling of the five algorithms.
BT was charged before 8 a.m. and then discharged. When ASAPSO
optimized the objective function, the stored power of the BT
was higher than that from the other algorithms, which showed
that under the scheduling of this optimization algorithm, the
stored power of the BT could be better utilized, and the role of
the BT can be brought into greater play. Therefore, the ASAPSO
algorithm employed in this paper was superior to the general PSO
algorithm.

5.2.4. Scene output analysis
Fig. 12 shows the scheduling curve of Scenario 1 where EVs

were in a state of disorder, and were added to the microgrid as
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Fig. 11. SOC of BT for five algorithms.

Table 5
The average and standard deviation of objective value and total cost.
Optimization
algorithm

Average of
objective
value

Standard
deviation of
objective value

Average of
total cost

Standard
deviation
of total cost

PSO 1241 7.81 531 3.9
SPSO 1228 5.48 525 2.97
APSO 1188 4.54 505 2.21
SAPSO 1161 7.74 494 2.67
ASAPSO 1123 2.80 472 1.26

Fig. 12. Scheduling curve of scenario 1.

Table 6
Cost comparison table of Scenario 1 and Scenario 2.

Operation cost/¥ Environmental cost/¥

Scenario 1 (EV disorder) 1180 362
Scenario 2 (EV order) 1012 125

an impact load. Its comparison with the cost of orderly charging
and discharging of EVs in Scenario 2 is shown in Table 6.

As seen from Fig. 12, when the EVs were disorderly connected
o the microgrid, they were regarded as load, which led to the
henomenon of adding a peak to the load peak. Compared with
4523
Fig. 8(a), when the supply was less than the demand, due to
orderly access, EVs could charge when the electricity price was
low, and effectively absorb renewable energy. However, when
EVs were disorderly accessed, owners rarely chose to charge at
that time, and thus, the charging amount of EVs was small. When
the supply exceeded the demand, the EV was connected orderly,
and was used as the supply side to meet part of the load in the
microgrid. When the EV was connected disorderly, it was used
as an impact load, which affected the stable operation in the
microgrid. It is seen from Figs. 8(a) and 12, the biggest difference
between scenario 1 and Scenario 2 is the power purchased from
the distribution network, the orderly access of EVs could cut the
peak and fill the valley in scenario 2, while the EVs added a
peak on load peak in scenario 1. As shown in Table 6, scenario
2 greatly increased the power purchase from the distribution
network compared with scenario 1, therefore, the operation cost
and environmental maintenance cost were reduced.

6. Conclusions

In this paper, the operation characteristics of distributed gen-
eration were considered. According to the economic scheduling
and energy-saving needs of a microgrid, EVs were added, and
orderly charged and discharged. To reduce the influence of un-
certain factors, the linear weighting method based on the two-
person zero-sum game was adopted to determine the weights of
the two targets, and the ASAPSO algorithm was used to solve the
optimal scheduling problem of the microgrid. Furthermore, the
orderly charging and discharging of EVs based on the real-time
electricity price could effectively reduce the cost of microgrid
and environmental governance, compared with the disorderly
charging and discharging of EVs. Moreover, the linear weighting
method of the two-person zero-sum game model used could ob-
tain a relatively objective weight coefficient in this paper, which
reduced the uncertainty factors in the microgrid. The ASAPSO
algorithm could jump out of the local optimum and obtain the
global optimum. Therefore, for the microgrid system constructed
in this paper, the optimization algorithm effectively improved the
economy and environmental protection of the microgrid.
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