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1.  INTRODUCTION 

Anthropogenic climate change alters abiotic and bi-
otic environmental conditions at rapid rates, with far-
ranging effects on marine ecosystems worldwide 
(Doney et al. 2012), particularly warming-driven al-
terations to species geographical ranges, or ‘range 
shifts’ (Parmesan & Yohe 2003, Poloczanska et al. 
2013, Pecl et al. 2017, Pinsky et al. 2020). While warm-
ing can directly affect individual species perfor-
mances, it may also have indirect effects through 

changes in species interactions (e.g. through changes 
in abundance; Kordas et al. 2011). Species interactions 
are critical to the structure and functioning of marine 
ecosystems; however, range shifts may alter these in-
teractions and substantially change marine ecosys-
tems now and in the future (Winder & Schindler 2004, 
Kordas et al. 2011, Milazzo et al. 2013). 

Species interactions, particularly between com-
petitors, may change with future ocean warming, 
either directly due to changes in individual species 
performance or abundance (Milazzo et al. 2013, 
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Kroeker & Sanford 2022) or indirectly through the 
emergence of novel interactions with range-shifting 
species (Kordas et al. 2011, Dell et al. 2014). For ex -
ample, temperate reef fish become more aggressive 
in the face of novel range-shifting tropical fish 
species (Coni et al. 2021). Predicting changes to 
species interactions and their potential subsequent 
influences on marine communities is one of the 
‘known unknowns’ of climate change ecology (Lord 
et al. 2017). This is largely because the indirect ef -
fects (e.g. competitive release of species) resulting 
from changes to species interactions are complex, 
spatially variable and often difficult to predict and 
have hence not been as readily studied as the direct 
effects (e.g. physiological changes; Lord et al. 2017). 

The outcomes of competitive interactions can de -
pend on a wide range of factors, and hence many 
performance measures could be used to predict com-
petitive strength or ability (Twiname et al. 2020a). 
Physiological parameters, such as aerobic scope, 
have been shown to predict competitive ability and 
outcomes of interspecific interactions (Kroeker & 
Sanford 2022), such as for Arctic sculpins (Seth et al. 
2013) or tropical damselfish (Killen et al. 2014). In 
crustaceans, besides physiology (Seebacher & Wil-
son 2006), size can be a major factor in establishing 
interspecific competitive dominance. For instance, 
during competitive trials, only large American lob-
sters Homarus americanus outcompeted the invasive 
green crab Carcinus maenas for food resources, 
while small and medium-sized lobsters were unable 
to dominate and spent more time seeking shelter 
(Williams et al. 2009). Aggression is another factor 
that can influence the outcome of competitive inter-
actions. In studies with hermit crabs or freshwater 
crayfish competing for food or shelter, those individ-
uals that were more aggressive were more likely to 
obtain the contested resource (Usio et al. 2001, Tran 
et al. 2014, Greggor & Laidre 2016). Similarly, in fish, 
local snapper species in the Gulf of Mexico have 
been shown to become more aggressive in the pres-
ence of range-shifting conspecifics (Marshak & Heck 
2017). The diversity of factors affecting competitive 
outcomes underlines the complex nature of species 
interactions and the difficulty in forecasting species 
redistributions; however, examining multiple mea-
sures will improve insight into these interactions. 

In south-east Australia, the ranges of dozens of 
marine species have extended poleward in response 
to ocean warming (Pitt et al. 2010, Last et al. 2011, 
Robinson et al. 2015, Sunday et al. 2015, Gervais et 
al. 2021). One of these is the eastern rock lobster 
Sagmariasus verreauxi (Pecl et al. 2009, Robinson et 

al. 2015), a species common in the waters of New 
South Wales, inhabiting a temperature range of ap -
proximately 14.5−21.5°C (Holthuis 1991, Reef Life 
Survey 2019b). This largest species of spiny lobster is 
currently increasing in abundance in areas histori-
cally dominated by the more commercially important 
southern rock lobster Jasus edwardsii (Robinson et 
al. 2015), specifically in Tasmania, where J. edward-
sii inhabits a temperature range of approximately 
9−21°C (Holthuis 1991, Reef Life Survey 2019a). How 
these 2 species interact currently and under future 
ocean warming is unknown, though it is likely that 
both will experience direct or indirect competition 
due to similar resource requirements (Booth 2006, 
Byrne & Andrew 2013, Jeffs et al. 2013). Competition 
between spiny lobsters has been observed where 
shelter is limited or of insufficient quality (Eggleston 
et al. 1990, Briones-Fourzán et al. 2007). Resource 
competition between spiny lobsters will be further 
enhanced in degraded reef habitats, such as coral 
reefs following bleaching (Sabino et al. 2021). Such 
habitat degradation is particularly problematic in 
Tasmanian waters, where ocean warming and the 
arrival of the range-extending destructive long-
spined sea urchin Centrostephanus rodgersii has 
converted formerly rich underwater kelp forests to 
impoverished barren habitats (Johnson et al. 2005, 
Ling et al. 2015). This degraded habitat has already 
led to a decrease in spiny lobster and abalone density 
(Johnson et al. 2005). With novel species such as S.
verreauxi extending into Tasmanian waters, compe-
tition for increasingly scarce resources will likely in -
crease further. Increasing abundance of S. verre auxi 
may pose potential risks to the more valuable fishery 
(Plagányi et al. 2018) and ecosystem (Ling & Johnson 
2012) role played by J. edwardsii. Thus, we need to 
understand present and future species interactions in 
order to support adaptive management of fisheries 
and ecosystems. 

The aim of this study was to investigate competi-
tion for food between the 2 lobster species — the res-
ident J. edwardsii and the range-shifting S. verreauxi
— under current and future temperature scenarios. It 
was hypothesized that the individual species’ com-
petitive abilities would match the physi o  logical ther-
mal tolerance windows previously investigated for 
these species (Twiname et al. 2020b). Specifically, we 
expected each species to compete more successfully 
within a temperature range where their respective 
physiological performance derived from aerobic 
scope is highest; i.e. ~19−22°C for J. edwardsii and 
~23−27°C for S. verreauxi (puerulus and juvenile 
aerobic scope measurements; Twiname et al. 2020b). 
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2.  MATERIALS AND METHODS 

Competitive interaction trials for food were con-
ducted at 3 temperature treatments that encompass 
current summer (18°C), future summer (21°C) and 
 future summer heatwave (24°C) ocean temperatures 
off eastern Tasmania (Pecl et al. 2009, Oliver et al. 
2017, Oellermann et al. 2022). The trials were be -
tween 18 ap prox i mately size-matched (within 5 mm 
of total length) individuals of Jasus edwardsii and 
Sagmariasus verreauxi. Seven paired trials were run 
at 18°C, 6 at 21°C and 5 at 24°C. Each paired trial in-
volved 3 re peated feeding experiments over 3 d. No 
lobster pairs were re-used beyond their 3 d feeding 
trial; i.e. pairs were not used for different temperature 
treatments. Different sample sizes between tempera-
ture treatments were due to the exclusion of individu-
als that moulted immediately before, after or during 
competitive trials, which critically affects their be -
haviour and overall performance. Competitive inter-
actions were filmed when a food item was introduced 
to the tank and scored for the number of aggressive 
and submissive behaviours exhibited by both species, 
as well as the ‘winner’ of the interaction (individual 
that consumed the food). 

2.1.  Animal collection and holding 

Adult J. edwardsii (n = 18; mean ± SD total length: 
298.85 ± 11.95 mm) were collected in February 2017 
using baited lobster pots in the Crayfish Point Scien-
tific Reserve (42.95° S, 147.35° E), south-eastern Tas-
mania. Sub-adult S. verreauxi were purchased from 
commercial rock lobster fishers operating along the 
east coast of Tasmania from February to April 2017 
(n = 18; total length: 304.17 ± 15.87 mm). All lobsters 
were transported live to the Institute of Marine and 
Antarctic Studies (IMAS) aquaculture facility and 
held in 5000 l coated glass fibre tanks supplied with 
flow-through raw seawater (salinity: 35 PSU). The 2 
species were kept in separate tanks to limit any inter-
action prior to experimentation. Each individual was 
tagged ventrally behind the fifth pair of pereiopods 
using a unique identification number T-bar tag (to 
prevent the tag being shed upon moulting) as well 
as a larger identification number glued (Loctite 454; 
Henkel) onto the carapace for easy identification in 
the tanks and to reduce possible subsequent handling 
stress to the lobsters. Of the 18 individuals of each 
species, 10 were female and 8 were male. For J. ed-
wardsii, 6 of the 10 females carried eggs. Due to bio-
logical differences between the species (J. edwardsii 

growing to smaller overall sizes, and hence smaller 
sizes at maturity), no S. verreauxi of similar size were 
egg-bearing. 

Before adding lobsters to the tanks, we recorded 
carapace length, width, total length, mass and the 
number of missing appendages (antennae and legs). 
The lobsters were fed 2−3 times wk−1 to excess with 
fresh or thawed blue mussels Mytilus galloprovin-
cialis and/or thawed squid Loligo sp. tentacles. Prior 
to the competitive trials, similar-sized pairs (within 
5 mm of total length) of J. edwardsii and S. verreauxi 
were selected. Pairs of the same sex were selected 
using total length and weight and were matched 
where possible in terms of missing appendages to 
eliminate any effect these losses may have had on 
behaviour. 

2.2.  Acclimation 

Four matched lobster pairs were transferred into 
two 200 l (800 mm diameter, 400 mm deep) round ac -
climation tanks, species separated, until the competi-
tion trials commenced to make sure no dominance 
structures between paired individuals were devel-
oped before trials. The separated acclimation and 
competition tanks were the same size to avoid any 
potential behavioural changes when moving lobsters 
from the acclimation period to the competition phase. 
Tanks were supplied with flow-through filtered sea-
water at approximately 3 exchanges h−1, an air stone 
and a submersible 2000 W heater (Istra Elements & 
Engineering) to adjust and maintain tank tempera-
tures at the trial temperatures. Two large concrete 
hides with enough space for all individuals were 
placed on opposite sides of the tank to provide shel-
ter. A maximum of 4 same-species individuals were 
acclimated at the same time in each acclimation tank 
and were fed with fresh or thawed blue mussels in 
excess every day in the afternoon. Any uneaten food 
was removed daily to prevent fouling of the water. 
Temperatures were increased by 1°C d−1 from ambi-
ent conditions (~11−14°C) until the trial temperature 
was achieved. The lobsters were left for 7 d to accli-
mate to this temperature. Before the start of competi-
tion trials, the lobsters were fasted for a period of 72 h 
(deemed a suitable time from pilot fasting trials for 
the lobsters to be hungry enough to approach the 
food source) to ensure that the lobsters would search 
for food during the trials. This acclimation period 
included a change from ambient light regimes to a 
12 h light:12 h dark (red light) regime, as was imple-
mented in the competition trials. 
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2.3.  Competition trials 

Competition trials were conducted in 20 l (800 mm 
diameter, 400 mm deep) tanks supplied with flow-
through filtered seawater (approx. 3 ex changes h−1), 
an air stone and 2 concrete hides placed on either 
side of the tank. During the experimental trials, a 
12 h light:12 h dark (red light) regime was simulated, 
and the feeding competition trials were undertaken 
during the dark period. From the acclimation tanks, 
the size-matched pairs of J. edwardsii and S. verre -
auxi were introduced into 4 separate competition 
tanks 24 h before feeding trials began to allow them 
to acclimate to their new environment. No food was 
provided during this 24 h period. After this 24 h, one 
half-shell mussel was placed into the tank, at a simi-
lar distance from the 2 lobsters. The trial was then 
filmed for 1 h followed by removal of the mussel shell 
(when eaten) or the uneaten mussel. Competition 
feeding trials were repeated every 24 h for 72 h, 
resulting in 3 repeated feeding trials for each pair of 
lobsters. No other feeding was implemented during 
the trials. Competition trials were conducted in the 
late afternoon under red light, simulat-
ing dark conditions, as lobsters gener-
ally forage at night (Childress & Jury 
2006). The air stones were removed 
during competition trial filming to 
eliminate associated water-surface 
disturbance, which impeded effective 
lobster ob servations. Air stones were 
re-introduced immediately after the 
trials, and the tanks received constant 
water flow throughout the trial to 
maintain oxygen levels above 90% 
saturation. 

The trials were filmed using video 
cameras (GoPro Hero5) suspended di -
rectly above the tanks to view the 
whole tank. Video footage of the com-
petitive interactions was viewed and 
different behaviours re corded, includ-
ing (1) who ‘won’ the interaction (se -
cured and ate the mussel), (2) how 
long the food item was handled (once 
the mussel was secured to when it was 
completely eaten and the empty shell 
discarded), (3) the number of aggres-
sive and submissive behaviours exhib-
ited by the pair of competitors and (4) 
the level of activity exhibited by both 
individuals (see Table 1 for descrip-
tions). Activity level was scored from 

0−4; scoring was determined by how much move-
ment each lobster exhibited, as defined in Table 1. 

2.4.  Data analysis 

All statistical analyses were performed in the R sta-
tistical program (R Core Team 2017). From the 18 
pairs of lobsters, a total of 54 successful trials were 
conducted over the 3 temperature treatments. Nine 
trials (3 lobster pairs) were excluded due to individuals 
moulting immediately before, during or immediately 
after completion of experiments. Data was tested for 
normality using a Shapiro-Wilk test and, due to all 
data being non-parametric, generalised linear mixed 
models (GLMMs) were used to analyse competition 
outcomes using the ‘lme4’ package (Bates et al. 2015) 
and the following model description: 

              Response = Species + Temperature  
               + Damage + (1 |Number) + (1 |Pair)

          (1) 

This model was used for different responses, where 
‘response’ is (1) the competition outcome winner, 
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Behaviour              Description 
 
Winner                  The lobster that secured the food first and consumed it, 

or the lobster that fought for the food, secured it and 
consumed it. This was recorded as the species that 
‘won’, J. edwardsii or S. verreauxi, or as ‘neither’ if nei-
ther species secured or consumed the mussel during the 
1 h trial 

Aggressive behaviours  
Approach              One lobster moves towards the other 

Threat                    One lobster flicks antennae or lifts legs in threat display 
towards the other 

Physical contact    One lobster physically touches with legs or antennae, 
grabs or attacks the other 

Submissive behaviours  
Retreat                   One lobster moves away from the other in response to 

the other approaching 

Escape                   One lobster utilises a tail-flick response to escape the 
other 

Activity level scoring  
0                             No movement by lobster 

1                             Lobster active for 1−25% of the competition period 

2                             Lobster active for 26−50% of the competition period 

3                             Lobster active for 51−75% of the competition period 

4                             Lobster active for 76−100% of the competition period

Table 1. Descriptions of the winner of the trials, aggressive and submissive be-
haviours exhibited by Jasus edwardsii and Sagmariasus verreauxi during 
competition trials and level of activity scoring. Descriptions of aggressive and 
submissive behaviours are adapted from Carter et al. (2014) and Briones- 

Fourzán et al. (2015)
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(2) the number of aggressive and submissive be -
haviours, (3) the activity level and (4) food handling 
time. Species, temperature and pre-trial damage are 
the predictor variables. The number error term indi-
cates the day number of food competition trials (the 
first, second or third day) and the pair error term 
identifies the specific lobster identification pairs, 
both of which account for the repeated measures 
aspect of the experiments. Model covariables (total 
length, sex and whether the females carried eggs) 
were removed from the model, as none showed sig-
nificance and model fits assessed by Akaike’s infor-
mation criteria (AIC) were not improved with their 
inclusion. The model for assessing the number of 
wins used a binomial distribution, aggressive and 
submissive behaviours and activity level used a Pois-
son distribution, and food handling time used a 
gamma distribution. As R2 values are not produced 
using the ‘lme4’ package, the ‘jtools’ package was 
used to calculate R2 values for model comparison 
using the ‘summ’ function (Long 2020). Spearman 
rank correlation tests were used to examine the rela-
tionship between aggressive and submissive be -
haviours and the number of competition wins. 

3.  RESULTS 

Jasus edwardsii won more food competition trials 
than Sagmariasus verreauxi at all temperatures 
tested (36 [67%] wins for J. edwardsii compared to 7 
[13%] for S. verreauxi; GLMM, species p = 0.007; 
Fig. 1). There was one instance where the S. ver-
reauxi individual reached the food first (at 24°C) but 
was then attacked by the J. edwardsii who pro-
ceeded to secure and consume the mussel. In this 
case, J. edwardsii was considered the winner of the 
competitive trial. For the few S. verreauxi that won 
food competition trials, there was no effect of temper-
ature or difference in behaviour from those that did 
not win. There was also no effect of the trial day 
number (1, 2 or 3) on which species won the trial. The 
effect of pre-trial appendage damage was also sig -
nificant for the winner of the food competition, where 
S. verreauxi had higher numbers of damaged ap -
pendages (59% of S. verreauxi had limb damage 
compared to only 28% of J. edwardsii; GLMM, dam-
age p = 0.028). Using R2 values to calculate model 
variation showed that 16% of the variation was ex -
plained by the ‘damage’ fixed effect. The effect of 
appendage damage was not significant for any other 
model outcome and did not improve model fit via 
AIC and was therefore dropped for all other GLMM 

analyses (aggressive and submissive behaviours, 
activity level or food handling time). 

The species exhibited different levels of aggressive 
behaviours, where J. edwardsii exhibited more ag -
gressive behaviours overall than S. verreauxi at all 
temperatures (J. edwardsii: 54 aggressive be haviours; 
S. verreauxi: 6; GLMM, species p < 0.001; Table 2, 
Fig. 2a). Conversely, S. verreauxi exhibited more sub-
missive behaviours than J. edwardsii (S. verreauxi: 
45; J. edwardsii: 3; GLMM, species p < 0.001; Table 2, 
Fig. 2b). Temperature did not significantly affect ag-
gressive or submissive behaviour (Table 2). Results of 
2 Spearman rank correlation tests showed a signifi-
cant positive relationship be tween the number of 
wins and numbers of aggressive behaviours (rS = 
0.535, p = 0.001) and a significant negative relation-
ship between the number of wins and number of sub-
missive be haviours exhibited by individuals (rS = 
−0.508, p = 0.002) for the species combined. 

The relative number of different types of be -
haviours exhibited varied among species and tem-
perature treatments (Table 3). There was a very high 
level of physical contact in the 21°C trials. This was 
a re sult of one J. edwardsii individual exhibiting 
higher levels of aggression than others (this can be 
seen in Fig. 2a, where there is an outlier of 11 aggres-
sive behaviours at 21°C). This behaviour coincided 
with a high number of retreats by its paired S. ver-
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Fig. 1. Percentage of food competition wins (whereby the lob-
ster secured and ate the mussel) by Jasus edwardsii, Sagmari-
asus verreauxi, or where neither lobster secured the mussel in 
paired competitive feed trials (at 18°C: n = 21, 7 lobster pairs; 
21°C: n = 18, 6 lobster pairs; 24°C: n = 15, 5 lobster pairs)  

relative to temperature
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reauxi at 21°C, where, interestingly, 
that individual was more likely to just 
retreat rather than actively escaping 
using a tail-flick response (Table 2). 

The level of activity exhibited was 
significantly affected by both species 
and temperature (GLMM, species p = 
0.001; temperature p = 0.002; Table 2, 
Fig. 3a). J. edwardsii individuals were 
more active than S. verreauxi during 
all temperature trials, while S. ver-
reauxi did not move for the 1 h filmed 
period for more than half of the trials 
(Fig. 3a). Activity level at 18°C was sig-
nificantly less than activity level at 
24°C (Tukey method, significance be-
tween 18 and 24°C, p = 0.005). Food 
handling time did not vary with species 
or temperature (GLMM, species p = 
1.000, temperature p = 0.238; Fig. 3b). 

4.  DISCUSSION 

We demonstrated that the resident lobster 
species Jasus edwardsii dominated over range-
shifting Sagmariasus verreauxi when competing 
directly for food both at current summer tempera-
tures and future warming and heatwave scenar-
ios for south-east Australia. J. edwardsii was more 
aggressive and won more paired competitive 
feeding trials across the full range of tested tem-
peratures, unlike S. verreauxi, which was signifi-
cantly more submissive. Also, resident lobsters 
intensified food competition towards future and 
heatwave temperatures. Very few S. verreauxi in -
dividuals won food competitions, and these indi-
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Behaviour                    J. edwardsii                  S. verreauxi 
                               18°C   21°C   24°C        18°C   21°C   24°C 
 
Aggressive                                                                              
Approach                   3         4         8              1         1         1 
Threat                        3         8         4              1         0         0 
Physical contact        4        15        4              0         0         2 
Total aggressive       10       27       16             2         1         3 

Submissive                                                                              
Retreat                       0         1         1              8        15       13 
Escape                       0         0         1              1         6         2 
Total submissive       0         1         2              9        21       15

Table 3. Total number of aggressive and submissive behaviours 
(as described in Table 1) exhibited by Jasus edwardsii and Sag-
mariasus verreauxi in competitive feeding trials at 18, 21 and  

24°C (n = 21, 18 and 15, respectively), by behavioural type

Model                                              Random effects                                             Fixed effects 
                                            Factor       Variance       SD                Factor                Estimate         SE                t         Pr (>|z|) 
 
Aggressive behaviours      Number      0.497        0.705              Species               −2.216         0.520         −4.262    <0.001* 
                                            Pair              0.111        0.334              Temperature       0.153         0.093          1.642      0.101 

Submissive behaviours      Number      0.000        0.000              Species                2.708         0.596          4.542    <0.001* 
                                            Pair              0.512        0.715              Temperature       0.175         0.104          1.736      0.083 

Activity level                       Number      0.067        0.259              Species               −1.008         0.232         −4.343     0.001* 

                                            Pair              0.027        0.163              Temperature       0.148         0.047          3.127     0.002* 
Handling time                     Number          0                0                  Species               <0.001         0.015             0              1 
                                            Pair              0.007        0.085              Temperature       0.018         0.016          1.181      0.238

Table 2. Generalized linear mixed model statistics of the effect of species (Jasus edwardsii and Sagmariasus verreauxi) and 
temperature on different behaviours observed during paired competitive food trials. Random effects account for the repeated  

measures in the trials. *p < 0.05

Fig. 2. Mean (±SE) number of (a) aggressive and (b) submissive behaviours 
(described in Table 1) exhibited by Jasus edwardsii and Sagmariasus ver-
reauxi in competitive feeding trials at 18, 21 and 24°C (n = 21, 18 and 15,  

respectively). Dots indicate data outliers
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viduals did not exhibit any behaviours that differed 
from those that did not win. Similarly, the effect of 
trial day did not affect the trial winner; e.g. even with 
a greater fasting duration due to lack of competitive 
success, behavioural dominance did not change be -
tween the lobster pair over the 3 d trial. Overall, 
these results indicate that resident spiny lobsters show 
unexpected resilience to direct food competition with 
range-extending species in the face of rapidly warm-
ing oceans and future heatwaves. 

4.1.  Competitiveness beyond physiological optima 

In contrast to our original hypothesis, we found that 
J. edwardsii sustains competitive dominance beyond 
its optimal physiological performance. In juvenile J.
edwardsii, aerobic scope— indicative of oxygen-de-
pendent physiological capacity — peaks at ~20°C 
(Twiname et al. 2020b). Other temperature-dependent 
physiological performance indicators, such as growth 
and feed-conversion ratios, peak at 20.6 and 19.3°C, 
respectively in post-pueruli J. edwardsii (Thomas et 
al. 2000). Given that J. edwardsii continues to be the 
dominant competitor up to 24°C, these physiological 
performances do not necessarily predict competitive 
outcomes. However, at higher sub-optimal tempera-
tures, metabolic energy demand and the need to feed 
increase disproportionally (Oellermann et al. 2020), 
which may explain higher aggression levels and com-
petitive dominance, similar to cold-temperate resident 

reef fish (Coni et al. 2021). Juvenile S. 
verreauxi showed parallel increases in 
feed consumption and metabolic rates 
with rising temperatures (Fitzgibbon 
et al. 2017, Oellermann et al. 2020). 
However, the poor competitiveness of 
S. verreauxi with increasing tempera-
tures may be ex plained by a combina-
tion of a generally more submissive or 
inactive behavioural phenotype and 
lower metabolic demands relative to 
J. edwardsii at identical temperatures 
(Oellermann et al. 2020). Moreover, 
even though J. edwardsii maintained 
dominance, the presence of S. ver-
reauxi may increase the general fre-
quency of competitive interactions as 
well as activity and aggression levels 
of J. edwardsii, leading to increased 
long-term energetic costs and reduced 
energy stores (Su et al. 2020), which 
may hamper growth and performance 

(Vøllestad & Quinn 2003), particularly at physiologi-
cally sub-optimal temperatures. Thus, at longer accli-
mation periods exceeding 1 wk (this study), energetic 
deficiencies or phenotypic shifts (Oellermann et al. 
2022) may alter competitive performance and out-
comes. 

4.2.  Effect of damage on competitive outcomes 

Missing appendages (legs and antennae) affected 
the outcome of the food competition winner in this 
study: 59% of S. verreauxi were damaged (6 indi-
viduals missing 1 appendage and 4 missing 2 ap -
pendages) while only 28% of J. edwardsii were 
damaged, all with only 1 missing appendage. The 
majority of these missing appendages were legs. Pre-
vious research on J. edwardsii behaviour found that 
unlike clawed lobsters that are dependent on their 
large foreclaws, their aggressive behaviours in volved 
pushing and clasping their opponents (Carter et al. 
2014). Additionally, in contrast to other spiny lobster 
species, J. edwardsii do not use their antennae of -
fensively. In other crustacean species, missing ap-
pendages or limbs have been found to affect aggres-
sion, vulnerability to attack, foraging and mating 
(Juanes & Smith 1995 and references within, Briones-
Fourzán et al. 2015). Higher levels of limb damage 
are likely a result of commercial fisheries handling 
(Juanes & Smith 1995 and references within), as S. 
verreauxi individuals were purchased from commer-
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Fig. 3. Mean (±SE) (a) activity level (from 0−4 behavioural score) and (b) food 
handling time (both described in Table 1) exhibited by Jasus edwardsii and 
Sagmariasus verreauxi in competitive feeding trials at 18, 21 and 24°C (level 
of activity: n = 21, 18 and 15, respectively; food handling time: n = 12, 16 and 
14, respectively). Note there was only one replicate, and therefore no error bar  

for food handling time for S. verreauxi at 24°C
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cial fishers and J. edwardsii were collected during 
routine scientific sampling. However, while the effect 
of damage was significant for the ‘winner’ of the food 
competition (GLMM, damage p = 0.028; 16% of 
model variance explained by the ‘damage’ term), it 
was not significant for any other statistical analysis 
(i.e. aggressive behaviours, submissive behaviours, 
activity level and food handling time), suggesting 
that limb damage was not a strong driving factor in 
our study. 

4.3.  Aggressive behaviour 

Resident J. edwardsii dominated competition with 
range-shifting S. verreauxi, supported by its more 
aggressive behaviour. Aggression is considered a 
key factor in the successful outcomes of competitive 
interactions within and between species, such as her-
mit crabs, where aggressive individuals are more 
commonly the winner of a food resource (Kaiser et al. 
1998, Tran et al. 2014) or resident temperate reef fish 
being more aggressive in face of range shifting trop-
ical species (Coni et al. 2021). While it has been 
observed that food restrictions increased intraspe-
cific dominance in J. edwardsii (Thomas et al. 2003), 
other studies have found that limited food in aqua-
culture situations did not affect aggressive be -
haviours among conspecifics (Carter et al. 2014). The 
lack of intraspecific aggression observed in Carter et 
al. (2014) combined with the high levels of aggres-
sion observed in this study indicate differences be -
tween intra- and interspecific competitive behaviours 
in J. edwardsii. 

Interestingly, mature J. edwardsii have been shown 
to have higher oxygen consumption rates than S. ver-
reauxi at — for J. edwardsii — relatively high temper-
atures ranging from 20−23°C (Oellermann et al. 
2020). This is in line with J. edwardsii having higher 
activity and more aggressive feeding behaviour 
found in this study (Figs. 2 & 3), to satisfy an in creased 
demand for food caused by raised metabolic costs at 
higher temperatures. Atlantic salmon apply a similar 
high-cost/high-return feeding strategy (Metcalfe 
1986), where individuals with high standard metabolic 
rates were also more aggressive and competitively 
dominant (Cutts et al. 1998). In contrast, S. verreauxi 
juveniles with higher metabolic rates did not have a 
growth advantage in communal settings, suggesting 
that metabolic phenotype does not provide a competi-
tive advantage (Tuzan et al. 2019). Rather, this species 
employs a ‘compensation’ strategy to minimise ener-
getic costs and dominance and channel energetic re-

sources towards growth (Tuzan et al. 2019). In com-
parison, at temperatures beyond which physiological 
performance declines (e.g. >20°C for aerobic scope; 
Twiname et al. 2020b), increased activity of J. ed-
wardsii may deplete energetic resources for other es-
sential processes such as growth, reproduction or 
health. Therefore, despite J. edwardsii being compet-
itively dominant in the short run, novel interactions 
with S. verreauxi may enhance energetically costly 
behaviours that may lead to long-term trade-offs at 
warmer temperatures. This may be compounded by 
the fact that at warmer temperatures S. verreauxi are 
likely to grow faster and larger than J. edwardsii, thus 
enhancing an important competitive trait that could 
overpower dominance by J. edwardsii. 

4.4.  Submissive behaviour 

The range-shifting S. verreauxi was less active, 
more submissive and competed poorly for food with 
resident J. edwardsii. Low activity rates by S. ver-
reauxi marked by stationary behaviour in or along 
the side of the shelters can be triggered by colder 
temperatures (e.g. Smith et al. 1999, Seth et al. 2013, 
Wang et al. 2016), as a means to conserve energy to 
reduce feeding needs (Sogard & Olla 1996) and ex -
posure to predators (Lozano-Álvarez & Briones-
Fourzán 2002, Briones-Fourzán et al. 2006, Briceño et 
al. 2018). This may be particularly relevant to lead-
ing-edge populations for S. verreauxi suffering from 
limited access to familiar prey or low levels of con-
specific group protection. Also, because optimal tem-
peratures for various traits of S. verreauxi were 
higher than for J. edwardsii (e.g. 24.3 vs. 19.6°C for 
aerobic scope; Twiname et al. 2020b), the challenge 
to consume sufficient food to meet increased meta -
bolic needs may not be as critical as for J. edwardsii. 
Therefore, low activity paired with submissive be -
haviours may be due to a combination of conserving 
energy, lower metabolic demand, reduced feeding 
needs and predator avoidance. 

4.5.  Limitations and future research 

Two limitations of this study will need to be 
addressed in future studies. First, approximately half 
of the J. edwardsii females carried eggs (6 of 10). 
Although there was no apparent impact in this study, 
egg-bearing females may behave and compete dif-
ferently, requiring further study (Campbell 1990, 
Figler et al. 1997, Mello et al. 1999). Second, due to 
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different growth rates and size at maturity between 
J. edwardsii and S. verreauxi (Montgomery 1992, 
Gardner et al. 2006), matched size pairs of lobsters 
were of different ages and not at the same stage of 
sexual maturity in this study. However, since size is 
an important predictor of competitive dominance in 
crustaceans (Thomas et al. 2003), future studies will 
need to assess this factor by simulating natural size 
variations. 

Further investigations may validate these labora-
tory results in the wild and consider other factors af -
fecting competitive outcomes, including physio -
logical and behavioural plasticity, mating, brooding, 
spawning, moulting and life stage. Also, although J.
edwardsii dominated food competition over S. ver-
reauxi up to 24°C, they do not typically range into 
such warm habitats, suggesting that other factors or 
long-term exposure limit its distribution. 

4.6.  Conclusions 

This study found that resident spiny lobsters show 
unexpected resilience to direct food competition with 
range-extending species in the face of rapidly warm-
ing oceans and future marine heatwaves. We pro-
vided evidence that climate-driven species redistri-
bution is not only shaped directly by the impacts of 
changing abiotic conditions but also indirectly by 
biotic barriers arising from novel species interactions. 
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