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ABSTRACT: The dynamics of the North Atlantic Oscillation (NAO) are analyzed through a data-driven model obtained

from atmospheric reanalysis data. We apply a regularized vector autoregressive clustering technique to identify recurrent

and persistent states of atmospheric circulation patterns in the North Atlantic sector (208–908N, 1108W–08). To analyze

the dynamics associated with the resulting cluster-based models, we define a time-dependent linear delayed map

with a switching sequence set a priori by the cluster affiliations at each time step. Using a method for computing the

covariant Lyapunov vectors (CLVs) over various time windows, we produce sets of mixed singular vectors (for short

windows) and approximate the asymptotic CLVs (for longer windows). The growth rates and alignment of the resulting

time-dependent vectors are then analyzed. We find that the window chosen to compute the vectors acts as a filter on the

dynamics. For short windows, the alignment and changes in growth rates are indicative of individual transitions between

persistent states. For long windows, we observe an emergent annual signal manifest in the alignment of the CLVs char-

acteristic of the observed seasonality in the NAO index. Analysis of the average finite-time dimension reveals the NAO2 as

the most unstable state relative to the NAO1, with persistent AR states largely stable. Our results agree with other recent

theoretical and empirical studies that have shown blocking events to have less predictability than periods of enhanced

zonal flow.
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1. Introduction

The North Atlantic Oscillation (NAO) is a prominent mode

of variability in the Northern Hemisphere (NH) atmospheric

circulation. Concentrated between the eastern North American

and western European continent, the oscillation characterizes

the behavior of large regions of high and low pressure anom-

alies over the North Atlantic Ocean. While the background

state of atmospheric pressure in this region consists of lower

pressure to the north and higher pressure in the midlatitudes,

the NAO describes the modulation to this background state,

either enhancing it (positive phase) or weakening it (negative

phase). The changes to the background state of atmospheric

pressure over the Atlantic affect wind speed and direction,

heat and moisture transport, and storm numbers and intensity

(Hurrell et al. 2013). The instabilities driving transitions

between the phases can develop rapidly and are therefore

difficult to predict. This leads to impacts across many socio-

economic sectors, and therefore motivates further study into

the dynamics associated with such a phenomenon.

The two phases of the NAO and their respective associated

pressure differences have opposing effects on the observed

atmospheric physics. The positive phase enhances the zonal

flow across the North Atlantic Ocean with much stronger than

average westerlies in the midlatitudes (Visbeck et al. 2001).

These westerlies bring warmer weather to the European con-

tinent, particularly in the winter, as well as stronger and more

frequent storms to northern Europe (drier conditions in

southern Europe) (Hurrell 1995). In contrast, the negative

phase weakens the midlatitude westerlies and is associated

with increased blocking events in the North Atlantic region

(Shabbar et al. 2001; Benedict et al. 2004; Croci-Maspoli et al.

2007; Woollings et al. 2008) and anomalously cold tempera-

tures over the eastern NorthAmerican and northern European

continents (Shabbar et al. 2001). Although the NAO has var-

iability on interannual and decadal time scales (Hurrell 1995;

Stephenson et al. 2000), the complicated relationship of the

individual NAO phases to synoptic-scale variability makes it a

complex phenomenon to study dynamically.

An important contributor to the NAO is the interplay be-

tween barotropic and baroclinic instability. Some of the sim-

pler conceptual models proposed for the observed variability

of the NAO include nonlinear barotropic models forced either

by a random process imitating baroclinic instability (Vallis

et al. 2004) or a synoptic-scale wave-maker function (Luo et al.

2007a,b,c; Luo and Cha 2012). In the former case, the dipole

structure in the pressure field is a result of a dipolar circulation

anomaly caused by the large-scale vorticity stirring in the

Atlantic storm track (Vallis et al. 2004). The latter case em-

phasizes the importance of a preexisting dipole planetary-scale

wave whose spatial structure must match that of the synoptic-

scale wave forcing (Luo et al. 2007c), and it is shown in such a

model that wave breaking is not a necessary condition for

NAO events to occur (Luo et al. 2007a). When a variable

Atlantic mean westerly wind is included in the model, it can

also induce direct transitions between phases (Luo and Cha

2012). There has also been a considerable amount of work into

identifying the dynamical drivers of the NAO through ana-

lyzing the output of general circulation models (GCMs).

Feldstein (2003) found that initiation of a positive phase re-

sulted from anomalous wave train propagation, while the

negative phase resulted from in situ growth of the NAO

anomaly itself. Other studies have confirmed the necessity ofCorresponding author: Courtney Quinn, courtney.quinn@csiro.au
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wave breaking for the initiation of both phases, with anti-

cyclonic (cyclonic) wave breaking leading to a positive (nega-

tive) phase (Benedict et al. 2004; Franzke et al. 2004). Franzke

et al. (2004) also conclude that the latitudinal positioning of the

Pacific storm track aids in the determination of the phase.

Much work has shown theMadden–Julian oscillation (MJO) is

strongly connected to the phase of the NAO (Frederiksen and

Frederiksen 1993; Cassou 2008; Frederiksen and Lin 2013; Lin

et al. 2018). Cassou (2008) found that when the MJO initiates

a Rossby wave disturbance in the western-central tropical

Pacific, a positive NAO event was found to occur, whereas

negative NAO events resulted from eastern-tropical Pacific or

westernAtlantic disturbances that modified the NorthAtlantic

storm track. The MJO–NAO teleconnection can be shown to

largely fall within the general theory for intraseasonal oscilla-

tions first proposed by Frederiksen (2002).

It is clear from the discussion of the above studies that much

remains to be explained regarding the dynamics governing

observed transitions between, and persistence of, the respec-

tive NAO phases and relationship to the associated midlati-

tude (Atlantic Ridge, Scandinavian blocking, etc.), tropical

(MJO), and polar (Arctic Oscillation) teleconnections. One

approach that has been suggested to characterize the instabil-

ities governing changes in atmospheric flow patterns is through

the study of covariant Lyapunov vectors (CLVs). These vec-

tors give a basis on the tangent linear space and provide di-

rections in phase space of linear perturbations to a nonlinear

background flow (Ruelle 1979; Trevisan and Pancotti 1998;

Ginelli et al. 2007; Wolfe and Samelson 2007; Kuptsov and

Parlitz 2012). Schubert and Lucarini (2015, 2016) first applied

this method to a two-layer quasigeostrophic barotropic–

baroclinic channel model employing the calculated CLVs to

characterize the stability of, and transitions between, respec-

tive zonal and blocked states and to explain the variance of the

modeled atmospheric dynamics. They found that the unstable

CLVs showed enhanced instability during blocked events,

where the contributing process to the enhancement of insta-

bility depended on the baroclinicity of the background flow.

In a move toward using more realistic representations of the

dynamics, recent studies have employed finite-time dynamical

properties (such as finite-time growth rates of the CLVs or the

instantaneous attractor dimension) to characterize the NAO

behavior. The increasing finite-time instability during blocking

events associated with the negative NAO phase was seen in a

three-layer quasigeostrophic model in spherical geometry

(Lucarini and Gritsun 2020), as well as in reanalysis data

(Faranda et al. 2017). This apparent contradiction between the

greater than average instability and the expected enhanced

predictability during a persistent blocked flowwas suggested to

be related to the difficulty in predicting block onset and decay;

the formation and decay of a block was found to be associated

with the largest increases in the dimension of the unstable

manifold (Lucarini and Gritsun 2020).

An additional way to study the dynamics of the observed

NAO is through the analysis of data-driven models that iden-

tify the teleconnection in high dimensional raw observed or

simulated data. Starting from the premise that atmospheric

flows exhibit a set of weather regimes (Legras and Ghil 1985;

Vautard 1990; Kimoto and Ghil 1993a), clustering methods

(e.g., Mo and Ghil 1988; Stone 1989; Molteni et al. 1990;

Hannachi and Legras 1995; Kidson 2000; Renwick 2005;

Straus et al. 2007; Stan and Straus 2007; Fereday et al. 2008;

Huth et al. 2008; Pohl and Fauchereau 2012; Neal et al. 2016)

generally detect patterns associated with recurrent behavior

or slow evolution of the system with respect to a reference

time scale. When applied to the circulation over the North

Atlantic (see, e.g., Vautard 1990; Cheng and Wallace 1993;

Michelangeli et al. 1995; Smyth et al. 1999; Cassou et al. 2005;

Cassou 2008), a small number of regimes are identified and

may be associated with the NAO as well as preferred blocking

patterns. On the other hand, the simplest clustering-based

methods do not explicitly incorporate dynamical information

(Harries and O’Kane 2020), which must be studied using var-

ious post hoc approaches (Vautard 1990; Kimoto and Ghil

1993b; Crommelin 2004; Fereday 2017).

Latent variable models, such as hidden Markov models

(HMMs) and other state-space models (e.g., Majda et al. 2006;

Franzke et al. 2008, 2011), attempt to better account for these

important dynamical aspects. HMM studies of the North

Atlantic circulation have been shown to identify persistent

hidden regimes corresponding to the NAO and east Atlantic

pattern (Franzke et al. 2011) and used to study signals relating

to regime transitions (Franzke et al. 2011; Tantet et al. 2015).

However, the assumption that the flow is well described by a

time-homogeneous Markov chain need not be satisfied in

practice, nor are the extracted regimes necessarily metastable.

One such approach that has recently been found to be ef-

fective in extractingmetastable regimes states makes use of the

so-called finite element clustering with bounded variation

(FEM-BV) framework (Horenko 2009, 2010a,b; Metzner et al.

2012). As in an HMM, the FEM-BV method presumes the

existence of a finite number of hidden states, each having time-

independent properties, and a switching process describing

transitions between the states. This switching process is not

required to be governed by aMarkov chain; instead, the model

is regularized to enforce some level of persistent residence in

the states. The system is thus described in terms of a set of

locally stationary states, e.g., in the FEM-BV-VARmethod, by

locally stationary linear vector autoregressive (VAR) pro-

cesses. In applications to themidlatitude troposphere (Franzke

et al. 2009; O’Kane et al. 2013b; Franzke et al. 2015; Risbey

et al. 2015; O’Kane et al. 2016, 2017; Falkena et al. 2020) and

large-scale ocean circulation (O’Kane et al. 2013a), the FEM-

BV-VAR method and its variants have been found to identify

persistent states that can be identified as large-scale coherent

structures. Additional applications of the FEM-BV-VAR

method include studies of the atmospheric boundary layer

(Vercauteren and Klein 2015; Vercauteren et al. 2016).

The above studies have demonstrated that the FEM-BV-

VAR method extracts reasonable metastable states. The as-

sociated switching sequences, on the other hand, have received

less attention, with most focus given to investigating multi-

year trends in the occurrence of states (O’Kane et al. 2016,

and references therein) and their association with extremes

(Risbey et al. 2018). At shorter time scales, it might be hoped

that the state transition sequence captures at least some aspects
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of the dynamics associated with regime transitions, in spite of

the severe dimension reduction involved in formulating the

model. More generally, it is not clear whether dynamical sig-

nals such as the increase in finite-time dimension during

blocking events that is seen in both theoretical models and

the data are also captured by the widely used data-driven

models. In this study, we investigate these questions in the

context of a model for the NAO derived from an FEM-BV-

VAR cluster analysis. When applied to the atmospheric

circulation in the Atlantic sector, the FEM-BV-VAR

method yields a set of states consistent with differing pha-

ses of the NAO. By treating the clustering as a discrete linear

delay system, it is possible to directly compute the Lyapunov

spectrum and CLVs of the model, as well as dynamical in-

dicators of transitions such as increased finite-time instabil-

ity (Norwood et al. 2013) and alignment of CLVs (Beims and

Gallas 2016; Sharafi et al. 2017; Kuptsov and Kuznetsov

2018). The relationship between these dynamical quantities

and the particular regime transitions can then be compared

to assess whether the reduced-order model exhibits non-

trivial dynamics.

In this study we analyze the optimal model for the NAO

resulting from applying the FEM-BV-VAR method to atmo-

spheric reanalysis data. The remainder of this article is struc-

tured as follows. In section 2 the data and clustering methods

used to derive a reduced-order model for circulation regimes

are described. We introduce the general properties of the op-

timal model and validate it against an observed NAO index. In

section 3 we define the corresponding discrete time dynamical

system through construction of a delay-embedded linear map

that corresponds to the time-dependent dynamics of the opti-

malmodel from the fit. Through this novel interpretation of the

system we calculate the corresponding CLVs and their prop-

erties as they evolve in time. We focus on the characterization

of persistent states and analyze how the dynamical properties

relate to the transitioning behavior of the model, both on short

and long time scales. Finally, in section 4 we summarize our

findings.

2. Identifying North Atlantic circulation regimes

a. Data

We examine the NH midtropospheric circulation in terms

of daily mean 500 hPa geopotential height (Zg500hPa) fields

obtained from theNational Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP–NCAR)

Reanalysis 1 (NNR1; Kalnay et al. 1996).

NNR1 spans 1948 to the present with a T62 resolution on 28

vertical levels and is constrained by both surface and atmo-

spheric observational data. TheZg500hPa data are provided on a

global 2.58 3 2.58 latitude–longitude grid, from which we

compute daily height anomalies, Z0
g500hPa, by subtracting the

daily climatological mean determined from the 1 January 1979

to 31 December 2018 reference period. An initial dimension

reduction is carried out by performing an empirical orthogonal

function (EOF) analysis of the latitude-weighted daily height

anomalies in the North Atlantic sector (208–908N, 1108W–08)

between 1 January 1979 and 31 December 2018, including all

seasons. This preprocessing step is required to reduce the

overall dimensionality of the data in order to render the sub-

sequent clustering analysis, now applied to the retained prin-

cipal components (PCs) rather than the full gridded fields,

tractable. Otherwise, no further use is made of the corre-

sponding spatial patterns in defining the extracted regimes.

The number of PCs retained should be large enough to

capture the relevant dynamics driving the processes of in-

terest, while at the same time not being so large that the

clustering problem is ill-posed. In carrying out sensitivity

analyses with respect to the number of retained PCs, it was

found that d 5 10 PCs was insufficient to capture the me-

ridionally oriented dipolar structures associated with the

NAO, with the reduced-order model states instead tending

to consist of predominantly zonally oriented wave trains, as

previously observed in O’Kane et al. (2017). For d 5 20

PCs, on the other hand, we find that the expected structures

are found in the reduced-order model, as discussed below.

In the following we therefore choose to keep the leading

d 5 20 PCs, accounting for approximately 91% of the total

variance; the corresponding EOFs are shown in appendix

A. Additionally, to assess the qualitative behavior of the

regimes identified by the clustering analysis, we make use of

the daily NAO index1 provided by the National Oceanic

and Atmospheric Administration Climate Prediction

Center (NOAA CPC) (Barnston and Livezey 1987).

b. FEM-BV-VAR clustering

Given the daily time series of d5 20 PCs between 1 January

1979 and 31 December 2018, corresponding to a sample of

length T5 14 610 days, we next extract a set of persistent states

by applying the FEM-BV-VAR clustering method (Horenko

2010b; Metzner et al. 2012).

In this approach, the behavior of the system is taken to be

described by an underlying model determined by a set of

generally time-dependent parameters Q(t). Specifically, in the

FEM-BV-VAR case, the stochastic model is taken to be of

the form

x
t
5m(t)1 �

m

t51

A
t
(t)x

t2t
1 e

t
, (1)

where Q(t) 5 (m(t), A1(t), . . . , Am(t), S(t)) is a vector of time-

dependent model parameters for an order m linear autore-

gressive model with mean vectorm(t) and random noise etwith

time-varying covariance matrix S(t). To arrive at a well-posed

problem for estimating the model parameters, it is then as-

sumed that the full, nonstationary system can be well approx-

imated in terms of transitions between a finite set of K states.

These states are assumed to be individually stationary and

determined by a set of fixed, time-independent parameters Qi,

i5 1, . . . ,K; i.e., the system is assumed to be locally stationary

(Metzner et al. 2012). The original time dependence of the

1 https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/

nao.shtml.
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model parameters then arises via the switching of the system

between states. The time scales associated with the individual

states and with the underlying switching process may in

general differ, making the method suitable for analyz-

ing the multiscale dynamics typical of the atmospheric

circulation. The resulting model is interpreted as repre-

senting the observed fields in terms of a set of recurrent

circulation regimes that govern the local, short-term

(e.g., day-to-day) variability, which the system repeat-

edly transitions between.

To determine both an assignment of individual days to a

state as well as the parameters Qi characterizing each state, we

minimize a loss function of the form

L(Q,G)5
1

T
�
T

t51
�
K

i51

[g
t
]
i
‘
i
(x

t
,Q

i
), (2)

where xt 2 Rd denotes the vector of PCs at time t,Q5 (Q1, . . . ,

QK) denotes the combined set of parameters for all states, and

the functions ‘i(xt, Qi) are appropriately chosen loss functions

for each of the K states quantifying the level of fit under that

state for given Qi, e.g., the squared error or negative log-

likelihood. The sequence of state assignments is encoded by

the state affiliationsgt 2 RK . At a given time t, these affiliations

are required to satisfy

�
K

i51

[g
t
]
i
5 1, [g

t
]
i
$ 0, "i5 1, . . . ,K , (3)

such that the loss function is a convex combination of the

individual losses and the complete set of affiliations GT 5
[gT

1 , . . . , g
T
T ] 2 RK3T may be interpreted as providing a soft

clustering of the data into the K states. The observed per-

sistence of large-scale coherent features in the midlatitude

troposphere implies that the switching process described

by the affiliations G should also exhibit some degree of

persistence, yielding regimes that are metastable. To en-

force this behavior, the affiliation sequence is required to

FIG. 1. Mean test set reconstruction error as a function of typical state length p (main

figure), and zoom to the region containing the model with minimal mean reconstruction

RMSE (inset). Note that p5 0 corresponds to no persistence constraint imposed (i.e., CT /
‘). Error bars show the approximate one standard error ranges, and for clarity models with

the sameVARorderm are offset in the x direction. Theminimalmean reconstruction RMSE

occurs for K 5 3, m 5 3 days, and p 5 5 days.
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satisfy a constraint on the total variation norm of the se-

quence,2 of the form

�
T21

t51

j[g
t11

]
i
2 [g

t
]
i
j#C

T
, "i5 1, . . . ,K , (4)

for some constant CT. Each term in this sum is nonzero only if

the affiliations differ between times t and t 1 1, corresponding

to a transition between states, so that this constraint imposes an

upper bound on the total number of transitions between states.

It is more convenient to express this constraint in terms of a

‘‘typical’’ state length p $ 0 that is independent of the time

series length, in terms of which we define CT as

C
T
5
T

p
2 1: (5)

The form of the loss functions ‘i(xt, Qi) is governed by the

assumed dynamics within the hidden states. For the FEM-BV-

VAR clustering method, the time evolution of the system within a

given state is described by Eq. (1) where Q(t) is replaced by

Qi 5 [m(i), A
(i)
1 , . . . , A(i)

m , S
(i)
] for each state i 2 {1, . . . , K}. For

simplicity, we assume the same order m for all K states;

moreover, we assume that some numbermmax $m of samples

are held out from the start of the time series to provide the re-

quired initial values, leaving T2mmax samples to be modeled. A

particular state is then fully specifiedby theparametersQi, and the

corresponding loss function is chosen to be the squared residual

‘
i
(x

t
,Q

i
)5

����xt 2m(i) 2 �
m

t51

A(i)
t x

t2t

����
2

. (6)

A numerical method for finding theminimumof the resulting loss

function with respect to Q and G is summarized in appendix B.

The number of clusters K, VAR orderm, and state length p

constitute the set of hyperparameters that must be chosen

beforehand when applying the above procedure. To determine

reasonable choices for these hyperparameters, we perform a

grid search over all combinations ofK 2 {1, 2, 3},m 2 {0, 1, 2, 3,

4, 5} days (requiring mmax 5 5 days), and p 2 {0, 5, 10, . . . , 55,

60} days. To compare models with different hyperparameter

settings, we use a rolling origin cross-validation procedure

(described in appendix B) to generate estimates of the out-of-

sample reconstruction root-mean-square error (RMSE) for

each combination of hyperparameters. Lower values for this

measure indicate a reasonable compromise between fitting the

data well without overfitting to the training data, and so we

select as our optimal model the set of hyperparameters that

minimize this metric. The results of this cross-validation pro-

cedure, usingNfold5 10 cross-validation folds, are summarized

FIG. 2. Composites of Z0
g500hPa in each of the FEM-BV-VAR states for the model with K 5 3, m 5 3 days, and p 5 5 days. Shading

indicates regions for which the composite value lies outside of the interval containing 100(12 a)5 99% of 1000 bootstrap samples drawn

assuming the number of samples assigned to each state is fixed.

TABLE 1. Summary statistics for the run lengths (in days) of

consecutive days assigned to each state for the model with K 5 3,

m 5 3 days, and p 5 5 days.

DJF MAM JJA SON All

AR Min 1 1 1 1 1

Mean 2.8 2.4 2.5 2.9 2.7

Max 21 13 15 18 21

NAO2 Min 1 1 1 1 1

Mean 2.5 4.3 9.3 3.2 4.7

Max 21 38 63 29 63

NAO1 Min 1 1 1 1 1

Mean 3.3 2.4 2.2 2.4 2.7

Max 26 11 10 12 26

2 In the usual formulation of FEM-BV clustering, it is further

assumed that the affiliations can be expressed in terms of a set of

compactly supported basis functions. When each basis function is

nonzero over more than one time step, this essentially imposes a

minimum length of time thatmust be spent in a given state.We choose

triangular basis functions that are nonvanishing at only a single time

point, allowing state transitions between adjacent time points.
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in Fig. 1. The minimal mean test set reconstruction RMSE is

found forK5 3 states,m5 3 days, and a typical state length of

p5 5 days. The reconstruction error is, however, rather similar

for K 5 2 or 3, m $ 3 days, and p # 20 days, indicating rela-

tively low sensitivity to the choice of persistence so long as the

state length is sufficiently short. We note that a typical state

length of;5 days is consistent with previous results identifying

Euro-Atlantic regimes with an FEM-BV variant of k-means

clustering (Falkena et al. 2020) in which an optimal value of

6.8 days is found based on information criteria applied with a

fixed number of K 5 4 clusters.

c. Properties of the optimal model

Given thefitted affiliation sequence corresponding to the selected

model, we assign each time to a state it 2 {1, 2, 3} according to

i
t
5 argmax

j

[g
t
]
j
. (7)

We do not place a threshold on the number of consecutive days

used to define a state, as some level of persistence is already

built in to the clustering model. Composites of the height

anomalies assigned to each state in this way are shown in Fig. 2

for the optimal model with K 5 3 states, memory m 5 3 days,

and typical state length p 5 5 days. Two states strongly re-

semble the positive and negative phases of the NAO (Barnston

and Livezey 1987), denoted in Fig. 2 by NAO1 and NAO2,

respectively. The remaining state is somewhat similar to the

east Atlantic pattern or Atlantic Ridge (AR) pattern (Straus

et al. 2017), representing blocking activity in the mid-Atlantic

and which has previously been linked to surface temperature

extremes in western Europe (Plaut and Simmonet 2001; Cassou

et al. 2005). Tables 1 and 2 summarize the temporal character-

istics of the states in terms of the number of consecutive days

spent resident within each state and the frequency of particular

transitions. The model has much longer maximum residency

lengths in the NAO2 state than in the NAO1 or the AR states,

and generally remains in the NAO2 state for longer than either

of the other two states. For all three states, theminimum length of

time spent in the state is 1 day, indicating the presence of periods

of rapid switching between states. In particular, this implies that

FIG. 3. Model NAO2 state residency percentage compared to residency percent for oc-

currences of a negative CPC NAO index value using (top) a sliding window of 1 year and

(bottom) yearly average with LOWESS smoothing. Note that the colors in the bottom panel

correspond to the legend in the top panel.

TABLE 2. Counts of number of transitions and the total number of days assigned to each state, stratified by season. Transitions are

assigned to the season corresponding to the last day in the initial state. Note thatmmax 5 5 days are held out as presample values from the

full record of T 5 14 610 days, yielding a total fit period of 14 605 days.

DJF MAM JJA SON All

Transitions AR to NAO2 136 213 168 234 751

AR to NAO1 310 147 44 209 710

NAO2 to AR 118 197 176 219 710

NAO2 to NAO1 177 214 131 228 750

NAO1 to AR 327 153 42 228 750

NAO1 to NAO2 163 218 129 200 710

Any 1232 1142 690 1318 4381

Days assigned to AR 1229 859 539 1274 3901

NAO2 725 1974 2771 1326 6796

NAO1 1651 847 370 1040 3908

Any 3605 3680 3680 3640 14 605
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fast dynamics, with a time scale of a day or so, are present in the

model in addition to the persistent states. The number of con-

secutive days spent within a state exhibits a seasonal cycle, with

long runs of NAO2 states occurring during the boreal summer

(JJA) and more equal state lengths during DJF. This is also ev-

ident in Table 2, which shows a predominance of NAO2 states

during JJA and fewer state transitions overall. The NAO2 state

occurs least frequently during DJF, when most days are assigned

to the AR and NAO1 states; the former state is associated in all

seasons with a weakening of the midlatitude zonal flow and in

particular with lower maxima in the zonal mean low-level west-

erlies over the Atlantic, which are more typical of the JJA flow

(not shown). Transitioning between states occurs more frequently

outside of boreal summer. At the level of particular state transi-

tions, the number of transitions out of the NAO2 state is essen-

tially unchanged between DJF and JJA. In JJA, transitions occur

preferentially to and from the NAO2 state, while in DJF a larger

proportion of transitions are between the AR and NAO1 states.

The state assignments produced by the FEM-BV-VAR fit

provide a discrete indexmeasuring the expressionof the associated

mode on each day. To verify that the occurrence of the NAO-like

states shown in Fig. 2 reflects the observed behavior of the NAO,

we compare the model affiliation sequence to the NOAA CPC

NAO index. As a measure of similarity, we compare the per-

centage of days assigned to theNAO2 statewith the percentage of

days that the CPC index is negative, defining an NAO2 residency

percent for both the model and the continuous index. To focus on

longer-term variability, we compare either the result of computing

the residency percent over a 1-yr sliding window, i.e.,

Rmodel
SW (t)5 �

t

t05t2365

I(i
t0 5 2)

365
, (8)

RCPC
SW (t)5 �

t

t05t2365

I[CPC index(t0), 0]

365
,

where I(x) is an indicator function equal to 1 if x is true

and 0 otherwise, or by applying a LOWESS smoothing

(Cleveland 1979) to the fraction of NAO2 days in each year.

The results of this comparison are shown in Fig. 3. There is a

high correlation between the percentage of days assigned to

the NAO2 state in the model and the percentage of days

with a negative NAO index (r ’ 0.74 between the sliding

window time series and r ’ 0.8 for the series of annual

counts), suggesting that occurrences of the FEM-BV-VAR

NAO2 state do broadly correspond to conditions charac-

teristic of the negative phase of the NAO. Comparable re-

sults were found by Risbey et al. (2015).

3. Dynamical analysis

Based on the above analysis we have some confidence that

the optimal FEM-BV-VAR model extracts a set of meta-

stable states that can be related to coherent features in the

FIG. 4. Statistics of the finite-time growth rates for the leading 10 CLVs computed using

varying push forward steps (M 5 3, 10, 30, 50) compared to their asymptotic growth rates.

TABLE 3. Probabilities associated with the occurrence of positive

FTEs for short and long push forward steps. Note that the total

number of days for which the CLVs are calculated depends on the

push forward step (TM 5 14 605 2 2M days).

M 5 3 M 5 10 M 5 30 M 5 50

P(dimKY . 0) AR 0.392 0.004 0.002 0.003

NAO2 0.992 0.002 0.001 0

NAO1 0.624 0.007 0.001 0.001

Any 0.733 0.004 0.001 0.001
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North Atlantic. We next assess whether a simplified dynam-

ical model derived from this fit can be used to study the dy-

namics associated with regime transitions between those

states. To do so, the optimal FEM-BV-VAR fit with K 5 3,

m 5 3 days, and p 5 5 days can be naturally interpreted as a

discrete time system based on Eq. (1) in which the time

evolution is given by

x
t11

5

8>>>><
>>>>:

m(1) 1A
(1)
1 x

t
1A

(1)
2 x

t21
1A

(1)
3 x

t22
, for i

t11
5 1,

m(2) 1A
(2)
1 x

t
1A

(2)
2 x

t21
1A

(2)
3 x

t22
, for i

t11
5 2,

m(3) 1A
(3)
1 x

t
1A

(3)
2 x

t21
1A

(3)
3 x

t22
, for i

t11
5 3,

(9)

where it is the fitted state assignment given by Eq. (7). The

cluster means m(1), m(2), and m(3) and parameter matrices A
(k)
i

for i, k 2 {1, 2, 3} are constant. Note that, by constructing the

model in such a way, the dynamics will change in the time step

prior to a transition in the affiliation sequence.

We are interested in whether the dynamical properties

of the resulting model from the FEM-BV-VAR framework

can show any insight on the mechanisms characterizing

transitions between states and whether the reduced dynamical

model exhibits properties that are physically plausible. In

particular, we would like to see if the increased finite-time in-

stability during blocking events (Schubert and Lucarini 2015,

2016; Faranda et al. 2017; Lucarini and Gritsun 2020) and loss

of hyperbolicity in transitions between zonal and blocked

states (Lucarini and Gritsun 2020) manifest at all in the FEM-

BV-VAR reduced model defined by Eq. (9).

To study the dynamics we use the resulting affiliation se-

quences and parameter matrices from the optimal FEM-BV-

VAR model to construct the following system:

2
64
x
t11

x
t

x
t21

3
755

2
6664
A

(it11)
1 A

(it11)
2 A

(it11)
3

I 0 0

0 I 0

3
7775

2
64

x
t

x
t21

x
t22

3
75 . (10)

Equation (10) describes a discrete linear mapping system

governing the tangent dynamics of Eq. (9), with a finite

number of transitions between states defined a priori by

the switching sequence Eq. (7). As we retain the leading

d 5 20 PCs, the system Eq. (10) has a 60-dimensional state

space. The matrices I are 20-dimensional identity matrices,

and 0 denotes the 20 3 20 zero matrix. Through Eq. (10)

we can define the linear propagator A(t) of the tangent

dynamics:

A(t):5

2
6664
A

(it11)
1 A

(it11)
2 A

(it11)
3

I 0 0

0 I 0

3
7775 . (11)

The linear propagator can be used to construct the matrix

cocycle A(t, t), that is, the forward and backward mapping of

solutions under the tangent dynamics. The variable t repre-

sents the window over which the cocycle is defined starting

from time t. In other words, A(t, t) is defined as compositions

of the linear propagator in time:

A(t, t)5A(t1 t) . . . A(t1 1)A(t) . (12)

Equation (12) expresses the cocycle for t . 1; however, the

construction is similar for t # 1.

The matrix cocycle is an integral part of the multiplicative

ergodic theorem (Oseledets 1968) which defines the asymp-

totic growth and decay rates, or Lyapunov exponents, of a

dynamical system. The theorem states that, under suitable as-

sumptions, for a cocycle operating on a phase space of di-

mension N, there exists a unique set of subspaces {Fi(t)} (i 2
1, . . . ,m, wherem#N) which are covariant under the tangent

dynamics, and all vectors v which lie in the subspace have the

same asymptotic growth or decay rate. The Lyapunov expo-

nent li of subspace Fi is then defined by

l
i
5 lim

t/‘

1

t
logkA(t, t)vk iff v 2 F

i
(t)\F

i11
(t) . (13)

Each subspace Fi is spanned by a set of vectors {fi(t)} called

covariant Lyapunov vectors which grow with rate li forward

and2li backward in time under the tangent linear propagator

(Pazó et al. 2008). Unlike forward and backward Lyapunov

TABLE 4. Average dimKY(t) measure by state. The first column is

averaged over all days associated with each state. The second

column averages over the associated days using a 5-day filter,

namely, only taking the values from time instanceswhere the 2 days

before and the 2 days after are also associated with the same state.

No filter 5-day filter

AR 0.84 0

NAO2 2.55 2.98

NAO1 1.16 1.28

FIG. 5. Physical projections of unstable MSVs (computed for

M5 3) in persistent states (i.e., having resided in the same state at

least 2 days prior and 2 days following). We take the leading

20 directions of growth in the MSV and project onto the corre-

sponding 20 EOFs (Fig. A1). All projections use the same color

bar scale. As the MSVs and EOFs are unit normalized and the

EOFs are orthogonal, the projections shown here are also unit

normalized.
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vectors, the CLVs are norm independent, give the local di-

rections of growth and decay in tangent space, and generally

are nonorthogonal. While forward and backward Lyapunov

vectors characterize the global geometry, CLVs are useful for

understanding the local geometry of the tangent space in a

dynamical system.

We calculate the CLVs using algorithm 2.2 from Froyland

et al. (2013), which is also summarized in Quinn et al.

(2020). The calculation is based on the proof of the exten-

sion of the multiplicative ergodic theorem to noninvertible

linear propagators (Froyland et al. 2010, theorem 4.1). The

ith eigenspace of A(t2M,M)*A(t2M, M) (where the star

denotes the adjoint) pushed forward by the matrix cocycle

A(t2M, M) is equal to Fi(t) when M / ‘. The right sin-

gular vectors of A(t2M, M) are equivalent to the eigen-

vectors of A(t2M,M)*A(t2M, M). The general idea then

to compute the CLV at time t is that one calculates the

ith right singular vector hi for the cocycle A(t2M, M) and

then pushes forward hi by M time steps using the tangent

linear propagator. We therefore refer to M as the push for-

ward step. To prevent the collapse of subleading vectors onto

the leading vector, for each i . 1 we take an orthogonal pro-

jection onto the right singular vectors hj of A(t2M1 nk, M)

where j 5 1, . . . , i 2 1. Here k 5 1, . . . , M/n and n is the time

step for the orthogonal projection. Due to the rapid switching

between states observed at times, we use n 5 1 day. This will

approximate fi(t) only if the push forward step M is suffi-

ciently large. IfM is small, we refer to the resulting vector as a

‘‘mixed singular vector’’ (MSV). The condition ‘‘sufficiently

large’’ is not known a priori for the system, so we analyze the

following range of push forward steps: M 5 3, 10, 30, and

50 days.

In the following sections we investigate the growth rates and

alignment of the leading CLVs, and discuss howwe use these to

differentiate between MSVs and CLVs. We compare the be-

havior for the different push forward steps and analyze how

changes in either property relates to transitions between

the states.

a. Finite-time exponents

The first property of the vectors that we analyze is their

finite-time growth rates, i.e., finite-time exponents (FTEs).

Due to the rapid transitioning between states, we consider the

growth rates over the course of one day.We define the FTEs as

inWolfe and Samelson (2007), here Eq. (14a). To calculate the

FTEs we use a forward difference approximation to the de-

rivative, which in our case simplifies to applying the linear

propagator to the vector calculated for a given day and taking

the difference of the L2 norms:

L
i
(t)5

1

kf
i
(t)k

d

dt
kf

i
(t)k (14a)

5 kA(t, 0)f
i
(t)k2 kf

i
(t)k . (14b)

Note thatfi(t)5 1 for the vectors computed using the Froyland

et al. (2013) algorithm and therefore the scaling factor is

omitted from Eq. (14b).

To differentiate between MSVs and CLVs, we compare the

FTEs computed using Eq. (14b) to the approximate asymptotic

FIG. 6. Physical projections of unstable MSVs (computed for M 5 3) at transitions associated with persistent states (i.e., residency

greater than 4 days in the state before and after the transition). The labels for each transition correspond to those discussed in Table 5. All

projections use the same color bar scale. As theMSVs and EOFs are unit normalized and the EOFs are orthogonal, the projections shown

here are also unit normalized.

TABLE 5. Characteristics of unstable patterns associated with

transitions to and from persistent states (shown in Fig. 6). The day

column refers to the day in the end state after the transition.

Pattern Transition Day CLV FTE

A NAO2 to AR 1 1 0.029

NAO2 to NAO1 1 1 0.058

NAO2 to NAO1 2 2 0.012

B NAO2 to NAO1 1 2 0.023

C NAO1 to AR 2 2 0.017

D NAO2 to NAO1 2 1 0.031

NAO1 to NAO2 1 1 0.027
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Lyapunov exponents computed from the QR decomposition

method (appendix C). If the vector is a CLV then the averages

of the FTEs over many time intervals should converge to the

asymptotic Lyapunov exponents (Kuptsov and Parlitz 2012).

For the computation of the asymptotic growth rates we use

the full matrix cocycle over the period of the FEM-BV-VAR

fit and an orthonormalization time step of 1 day. We find

that asymptotically the model is stable and there is little

FIG. 7. Transient behavior of the leading CLV alignments (u1,2, u2,3, and u1,3), growth

rates (L1, L2, and L3), and finite-time dimension for two different but representative time

segments using push forward M 5 3. We also plot the state indicators to compare to

transitions.
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evidence of a spectral gap in the leading exponents. Figure 4

plots the asymptotic exponents compared to the statistics of the

FTEs calculated for each push forward step. For M 5 3

the averages of the leading FTEs do not match well with the

approximate asymptotic values. We therefore label the vectors

computed for M 5 3 as MSVs. It can be seen that as the push

forward step is increased, the mean FTEs approach the as-

ymptotic values and the standard deviation decreases for

the leading growth rates. Since the finite-time and asymptotic

growth rates are computed using different methods, this

agreement provides confidence in the accuracy of the CLV

calculation for M 5 10, 30, and 50.

To quantify the total transient growth at each time step

in an asymptotically stable system, we use a finite-time

variant of the Kaplan–Yorke dimension as a measure in-

troduced in Quinn et al. (2020). As a first step we reorder

the FTEs as

max(L
i
(t)). � � � .min(L

i
(t))5 ~L

1
(t). � � � . ~L

N
(t) . (15)

The finite-time dimension measure can be computed as

dim
KY

(t)5 j1
�
j

i51

~L
i
(t)

j~L
j11

(t)j
, (16)

where j 2 {1, . . . , N} is the largest index which satisfies the

conditions

�
j

i51

~L
i
(t)$ 0 and �

j11

i51

~L
i
(t), 0. (17)

It is important to note that the sums of the FTEs do not relate

to typical expansion and contraction of volumes in tangent

space as the MSVs and CLVs are not necessarily orthogonal

(Kuptsov and Kuznetsov 2018). The individual FTEs give

the specific expansion and contraction of the tangent vectors,

and the finite-time dimension measure Eq. (16) defined as

the local Kaplan–Yorke dimension is being used here as an

approximate measure of the number of unstable and near-

neutral FTEs.

We next compare the probability of the occurrence of a

positive dimension across all push forward steps (Table 3).

The short push forward of M 5 3 shows the most unstable

behavior, with 73% of time instances associated with posi-

tive FTEs. The largest probability of occurrence is in the

negative NAO state with 99% of days assigned to that state

experiencing a positive FTE. This is followed by the positive

NAO state at 62% and then the Atlantic Ridge at 39%. The

probabilities of observing a positive FTE starkly drops for

the longer push forwards M 5 10, 30, and 50 with all at less

than 1% regardless of state. This suggests that the instabilities

within this model are associated with fast-scale dynamics that

are filtered out when using longer push forward lengths. On

short time scales the model is unstable the majority of the time,

while on long time scales the stable dynamics of the model

dominate.

For the M 5 3 case exhibiting the most unstable behavior,

we are interested in characterizing stability based on the finite-

time dimension, dimKY(t), where the overbar denotes a con-

ditional average over residency in each state (shown in Table 4).

We see that theNAO2 state shows themost unstable behavior,

followed by the NAO1 and then the AR state. To filter out

periods of rapid transitioning, we also consider the average

dimension of persistent states. Here we use a 5-day filter in

which we include in the average only days where themodel was

in the state both 2 days before and 2 days following the day on

which the dimension was calculated. When only persistent

events are considered, the AR state experiences no unstable

behavior, while the average dimension has increased slightly

for both NAO phases. This is in agreement with previous

studies that show blocking events (typically associated with a

negative NAO phase) tend to have higher instantaneous in-

stability than times of strong zonal flow (typically associated

with the positive NAO phase) (Schubert and Lucarini 2016;

Faranda et al. 2016, 2017; Lucarini and Gritsun 2020).

FIG. 8. Box-and-whisker plots of u1,2, u2,3, and u1,3 around each transition with day 0 in-

dicating the last day in the previous state and day 1 the first day in the following state.

Diamonds indicate outlier values. The transitions have been filtered to only include those

associated with residencies longer than 4 days both before and after the transition.
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Since the FTEs correspond to the growth and decay rates of

particular MSVs, we can identify the modes which experience

finite-time growth in each persistent state. Given that the av-

erage dimKY(t) measure is 0 in the AR state we can conclude

there is no growing mode during long residencies in that state.

For both the NAO2 and the NAO1 state there is only one

unstable mode that contributes to the positive dimKY(t) mea-

sure. To visualize what these modes look like in physical space,

we take a projection of the MSVs onto the corresponding

EOFs (appendix A). The resulting patterns are shown in Fig. 5.

For theNAO2 state the instability arises inMSV 1 and projects

as the NAO pattern itself, with a larger magnitude anomaly to

the southeast of Greenland and an opposite, smaller magni-

tude anomaly south of that stretching from the east coast of

North America to Spain. We see a similar pattern emerging in

MSV 2 for the NAO1 state, with the northern anomaly

stretching west into the northern parts of Canada and having a

smaller magnitude.

We are also interested in the unstable MSVs around tran-

sitions and whether or not the patterns are distinct from those

in Fig. 5. We first identify all transitions associated with per-

sistent states, i.e., residencies of greater than 4 days both before

and after the transition. For this residency length and a push

forward of M 5 3 days, each of the 6 distinct transitions will

have the same progression of dynamics each time the model

experiences that particular transition. We show these 6 pro-

gressions of MSV patterns, FTEs, and alignment (introduced

in the next section) in appendix D. While these transitions

between persistent states account for some 921 days with un-

stable exponents over the full fit period, we find that this cor-

responds to only a few dozen distinct, recurring unstable

patterns. By further classifying the observed patterns using

the pattern correlation between MSVs, we determine four

distinct modes that experience finite-time growth around

the time of a transition (shown in Fig. 6). The main feature of

all of these unstable modes compared to the unstable modes

FIG. 9. Collective trajectories of u1,2, u2,3, and u1,3 separated by specific transition. The

transitions have been filtered as in Fig. 8.
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within the persistent states is more zonally oriented anomalous

pressure gradients. Table 5 lists the transitions in which each

pattern occurs, the day on which it occurs, the MSV number

and associated FTE value. Patterns A and B appear only in

transitions from the NAO2 state, pattern C only appears in

transitions from the NAO1 to the AR state, and pattern D

appears in both NAO2 to NAO1 and NAO1 to NAO2

transitions. In terms of the MSVs in which the unstable

patterns are expressed, patterns B and C are solely associ-

ated with MSV 2, pattern D is solely associated with MSV 1,

and pattern A occurs in both MSV 1 and 2. All unstable

patterns occur either on the first or second day the model is in

the end state of the transition. We note here that none of

these patterns occur in transitions from the AR state. In

those two cases the transition is marked by the emergence of

the unstable persistent patterns in Fig. 5 in either MSV 1 or 2

as dictated by the end state. The MSV patterns associated

with transitions to and from the respective NAO states are

associated with either the formation or decay of the merid-

ionally oriented structures characteristic of the respective

NAO phases.

b. Alignment of MSVs and CLVs

While the FTEs give the relative growth and decay rates of

tangent vectors to the subspaces, the angle between the

vectors (otherwise known as alignment) gives an idea of

transversality of the subspaces (Kuptsov and Kuznetsov

2018). High alignment of CLVs, or a vanishing angle be-

tween subspaces, has been suggested to be an indicator of

transitions and catastrophic events (Beims and Gallas 2016;

FIG. 10. (a) Alignment of the leading two CLVs for different push forward steps. (top to bottom)M5 3,M5 10,M5 30, andM5 50.

(b) Power spectral density of the corresponding alignment time series. Red dots (crosses) indicate peaks that are two (three) standard

deviations away from neighboring measures.

FIG. 11. Alignment of the leading two CLVs for push forward step M 5 50 compared to

transition index calculated from Eq. (19).
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Sharafi et al. 2017). This would also agree with the loss of

hyperbolicity when transitioning between unstable periodic

orbits with differing numbers of unstable dimensions, as was

found to be the case for zonal versus blocked states in Lucarini

and Gritsun (2020). We measure the alignment of two vectors

through ui,j 5 jcos(Qi,j)j where Qi,j is the angle between the

ith and jth vector. Values of ui,j close to one imply high align-

ment of the MSVs or CLVs, while values close to zero imply

orthogonality. Here we calculate the alignment using the

following:

u
i,j
(t)5

jf
i
(t) � f

j
(t)j

kf
i
(t)k � kf

j
(t)k . (18)

We first consider the alignment of the MSVs calculated for the

short push forward step (M5 3). Figure 7 shows the alignment

of the leading MSVs (u1,2, u2,3, and u1,3) for two different time

segments; we also plot the leading growth rates (L1, L2, and

L3), dimension, and state indicators for comparison. We in-

deed see a spike in the alignment values around the time of

transitions, with the most prominent spikes typically in u1,2
and u2,3. The differing behavior of dimension by state dis-

cussed in section 3a can be seen clearly in the two figures.

Figure 7a shows an example segment which has long resi-

dencies in the NAO2 state. We see that for long enough

residencies the dimension measure remains around 3 with the

driving instability coming from the first MSV. On the con-

trary, residencies longer than 2 days in the AR state show the

dimension measure quickly dropping to zero. This is further

illustrated in Fig. 7b where the model resides primarily in the

AR and NAO1 state. The lower dimension measures are

driven by the differing behavior of L1 which remains close to

L2 and both oscillate around zero. We see that for long

enough residency in the NAO1 state the instability is driven

by L2 overtaking L1.

To obtain a more complete understanding of the alignment

behavior around transitions, Fig. 8 shows the collective align-

ment values centered around the days associated with transi-

tion (filtered for state residencies longer than 4 days before and

after the transition). The transition occurs from day 0 to day 1.

The greatest change in behavior can be seen on days 0, 1, and 2

for u1,2, and days 1 and 2 for u2,3 and u1,3. The most noticeable

change is in the increased values of the third quartile and the

maximum. The leading alignment u1,2 shows an overall in-

crease in alignment values on days 1 and 2 for all transitions.

There is also an increase in the median value preceding the

transitions on day 21. The increased spread of alignment

around transitions is due to differing alignment behavior for

each type of transition as can be seen in Fig. 7. We therefore

separate the alignment behavior by specific transition and plot

FIG. 12. Comparison of average alignment (ui,j) of leading CLVs by season for push forward

M 5 50. We see the strong alignment emerging in the JJA u1,2, and a weak alignment in DJF.

Additionally we observe some seasonality in u2,3 and u3,4, with both peaking in DJF and SON.
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the ensemble of trajectories in Fig. 9. We see that transitions

from the NAO2 state show an increase in u1,2 on the days

preceding the transition. The peak in u1,2 occurs on the last

day the affiliation sequence is in the preceding state. We also

observe that there is a spike in u2,3 following both transitions

from the NAO2 state; for NAO2 to AR it occurs on the day

following the peak in u1,2 and for NAO2 to NAO1 it occurs 2

days following. For both transitions from the NAO1 state

there is an increase in u1,2, u2,3, and u1,3, with the maximum

values for each occurring 2 days after the transitions. For the

AR to NAO1 transition there is an increase in u2,3 with a peak

on the day just following the transition. The other two align-

ments (u1,2 and u1,3) also show a weak increase. The AR to

NAO2 transition shows the overall weakest signal in

FIG.A1. Leading 20 EOFs of daily 500 hPa geopotential height anomalies in the North Atlantic sector (208–908N, 1108W–08) of the
daily NCEP–NCAR reanalysis data (Kalnay et al. 1996). All EOFs are unit normalized and use the same color scale shown at the

bottom.
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alignment, although all three still display an increase within

2 days of the transition.

Next, we consider the behavior of the alignment of the

leading two MSVs or CLVs, u1,2(t), across the varying push

forward lengths. This is displayed in the panels of Fig. 10a.

The first difference we notice is in the time scale of variability

of the alignment. For shorter push forward lengths we ob-

serve that large changes in alignment occur more often than

for longer push forward lengths. We also observe the emer-

gence of a low-frequency signal within the variability as the

push forward length is increased. To explore the emergence

of this signal we compute the power spectral density (PSD) of

each alignment time series. The PSDs are shown in Fig. 10b,

scaled to show the frequency percentage contribution to vari-

ance. The red dots show the peaks that are identified using a

threshold of two standard deviations away from neighboring

measures, while the red crosses use a threshold of three standard

deviations. We can see the emergence of a significant low-

frequency signal for the push forward length of 30 days or longer.

This frequency corresponds to a period of approximately 1 year.

We relate the annual signal emerging in the alignment of the

leading CLVs to the seasonality of the NAO. A study of the

NAO in both observational data and reanalysis products has

shown that there is increased variability in the NAO index in

the boreal winter and decreased average NAO values in the

boreal summer (Hanna et al. 2015). To measure relative vari-

ability in the NAO index for our model we define a transi-

tion index,

Transition index5 �
t

i5t250

I
tran

(i)

50
. (19)

Here Itran(i) is again the indicator function for a transition

occurring at time i, andwe choose awindow of 50 days tomatch

the longest push forward step used to calculate alignment. The

time series of the transition index compared to u1,2 forM5 50

is shown in Fig. 11. We observe that the two measures are

anticorrelated. The maximum Pearson correlation coefficient

is 20.45 at a 17-day lag with the alignment. The transition in-

dex also shows a peak in its PSD corresponding to an annual

signal (not shown).

While Fig. 11 compares the alignment and NAO variability

in time, we are also interested in the average behavior by season.

The various NAO indices computed from both observational

records and reanalysis products have been shown to exhibit

FIG. D1. Alignment, FTEs, and unit normalized physical projections of the leading MSVs throughout the transition from a persistent

Atlantic Ridge state to a persistent negative NAO state.
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distinct seasonal behavior. In a study byHanna et al. (2015) the

authors analyze a collection of station-based data and rean-

alyses and compare seasonal differences as well as trends. They

find that there has been increased variability in the NAO

during the boreal winter (DJF), particularly in December,

throughout the last century. The authors also noted a decrease

in boreal summer (JJA) NAO values over the past 20–30 years.

To analyze how the seasonality of our model compares, we

consider the total number of transitions and days spent in a

given state each season as shown in Table 2. The seasonality in

the NAO2 state is seen more through the total number of days

spent in a given state and average residency times. As men-

tioned in section 2c, the NAO2 state accounts for 46.5% of the

total number of model days. The largest contribution to that

comes from JJA (41%) compared to DJF which only accounts

for 11% of NAO2 days. This seasonality is similar to, but much

more pronounced than, that observed for the CPCNAO index;

over the same period as the model fit, 45% of days had a

negative daily mean index, and 20% of these days occurred

during DJF compared to 29% accounted for by JJA. The av-

erage residency length also has a seasonal signal (Table 1), with

its maximum in JJA (9.3 days) and minimum in DJF (2.5 days).

We observe as expected a seasonal signal in the transition

probabilities, with the highest probability of a transition oc-

curring in SON (30%), while JJA has the lowest overall

probability of transitions (15%). When we separate by the

state associated with each transition, we see different sea-

sonal behavior across the three states. Transitions associated

with the NAO2 state have roughly the same probability of

occurring in DJF as in the JJA (16%). Those probabilities are

lower than what is seen in MAM (23%) and SON (24%) which

are generally referred to as transitional seasons. On the contrary,

the transitions associated solely with the NAO1 and Atlantic

Ridge states have a much stronger seasonal signal. The proba-

bility is 9 times higher in DJF (18%) than in JJA (2%) for

transitions between the NAO1 andAR states which contributes

to the overall increase in DJF variability compared to JJA.

We now turn to the average behavior of alignment by sea-

son. Figure 12 shows the alignment averaged over each season

of the indicated pairs of CLVs. We see a clear seasonal be-

havior of u1,2 with a maximum in summer and a minimum in

autumn and winter. Interestingly, there is also a seasonal signal

in u2,3, u2,4, and u3,4 (although weaker for u2,4 and u3,4). We do

not see a seasonal cycle in the alignments with the more as-

ymptotically stable CLVs (5–7) as their dominant signals

have a cycle length of less than a year.

FIG. D2 . As in Fig. D1, but for the Atlantic Ridge to positive NAO transition.
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4. Summary

We have presented here a dynamical analysis of a reduced

model for the NAO teleconnection. The preferred model has

been constructed through application of the FEM-BV-VAR

method which has been previously used to identify atmo-

spheric pressure states consistent with known coherent fea-

tures in the North Atlantic (Risbey et al. 2015; O’Kane et al.

2017). The identified states are also consistent with an alternate

FEM-BV-EOF (Franzke et al. 2009) variant analysis. Using

the NCEP–NCARReanalysis-1 (Kalnay et al. 1996) from 1979

to 2018, we tested a range of hyperparameters to determine an

optimal model. The resulting optimal model was found to be

non-Markovian with a time dependence (memory) of 3 days,

an average state length of 5 days, and three cluster states. The

cluster states closely resemble the two phases of the NAO

and a pattern similar to the AR.

To study the time-dependent model dynamics, we con-

structed a discrete linear mapping system defined on a delay-

embedding of the PCs. The switching is defined a priori by the

affiliation sequence resulting from the FEM-BV-VAR fit.

Through this novel way of constructing the system we were

able to analyze the time-dependent tangent linear propagator,

calculating MSVs and CLVs, their finite-time growth and de-

cay rates, and their alignment. We differentiate between short

time-scale dynamics and long time-scale dynamics by using

different window lengths over which to calculate the vectors.

While the individual states are asymptotically stable, on

short time scales they can exhibit finite-time growth. In par-

ticular, we found that both NAO states contain finite-time

unstable MSVs for a window length of 3 days, with the NAO2

state showing stronger instability than the NAO1 state. We

used a finite-time dimension measure to characterize the in-

stability and identified the largest dimension to be associated

with the blocked NAO2 state, which is consistent with re-

cent studies of blocking in theoretical models (Schubert and

Lucarini 2016) and data (Faranda et al. 2017; Lucarini and

Gritsun 2020). These findings provide a new interpretation

regarding the predictability of blocking events. While the

blocked state is conventionally thought of as having higher

predictability for weather conditions, the increased instability

associated with such states as found in Schubert and Lucarini

(2016), Faranda et al. (2017), and Lucarini and Gritsun (2020)

and the study at hand provide a new insight as to why models

struggle to capture the onset and decay of blocking events. We

also projected the unstable MSVs into physical space in order to

FIG. D3. As in Fig. D1, but for the negative NAO to Atlantic Ridge transition.

1664 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by CSIRO Marine and Atmospheric Research | Unauthenticated | Downloaded 06/07/21 03:33 AM UTC



visualize the pressure anomaly patterns associated with the

finite-time growth. During persistent states the instability

manifests as an NAO-like meridional pressure gradient,

whereas around transitions between persistent states the

instability manifests in more zonally oriented pressure

gradient patterns.

The alignment of the vectors also showed different behavior

on short versus long time scales. On short time scales (window

length of 3 days) there was an increase in alignment of the

leading MSVs around the time of transitions. The increase

occurred anywhere between the last day of the preceding state

and the second day of the end state. Such an increase in

alignment can be related to the loss of hyperbolicity observed

in transitions between unstable periodic orbits, supporting

the results of Lucarini and Gritsun (2020) that identified un-

stable periodic orbits associated with blocking as having on

average a higher dimension than those associated with strong

zonal flow. For the longer-time-scale CLVs we observed

starkly different behavior whereby a low-frequency signal in

alignment emerged as the window length was increased, con-

verging to an annual oscillation with a maximum in the boreal

summer (JJA) and a minimum in the boreal winter (DJF) at

windows of 301 days. A transition index, defined over the

same window length, was computed to characterize the ten-

dency of the model to switch between states and found to be

anticorrelated with the alignment and have a pronounced an-

nual signal. The seasonality in alignment was also related to the

seasonality seen in the NAO2 average residency length and

model preference for different states in JJA versus DJF.

The novel dynamical systems analysis of a data-driven model

of the NAO presented here is general and does not have to

be restricted to this particular phenomenon nor to atmo-

spheric teleconnection studies. One could perform a similar

analysis on any resulting model from the use of the FEM-

BV-VAR clustering method or general reduced-order sto-

chastic models. With respect to atmospheric and oceanic

teleconnections, this method provides a way of extracting the

large-scale unstable perturbation directions associated with

specific phenomena. Future studies will aim to characterize

the behavior of other teleconnection interactions as well

as anomalous events associated with particular large-scale

atmospheric modes.
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FIG. D4. As in Fig. D1, but for the negative NAO to positive NAO transition.
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APPENDIX A

EOFs of North Atlantic Region

Figure A1 shows the EOFs used in the dimension reduc-

tion applied to the NCEP–NCAR Reanalysis 1 atmospheric

pressure anomaly data from the base period 1 January 1979

to 31 December 2018. In calculating the EOFs and corre-

sponding PCs, the data are weighted by the square root of the

cosine of the latitude. We use a truncated singular value

decomposition for 200 components and a unit normalization

for the EOFs. The 20 EOFs displayed in Fig. A1 account for

91% of the total variance, and EOF 1 resembles the typical

NAO pattern.

APPENDIX B

Minimization of FEM-BV-VAR Loss Function

In general, direct minimization of Eq. (2) with the compo-

nent losses given by Eq. (6) to find the optimal affiliations

G and parameters Q is not practical. However, the loss func-

tion is separately convex in G and Q, and approximate mini-

mizers (Ĝ, Q̂) may be straightforwardly computed by

alternately minimizing Eq. (2) with respect toG for fixedQ and

vice versa, until convergence is reached. The minimization

problem with respect to G for fixed Q may be formulated as a

constrained linear programming problem (Metzner et al. 2012)

and solved numerically. For fixed G, the optimal parametersQ

are given by weighted least squares estimates. In terms of the

matrices

X5 x
mmax11

, . . . , x
T

� �
2 Rd3(T2mmax) ,

FIG. D5. As in Fig. D1, but for the positive NAO to Atlantic Ridge transition.
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m ) 2 Rd3(11md) ,

the estimated parameters for state i at fixed G may be com-

pactly written as

B̂
i
5XW

i
ZT(ZW

i
ZT)21 , (B1)

Ŝ(i) 5
1

Tr[W
i
]
(X2 B̂

i
Z)W

i
(X2 B̂

i
Z)T ,

where Tr[A] denotes the trace of a matrix A. This coordi-

nate descent method finds a local minimum of the loss

function for a given initial guess at the optimal parameters

and not necessarily a globally optimal solution. To reduce

the degree to which this occurs, in all of the results pre-

sented we run the optimization Ninit 5 20 times with

different initial guesses and keep the solution with the

lowest loss.

To select a single set of values for the hyperparameters K,

m, and p, we use the following cross-validation method. The

observed sample is divided into Nfold 1 1 approximately

equal length segments T 1, . . . , T Nfold11, and each model is

refit Nfold times, where on the ith iteration the first i segments

are used as the training sample. Holding the obtained state

parameters Q̂ fixed, the optimal affiliations are calculated by

minimizing the cost function evaluated over the (i 1 1)th

segment, adjusting the upper bound CT as appropriate for the

length of the segment with fixed p. The weighted root-mean-

square error

RMSE
i
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d(T
i
2m

max
)

�
t2T i11

�
K

j51

[g
t
]
j
kx

t
2 x̂

(j)
t k

2

vuut

is then evaluated for each test segment, where x̂
(j)
t denotes

the expected value under state j. The mean reconstruction

RMSE over the set of test sets provides a measure of the

model’s ability to generalize to future data, which we use in

lieu of estimates of out-of-sample prediction error, with good

FIG. D6. As in Fig. D1, but for the positive NAO to negative NAO transition.
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performance on this measure involving a compromise be-

tween model flexibility and overfitting the training data. We

note that the more standard cross-validation approach, that

is estimation of the out-of-sample forecast error, would re-

quire an additional model for the dynamics of the hidden

switching process, which we here leave to future work.

Alternatively, in-sample measures based on information

criteria could be used when combined with an appropriate

likelihood model. However, this similarly requires an ap-

propriate probabilistic model to be specified for the switch-

ing and noise processes, and, moreover, the very large

number of estimated degrees of freedom in comparison to

the available sample size may lead to concerns as to their

suitability (Burnham and Anderson 2002).

APPENDIX C

QR Decomposition Method

The QR algorithm we use for computing the leading

asymptotic Lyapunov exponents follows Diecia and Van

Vleck (1995). It is based on the numerical linear algebra

factorization of a matrix into an orthogonal matrix Q and

an upper triangular matrix R. The initial arbitrary or-

thogonal matrix can be set as Q0 5 IN where I is the identity

matrix and N is the number of states in the state space. We

then define the Qi and Ri matrices iteratively through the

QR decomposition of AiQi–1:

Q
i
R

i
5A

i
Q

i21
, (C1)

where Ai 5 A(ti), our tangent linear propagator defined by

Eq. (11). The upper triangular matrix Ri holds the eigenvalues

Ri,jj . 0 where jj indicates the position of the matrix entry.

After T time steps we have the equivalence

Q
T
R

T
. . . R

1
5A

T
. . . A

1
Q

0
. (C2)

We then approximate the asymptotic Lyapunov exponents

through

l
j
5

1

T
�
T

i51

lnR
i,jj

for j5 1, . . . ,N . (C3)

APPENDIX D

CLV Patterns for Transitions Associated with Persistent
States

We show the leading CLV patterns during each of the six

transitions associated with persistent states: AR toNAO2 (Fig.

D1), AR to NAO1 (Fig. D2), NAO2 to AR (Fig. D3), NAO2

to NAO1 (Fig. D4), NAO1 to AR (Fig. D5), NAO1 to NAO2

(Fig. D6). The transition occurs between days 0 and 1, and we

show the 3 days preceding and the 3 days following. Due to the

filtering on persistent states (minimum of 5 days in each state

on either side of the transition), days 22 and 3 show the CLV

patterns associated with the stationary states before and after

the transition, respectively. The top two panels in each figure

indicate the associated alignment and FTE behavior. Note that

we only show L1 and L2 as L3 is always negative in these cases.
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