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Abstract 1 

Vascular ageing biomarkers have been found to be predictive of cardiovascular risk 2 

independently of classical risk factors, yet are not widely used in clinical practice. In this review 3 

we present two basic approaches for using machine learning (ML) to assess vascular age: 4 

parameter estimation and risk classification. We then summarize their role in developing new 5 

techniques to assess vascular ageing quickly and accurately. We discuss the methods used to 6 

validate ML-based markers, the evidence for their clinical utility, and key directions for future 7 

research. The review is complemented by case studies of the use of ML in vascular age 8 

assessment which can be replicated using freely available data and code. 9 

 10 
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Introduction 1 

Age is a key risk factor for hypertension and cardiovascular disease (CVD)1. A major 2 

consequence of ageing is the progressive stiffening of the major arteries, particularly the 3 

proximal aorta. In an optimally functioning cardiovascular system, the elastic properties of the 4 

large arteries ensure that the pulsatile pressure and flow generated by left ventricular ejection 5 

is dampened, minimising potential harm to the microvasculature. However, the cushioning 6 

(elastic) properties of the large arteries diminish with age giving rise to arterial stiffening. 7 

While age-related arterial damage occurs predominantly in later life, there is wide variability 8 

between individuals, with some displaying early vascular ageing2. This has led to the concept 9 

that vascular age, as opposed to chronological age, may be better related to the prognosis of 10 

CVD3. 11 

Arterial stiffness is a promising marker of vascular ageing and many studies have 12 

shown that the stiffness of the large arteries is related to elevated CVD risk in adults, 13 

independently of traditional cardiovascular risk factors4. Given the world’s ageing population, 14 

effective monitoring of vascular ageing is increasingly important, and clinical biomarkers that 15 

can accurately describe the status of the vasculature are highly desirable5. A commonly used 16 

index of arterial stiffness is carotid-femoral pulse wave velocity (PWV), the speed at which the 17 

pressure wave travels through the arteries, typically measured via applanation tonometry6. 18 

Central (aortic) blood pressure (CBP), the pressure the heart and central organs are exposed to, 19 

is also indicative of vascular ageing and is related to cardiovascular events and mortality7, 8 20 

independently of brachial BP9. Several other indices can also be used to assess vascular age 21 

including cellular biomarkers, coronary artery calcium scores, endothelium function, carotid 22 

intima-media thickness, and atherosclerosis indices. This review focuses on arterial stiffness 23 

biomarkers such as PWV, given the wealth of evidence that they can capture age-related 24 

arteriosclerotic changes.  25 
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Machine learning (ML) provides systems or models with the capacity to learn 1 

automatically from data without explicit human input. Recent technological advances have 2 

spurred an abundance of “big data” in healthcare10: data of “such a high volume, velocity (i.e. 3 

rate of collection) and variety (i.e. different types of variables) to require specific technology 4 

and analytical methods for its transformation into value”11. ML algorithms, including deep 5 

learning algorithms (a subset of ML), are being used increasingly due to their flexible nature 6 

in evaluating large datasets without the need for specified assumptions. Since the distinction 7 

between ML and statistical modelling is not clear-cut12, this review incorporates both ML and 8 

statistical modelling techniques. ML is now being used to develop new methods for assessing 9 

vascular age which may be more accurate or simpler than existing methods. For example, 10 

multiple linear regression has been used to develop a model to estimate PWV from age and 11 

routine BP measurements, and the result is predictive of outcomes13, 14. ML has also been used 12 

to develop models to estimate CBP from peripheral pressure waves, including using a 13 

generalised transfer function to estimate a central pressure wave from a peripheral wave15, and 14 

using regression analysis to estimate CBP from brachial BP and PWV16. This critical review 15 

highlights relevant ML techniques, their clinical utility, and directions for future research to 16 

leverage the potential of ML for assessing vascular ageing (Figure 1: Central Illustration). 17 

[Figure 1] 18 

 19 

2. The Role of Machine Learning in Assessing Vascular Age 20 

2.1 Using ML to assess vascular age 21 

ML has been used to develop two types of models to assess vascular age: parameter 22 

estimation models and risk classification models. Parameter estimation models estimate a 23 
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target parameter from more easily obtained measurements, such as estimating PWV from age 1 

and BP. Risk classification models classify a subject according to their risk of a particular 2 

outcome or diagnosis, such as being at high or low risk of cardiovascular (CV) events. Table 1 3 

provides examples of clinical applications of these two types of models, detailing the ML 4 

techniques used in each case. 5 

[Table 1] 6 

The ML techniques used in vascular age assessment are predominantly ‘supervised’ 7 

techniques - i.e. they learn how to generate an output (a parameter or risk class) by learning 8 

from training input data which are labelled with reference outputs. For instance, a model for 9 

estimating PWV from age and BP can be developed using training data consisting of the 10 

required inputs (age and BP) and desired outputs (PWV values)17. Table 2 provides details of 11 

the capabilities of supervised ML techniques, allowing one to choose an appropriate technique 12 

for a particular application. The choice of ML technique is determined by the type of output 13 

required (a parameter or a risk class) and the nature of the input data (single, multiple, or 14 

waveform inputs). Often more than one technique is suitable for a particular problem, in which 15 

case the choice can be informed by the pros and cons of using each technique18. 16 

[Table 2] 17 

2.2 Opportunities 18 

ML provides opportunities to enhance vascular age assessment through the analysis of 19 

complex datasets, digital signals and images. In research, ML is now widely used aided by 20 

large datasets and high-performance computing systems. In clinical practice, ML-based 21 

technologies present opportunities to improve the accessibility and performance of vascular 22 

age assessments. These opportunities are now discussed. 23 
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2.2.1 Data availability 1 

A large amount of biomedical and clinical data is routinely collected which is suitable 2 

for training ML models to assess vascular age. Advances in measurement techniques and 3 

systems have allowed for the acquisition of high-fidelity data suitable for assessing vascular 4 

age. Arterial pulse wave signals can be acquired in specialist clinics using, for instance, 5 

applanation tonometry and ultrasound. Additional signals such as the electrocardiogram 6 

(ECG), ballistocardiogram (BCG), and photoplethysmogram (PPG) can be acquired by 7 

consumer devices such as smartphones and fitness trackers. Images of the cardiovascular 8 

system and affected organs can be acquired by ultrasound, magnetic resonance imaging, and 9 

computed tomography, resulting in improved visual assessment of functional and structural 10 

changes associated with disease and pathology. The multifaceted nature and high 11 

dimensionality of such data is the primary driving force in cardiovascular Big Data19. 12 

Additionally, the complexity of the data often renders traditional statistical methods 13 

insufficient to efficiently develop predictive tools to assist clinical decision-making. In 14 

contrast, ML offers promise for developing methods to improve and automate cardiovascular 15 

health assessment, and to guide therapeutic interventions. 16 

2.2.2 Computing systems 17 

Recent years have seen rapid advancements in both hardware and software20. The 18 

refinement of hardware components, such as high-performance processors and graphics 19 

processing units, has reduced the computational time required to train a ML model, even with 20 

large datasets. Additionally, many ML techniques are widely available in software packages 21 

such as Python and MATLAB. These advances make it practical for researchers to use ML 22 

routinely.  23 
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2.2.3 Improving the accessibility of vascular age assessment 1 

ML-based techniques for assessing vascular age have potential to improve the 2 

accessibility of vascular age assessment. Currently, BP is the only biomarker of vascular age 3 

which is routinely measured in primary care. A number of issues limit the use of other markers 4 

of vascular ageing5. Whilst carotid-femoral PWV has satisfactory repeatability21, its 5 

measurement requires a skilled operator, and alternative measurements which can be obtained 6 

more easily may not reflect the status of the aorta as precisely, such as carotid-radial PWV22 7 

and PWV assessed from the ECG and a pulse wave23. There is a similar tension between 8 

precision and ease of measurement for CBP15, 24. ML-based techniques are now being 9 

developed which could be used in primary care with minimal additional workload, such as 10 

using routinely collected clinical data to estimate CBP or PWV or assessing vascular age from 11 

pulse waves acquired by pulse oximeters (as detailed in the Case Studies below). Thus, ML-12 

based techniques have potential to improve the accessibility of vascular age assessment.  13 

2.2.4 Improving the performance of vascular age assessment 14 

ML-based techniques may have potential to provide improved performance over 15 

traditional statistical modelling techniques, although this potential has not yet been widely 16 

recognized12. Some studies have compared the performance of novel ML-based techniques 17 

with traditional techniques. For instance, Xiao et al. compared using a neural-network to 18 

estimate CBP from peripheral pulse waves with the widely used transfer function approach25. 19 

They did not find a substantial difference in performance between the two approaches. More 20 

broadly, ML has been found not to confer benefit over logistic regression for clinical prediction 21 

models12. In the future, it is likely that ML-based techniques would either have to provide 22 

improved performance, or facilitate easier measurement, in order to replace traditional 23 

statistical approaches. 24 
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2.3 Challenges 1 

In this section we discuss key challenges in developing ML-based techniques for 2 

assessing vascular age. 3 

2.3.1 Data Acquisition  4 

Large datasets are required to develop ML-based techniques. Devices for acquiring 5 

arterial pulse waves in the clinic, such as ultrasound and applanation tonometry devices, often 6 

output the data in a format suitable for analysis, although they require a skilled operator. On 7 

the other hand, consumer devices which measure pulse wave signals (such as smartphones, 8 

smartwatches, and fitness trackers) can be used by patients with no need for a skilled operator, 9 

but do not routinely record the data for analysis. Those devices which do record pulse waves 10 

in everyday life can require much user interaction for reliable data acquisition26. Nonetheless, 11 

suitable datasets have previously been acquired in large-scale local and international studies17, 12 

27. 13 

2.3.2 Experimental Methodology 14 

A recent review highlighted shortcomings in the methodology used to develop clinical 15 

prediction models using ML12. Firstly, few studies used external validation, and many either 16 

did not report validation procedures clearly, or had potential biases in validation procedures, 17 

such as selecting variables on all data or not repeating all modelling steps in the validation. 18 

Secondly, studies commonly assessed performance using the area under the receiver operator 19 

curve (AUROC) statistic, but usually did not assess the accuracy of risk estimates12. This recent 20 

review provides important guidance, which can inform future studies using ML in vascular 21 

ageing assessment. 22 
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2.3.3 Reporting ML Models 1 

The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual 2 

Prognosis Or Diagnosis) statement provides a checklist of 22 methodological aspects that 3 

should be reported in studies of prediction models28. A new statement specific to ML studies 4 

is now being developed29. Even with clear and concise reporting of the methods used to design 5 

and validate models, further quality assurance through external validation is required. 6 

However, well-grounded external validation studies are sparse as often there is a lack of 7 

available data other than that used for model development30. Even with access to sufficiently 8 

large datasets, external validation studies are often poorly reported31. It is important that 9 

rigorous procedural steps are adhered to during the design, validation, and external validation 10 

of ML-based techniques to enhance vascular ageing assessment. 11 

2.3.4 Benchmark Datasets 12 

Benchmark datasets could provide a standardised approach to developing ML-based 13 

techniques for assessing vascular age. Benchmark datasets are datasets that have been chosen 14 

to be the ‘standard’ for a model to be evaluated against32. Benchmark datasets should contain 15 

data reflective of the target population and ideally contain a wide range of characteristics to 16 

allow the strengths and weaknesses of ML-based techniques to be assessed33. To the best of 17 

our knowledge, there is no currently known registry or biobank containing a ‘gold standard’ 18 

benchmark dataset that may be used for ML studies in vascular age assessment. Hence, future 19 

endeavours should consider the establishment of a registry or consortium, containing data with 20 

relevant markers of arterial stiffness, that has both adequate sample size and is reflective of the 21 

target population5.  22 
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2.4 Case Studies 1 

Case studies of the use of ML in vascular age assessment are now presented. To aid 2 

reproducibility, the case studies use publicly available, simulated haemodynamic data for 3,837 3 

healthy adult subjects aged from 25 to 75 years old from the Pulse Wave Database (PWDB)34. 4 

The simulated subjects all had different cardiovascular properties within normal ranges, 5 

including arterial stiffness, BP, aortic diameter, stroke volume and heart rate (HR). The case 6 

studies are each accompanied by a tutorial allowing them to be replicated using the openly 7 

available data and source code (as detailed in the Supplementary Material). A case study is 8 

now presented on using a random forest regressor to estimate CBP from age, cuff BP, and HR. 9 

Two further case studies are provided in the Supplementary Material on: (i) Using multiple 10 

linear regression to estimate PWV from age and BP; and (ii) using a neural network to assess 11 

vascular age from pulse waves. 12 

In this case study central systolic (CSBP) and diastolic BP (CDBP) are estimated from 13 

age, brachial (cuff) SBP (BSBP) and DBP (BDBP), and HR with using a random forest 14 

regressor35. A random forest regressor is an ensemble learning method which consists of a 15 

collection of randomized base regression trees.  Each tree is built by splitting the source set 16 

(the root node of the tree) into branches based on a certain feature of the input variables. This 17 

process is repeated recursively until the subset at a node has the same values of the target output 18 

variable. The final prediction is provided by averaging the predictions of all the regression 19 

trees. The formal structure of a random forest predictor is shown in Figure 2. This case study 20 

employs two random forest regression models to predict respectively CSBP and CDBP (target 21 

outputs) from age, BSBP, BDBP, and HR (inputs). The regression models were trained using 22 

75 % of the entire population while the remaining data were kept for validation. The number 23 

of trees of each random forest regressor was set to 100. 24 

[Figure 2] 25 
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The comparison between the estimated CSBP and the reference CSBP is presented in 1 

Figure 3 (top panel). The limits of agreement between the estimated and reference CDBP (this 2 

statistic is described in Section 3.2) were narrow at ±2.7 mmHg. Good performance was also 3 

achieved for the estimation of CDBP (see lower panel of Figure 3), with limits of agreement 4 

of ±1 mmHg. 5 

[Figure 3] 6 

This example demonstrates how ML can potentially be used to transform routine 7 

measurements into an additional parameter which is difficult to acquire in practice. The in-8 

silico validation indicated that CSBP and CDBP could be estimated precisely from brachial 9 

BPs and HR using a random forest regressor. This illustrates a possible application for a ML-10 

based tool in clinical practice.   11 
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3. Validation of Machine Learning-Based Methods 1 

This section presents different types of validation techniques which are commonly used 2 

to evaluate the accuracy of a ML model. Subsequently, it summarizes the reported performance 3 

of previously developed methods on the estimation of vascular parameters and risk 4 

classification. 5 

3.1. Validation types of ML-based methods 6 

In ML model studies, the performance of the model is usually assessed using either 7 

cross-validation or external validation methods. Cross-validation, or k-fold cross-validation, 8 

refers to the validation technique where the performance of the ML model(s) is trained against 9 

a defined number of subsets of known data (k) before being evaluated against the 10 

complementary (unknown) subset36. This technique helps overcome issues, such as selection 11 

bias or overfitting with the model. However, the model performance needs to be tested for 12 

heterogeneity, which is followed through with external validation. The use of independent 13 

datasets allows proper assessment of whether a model can be generalised to populations outside 14 

of the study data30. 15 

Many studies, unfortunately, overlook the need to externally validate ML models and 16 

often find their reported model performances to be limited to the study-specific population, 17 

leading to potentially wasted resources37. However, a recent ML-based study automating phase 18 

contrast cardiovascular magnetic resonance (PC-CMR) aortic flow quantification, is one of 19 

very few studies to have performed both cross-validation and external validation38. They 20 

showed that in-house ML segmentation, using a neural network approach on 190 coronary 21 

artery disease patients was robust, did not require human intervention, and strongly correlated 22 

with the manual quantification of an expert CMR reader (r > 0.99). When externally validated 23 

against two institutionally independent datasets (n=20), ML model performance strongly 24 
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correlated with manual segmentation (r > 0.99). Though their external validation sample size 1 

is relatively low, they have reported clear methodology and their findings have potential to be 2 

independently tested by other researchers. 3 

Furthermore, attention should be paid to the selection of the technique to be used to 4 

acquire the data for the ML modelling. The use of more reliable and thoroughly validated 5 

commercial devices should result in a more robust prediction model when compared to a 6 

prediction model trained using data from a less validated apparatus. For instance, one such 7 

study used an artificial neural network to predict CBP from radial BP measurements25. CBP 8 

estimates may agree more closely with the gold standard of invasive BP, although estimates of 9 

brachial cuff BP may be more useful as current clinical guidelines are based on cuff BP data. 10 

Moreover, in the case of PWV, the reference values have been obtained for carotid-femoral 11 

PWV (cfPWV), and, in this view, ML prediction of cfPWV might be more valuable than 12 

prediction of invasive PWV. Hence, one should always consider the current state-of-knowledge 13 

and the particular needs of each application and select with caution the data and the design of 14 

their ML estimator. 15 

3.2. Estimation of vascular parameters 16 

Table 3 summarizes the findings of only a limited number of validation studies for the 17 

ML estimation of PWV and CBP. Those studies are based on the use of easily obtained clinical 18 

data which are transformed into more relevant parameters of vascular ageing. Generally, in-19 

vivo validations demonstrated a good performance in most of the proposed ML methods (Table 20 

3). In these studies, the performance of ML-based methods was often assessed using the 21 

correlation between estimated and reference parameter values. The limits of agreement 22 

technique, also known as Bland-Altman analysis, was also used, although less frequently. This 23 

technique quantifies the accuracy and precision of measurements using the bias (mean error) 24 
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and limits of agreement, which is twice the standard deviation of the errors39. The limits of 1 

agreement technique is preferred for assessing agreement between two measurement methods 2 

since correlation coefficients can be misleading in this context39. 3 

[Table 3] 4 

Although there are not many meta-analyses to systematically compare the performance 5 

of ML models with traditional statistical methods for the estimation of vascular parameters, 6 

some studies have performed a preliminary comparison between the two approaches25, 40. In 7 

some cases40, 41, ML models appeared to outperform the traditional prediction algorithms. A 8 

review including 28 studies concluded that, in general, non-linear ML models demonstrate a 9 

higher precision when compared to the conventional linear models40. However, in cases where 10 

traditional methods had already achieved a high accuracy, ML provided no additional clinically 11 

significant value25. Nevertheless, an advantage of the ML modelling may pertain to the 12 

reduction of the complexity and the cost of the measurements which are required for 13 

performing the traditional techniques. Tavallali et al. proposed a ML-based method to estimate 14 

cfPWV noninvasively using a single uncalibrated carotid waveform acquired by tonometry in 15 

conjunction with a set of routine clinical variables such as age and blood pressure41. Their 16 

model estimated cfPWV with an RMSE of 1.12 m/sec, compared to the reference method17. In 17 

addition, authors further supported their findings by showing that estimated PWV was 18 

significantly associated with increased risk of future CVD events by using the Framingham 19 

database, and this predictive ability was similar to the one by true cfPWV values. Such an 20 

approach, along with the high accuracy, offers a less expensive and more convenient way to 21 

assess PWV as it does not require the additional measurements of the ECG signal and the 22 

femoral pressure tonometry recording which are used in the traditional cfPWV measurement. 23 

 24 
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3.3. Risk classification 1 

The performance of selected ML-based techniques for vascular risk classification is 2 

summarised in Table 4. Each study reported the sensitivity and specificity of techniques for 3 

classifying patients into two categories, such as whether or not they would experience a CV 4 

event. The AUROC statistic, also reported in several studies, combines the sensitivity and 5 

specificity to provide a single summary statistic. It varies within the range of [0.0, 1.0], where 6 

c-values of 0.7 to 0.8 to show acceptable discrimination, and values larger than 0.9 to show 7 

exceptional discrimination. Whilst useful, it should be noted that this statistic can be misleading 8 

when the prevalence of the disease is low, such as a low CV event rate, and other statistics such 9 

as the positive predictive value provide complementary insights42. 10 

[Table 4] 11 

A key interest in medical research is whether an additional biomarker adds to an 12 

existing model. Cook43 proposed a reclassification table which indicates the number of subjects 13 

who moved to another risk group and the number of those who remained in the same risk group 14 

as a result of adding a new predictor. The reclassification concept was extended with the 15 

introduction of two metrics, namely, the net reclassification improvement (NRI), and the 16 

integrated discrimination improvement (IDI)44. An NRI equal to 10 % means that subjects with 17 

outcome were approximately 10 % more likely to have an improved reclassification in 18 

comparison with subjects with no outcome. An IDI equal to 10 % means that the difference in 19 

average predicted risks between the subjects with and without the outcome was increased by 20 

10 % in the new model. These metrics have been very useful in studies where the performance 21 

for different combinations of predictors was assessed or/and the performance of traditional 22 

techniques was compared to the performance of novel ML-based methods13, 45. However, 23 

prospective studies using reclassification measures to assess the predictive ability of ML-based 24 

vascular aging biomarkers are currently lacking. 25 
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Moreover, studies have investigated the potential additive value of ML by comparing 1 

the performance of traditional methods to ML-based approaches. A recent study of Desai et al. 2 

compared several ML models to conventional logistic regression in predicting key heart failure 3 

(HF) outcomes46. It was demonstrated that ML improved only slightly the predictive precision. 4 

Nevertheless, incorporation of additional parameters from electronic medical records (e.g., 5 

laboratory test results as continuous variables) to the ML models showed a competitive 6 

advantage over the traditional statistical approach. The authors attributed the much-improved 7 

performance to the nonparametric nature of the tree-based ML models at making predictions 8 

while utilizing continuous variables as inputs. Hence, ML-based approaches might not 9 

outperform the conventional modelling in any case, but concurrent refinement of the model’s 10 

configuration and feature selection may lead to a superior performance for discriminating 11 

several clinical outcomes.  12 

Weng et al., however, reported an obviously improved performance when they used 13 

ML models in comparison to the traditional AHA/ACC risk prediction tool47. All ML models 14 

had a better predictive capacity at discriminating individuals with or without CV events. An 15 

artificial neural network outperformed all the ML models achieving an AUC equal to 0.7647. 16 

Ambale-Venkatesh et al. used the longitudinal Multi-Ethnic Study for Atherosclerosis (MESA) 17 

cohort study48 to compare the accuracy between ML-based approaches and the traditional CV 18 

risk assessment models (i.e., standard Cox, LASSO-Cox, and AIC-Cox). A large ensemble of 19 

735 variables from imaging, noninvasive tests, questionnaires, and biomarker panels were used 20 

as inputs. The outcomes included death, stroke, cardiovascular events, incidents of atrial 21 

fibrillation, and heart failure events48. Authors reported an increase in the C-statistic for all 22 

outcomes, when they compared their results to the well-established conventional risk scores, 23 

including the Framingham and the American College of Cardiology/American Heart 24 

Association Atherosclerotic Cardiovascular Disease (ACC/AHA ASCVD) risk scores. In 25 
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another study, Kakadiaris et al. also used the MESA cohort and demonstrated that their ML 1 

Risk Calculator (sensitivity = 0.96, specificity = 0.87, accuracy = 0.89) outperformed that 2 

ACC/AHA Risk Calculator (sensitivity = 0.75, specificity = 0.59, accuracy = 0.62) for 3 

predicting all CVD events while recommending less drug therapy, and missing fewer events45. 4 

ML models are versatile and can be more flexible compared to traditional risk calculators45, 49. 5 

They can combine a plethora of different data sources and lead to more precise and relevant 6 

CV risk stratification49. Finally, ML models can be trained using artificially generated datasets 7 

via data augmentation techniques and thus further increase their predictive capacity over the 8 

conventional risk assessment techniques.  9 
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4. The Clinical Utility of Machine Learning-Based Methods 1 

Currently, there is no single correct diagnosis approach for any given patients for CVD 2 

prediction due to different clinical characteristics and variability in symptoms of patients and 3 

imperfections in results obtained from noninvasive and cardiac tests. Therefore, individual CV 4 

risk determination is an important path to take towards a predictive medicine. There is a 5 

growing need for finding further appropriate, easy to apply, noninvasive tests and biomarkers 6 

that will increase the yield of CVD prediction. However, algorithm conception for correct 7 

classification of CVD risk factors remains a major problem. 8 

From a clinical perspective, the data-driven approach of ML may also help optimize 9 

the algorithms of PWA by comparing predictions with data simultaneously obtained through 10 

reference standards (typically intra-arterial measurements) and improve the quality assessment 11 

of the pulsatile signals. Application of deep-learning analysis to “big data” collected through 12 

registries may help improve the patient risk stratification and allow accurate long-term risk 13 

prediction. 14 

In the contemporary published data, development of ML models and their validation 15 

has been demonstrated in a few clinical studies. Initially the early data were derived from cross-16 

sectional data that provided a proof of concept for researchers to put their algorithms to test 17 

with real clinical data (see Tables 1, 2). The “one-million dollar” question is whether the ML 18 

derived estimates of vascular aging were accurate in estimating the certain vascular aging 19 

biomarker and, of course, whether these ML-derived estimates were at least as prognostic of 20 

hard end points as their reference method. Although no real conclusions can be made based on 21 

the scarce available data on most of the vascular aging indices, the initial results are promising. 22 

In a very elegantly performed study, ambulatory BP measurements and clinical profile were 23 

used by Antza et al. to derive an Early Vascular Aging (EVA) Ambulatory score comprising 24 

24-hour SBP, 24-hour DBP, 24-hour HR, age, sex, BMI, diabetes mellitus (yes–no), and 25 
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estimated glomerular filtration rate (modification of diet in renal disease)50. This score was 1 

shown to identify with good accuracy hypertensive patients with EVA that was defined as 2 

cfPWV values higher than the expected for age average values according to European 3 

population data and further confirmed that the use of scores to identify early vascular aging is 4 

feasible51. 5 

In an effort to improve diagnostic accuracy Vallee et al. used an algorithm based on 6 

aortic PWV and AI to better predict CAD52. They developed an aPWV Index as a measure of 7 

an individual patient’s aortic stiffness independent of age, gender, mean BP, and HR. The 8 

aPWV Index was thus calculated as (measured aPWV-theoretical aPWV)/theoretical aPWV 9 

and showed to predict CAD. Further, confirming this strategy of ML-derived indices of 10 

vascular aging were 2 prospective studies and also data from larger cohorts that assessed 11 

coronary calcification score53.  The first showed that PWV derived by ML and an uncalibrated 12 

trace of carotid pressure waveform is a good prognostic factor of events in the Framingham 13 

study41. The second estimated PWV by the Reference Values Equations and showed that 14 

ePWV is both capable in predicting events but in sequential measurements could also be used 15 

as to monitor treatment efficacy and improve prognosis beyond BP in hypertensives13, 14. 16 

In the near future, it is not science fiction to envisage ML working in the background 17 

of standard primary prevention assessment in an outpatient clinic or even through specific 18 

applications in a mobile phone or laptop/notebook, gathering the variables automatically and 19 

allowing an immediate risk score computation. These methods are already used in everyday 20 

practice by many applications that utilize ML secretly that the user is not aware of. An everyday 21 

characteristic example is that of web browser advertisements which are based on the passive 22 

(unknown to user) collection of parameters and their seamless input into ML algorithms. With 23 

the latest advancements in automated feature ranking, ML can be independent of user input 24 

and practically fully automated. This is the big step needed to provide a more personalized 25 
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medicine that will fit each patient’s needs and also support physicians in their everyday practise 1 

with on-the-fly answers and solutions specific to the patient. This principle will amalgamate 2 

personal characteristics, input from medical equipment/software and minimal input from 3 

physicians to shape the algorithm for each patient.  4 

5. Future Research Directions 5 

5.1 Harnessing electronic health record data 6 

Electronic health records (EHRs) contain a plethora of patient data, ranging from 7 

demographic details and clinical notes to laboratory test results and medical images. Whilst 8 

EHRs were initially designed to improve the efficiency and accessibility of healthcare systems, 9 

they have found varied applications in clinical research54, 55, including cardiovascular event 10 

prediction56, 57. In the future EHR data could firstly be used to identify patients with known risk 11 

factors who may benefit from vascular age assessment. ML-based techniques for this purpose 12 

would need moderate accuracy to justify the additional clinical workload. Secondly, EHR data 13 

could be used to estimate vascular ageing parameters which could be used to inform clinical 14 

decision making. ML-based techniques would need a high level of accuracy in this scenario to 15 

ensure patient safety. 16 

5.2 Pulse wave: a gold mine of physiological information 17 

The arterial pulse wave is a rich source of information for assessing vascular health in 18 

humans as it is influenced by the cardiac and vascular properties58 and thus can reflect 19 

physiological changes in the cardiovasculature58-60. Arterial pulse signals are measured in both 20 

clinical practice and wearable devices. Two commonly obtained pulse signals are PPG and 21 

radial BP. Numerous physiological parameters can be computed from these signals, which can 22 

be useful for health monitoring and clinical decision making. Previous studies have used an 23 
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abundance of features extracted from either the PPG or BP waveform (Figure 4) and 1 

incorporated them into a regression pipeline for the estimation of major vascular biomarkers25, 2 

61, 62. Moreover, further opportunities can arise as deep learning algorithms are capable of 3 

revealing more sophisticated pieces of vascular information through learning by themselves 4 

from the morphology of the raw physiological signals63, 64 without the need for manually 5 

extracted features.  6 

[Figure 4] 7 

5.3 Using consumer devices to assess vascular age in daily life 8 

Research is ongoing to incorporate measures of vascular age into consumer devices 9 

such as bathroom scales, smartphones, and wrist-worn fitness trackers65-67. The bathroom 10 

scales approach assesses PWV from the time delay between cardiac ejection and pulse arrival 11 

at the foot, whereas technology for smartphones and fitness trackers assesses vascular age from 12 

the shape of a single PPG pulse wave. The use of consumer devices to assess arterial stiffness 13 

presents several opportunities: these devices can be used away from the clinical setting, 14 

avoiding potential inaccuracies due to white-coat hypertension68, and may facilitate assessment 15 

in a range of additional situations, e.g. after exercise69, whilst asleep, and during potentially 16 

stressful daily activities. Results can be fed back to the user immediately and could be used to 17 

prompt lifestyle changes. Furthermore, consumer devices can be used remotely, an important 18 

consideration in the light of COVID-19.  19 

However, several challenges remain before the full potential of consumer devices for 20 

assessing vascular age can be realised. Firstly, measurements should be contextualised 21 

according to the user’s activity: for example, an elevated vascular age measured shortly after 22 

exercise would be interpreted differently to a similar assessment during sleep. Algorithms are 23 

being developed to detect when a user is sleeping from wearable signals, which could be used 24 
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to contextualise vascular ageing assessments70. Secondly, measurements may not be solely 1 

indicative of large artery stiffness due to extended PWV path lengths, such as heart-foot PWVs 2 

provided by bathroom scales, and the source of pulse wave measurements, such as PPG-derived 3 

pulse waves being influenced by the microvasculature. Thirdly, measurements acquired from 4 

consumer devices in daily life are more likely to be of low quality due to motion artifacts and 5 

poor sensor contact. Consequently, algorithms are required to reject low quality data, and 6 

prompt the user to reposition the sensor and retake the recording when necessary. Finally, 7 

algorithms are required to post-process the repeated measurements provided by consumer 8 

devices in order to condense the data into a manageable summary statistic for clinical use and 9 

minimise false alerts. 10 

5.4 A gold standard for vascular age 11 

A reference vascular age is a necessary prerequisite to using supervised ML to develop 12 

new models with which to assess vascular age. There are broadly two approaches to defining 13 

vascular age: (i) the age of an individual with the same absolute cardiovascular risk but 14 

controlled risk factors71; or (ii) the age of an individual with the same cardiovascular state, such 15 

as arterial stiffness assessed through PWV, but controlled risk factors. However, there is not 16 

yet consensus over which approach should be used to calculate a reference vascular age. A 17 

widely accepted approach to calculating vascular age supported by strong evidence for its 18 

clinical utility would provide a reference with which to train ML models, and justification for 19 

using ML models to assess vascular age in clinical practice. A more elaborate method has been 20 

recently proposed with the introduction of EVA and the use of an estimation of vascular age 21 

based on PWV and its comparison to the true age of each participant72. This approach has the 22 

benefit of incorporating age, BP, and treatment in the identification of patients at high CVD 23 
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risk. A cut-off based on the PWV reference values for certain age, BP and treatment might be 1 

a superior solution, but this remains to be proven in future studies. 2 

Conclusion 3 

Vascular ageing biomarkers have been found to be predictive of CV risk independently 4 

of classical risk factors, and yet are not widely used in clinical practice. This review highlights 5 

the utility of ML for developing new techniques to assess vascular ageing biomarkers quickly 6 

and accurately. When coupled with effective interventions these new techniques could help 7 

reduce cardiovascular morbidity and mortality. The plethora of data now routinely collected in 8 

healthcare settings and in daily life provides opportunity to identify at-risk individuals, to 9 

monitor their CV health in daily life, and as therapeutic targets. Much further work is required 10 

to develop ML-based biomarkers to the required standard for them to be considered as 11 

surrogate endpoints of CV events73, and to identify clinical scenarios in which their use is cost-12 

effective. 13 

  14 
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Figure Legends 1 

Figure 1: CENTRAL ILLUSTRATION: Using machine learning to assess vascular ageing 2 

biomarkers from more easily obtained measurements. 3 

CV: cardiovascular; : presence of CV event; : absence of CV event.  4 

Adapted from: ‘Adult male with organs’, under CC0 1.0. 5 

 6 

Figure 2: Schematic representation of a random forest regression prediction. 7 

 8 

Figure 3: A case study of estimating central systolic blood pressure (CSBP) and central 9 

diastolic blood pressure (CDBP) from age, brachial systolic (BSBP) and diastolic blood 10 

pressures (BDBP), and heart rate using a random forest regressor.  11 

 12 

Figure 4: Pulse wave analysis of exemplary photoplethysmography (PPG) and radial blood 13 

pressure (BP) waveforms. Adapted from: ‘Photoplethysmogram pulse wave composition’, 14 

under CC BY 4.0. 15 

  16 

https://commons.wikimedia.org/wiki/File:Adult_male_with_organs.png
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Tables 1 

Table 1: Applications of statistical modelling and machine learning in vascular age assessment. 2 

Type of model Machine Learning Techniques Applications 

Parameter 

estimation 

Simple linear regression Estimating carotid augmentation index (AI) from radial AI74 

Transfer function Estimate CBP from a cuff BP and peripheral pressure pulse waves15  

Multiple linear regression Estimating PWV from age and BP (developed in 17, and applied in 13). 

Estimating age from non-invasive CV parameters75. 

Gaussian process regression Estimating PWV and BP from PTT and features derived from non-invasive pulse waves76. 

Neural network Estimating systolic CBP from radial systolic and diastolic BPs25. 

Estimating ankle-brachial index from a PPG pulse wave77. 

Estimating BP and PWV from either PPG pulse waves, or features derived from PPG 

pulse waves78. 

Ensemble of neural networks Estimating age from blood test results79. 

Estimating PWV from routine clinical variables and an uncalibrated carotid tonometry 

waveform41. 



2 

 

Risk 

classification 

Decision tree Predicting who would suffer a CV event by combining routinely measured and blood test 

data, and non-invasive CV parameters80. 

Classifying subjects as high or low risk for CV events using risk factors and parameters 

derived from carotid ultrasound images49. 

Predicting the presence of obstructive coronary artery disease from clinical data and the 

coronary artery calcium score53. 

Predicting the presence of coronary heart disease from PWV and clinical and laboratory 

parameters81. 

Support vector machine Predicting who would suffer a CV event from risk factors45. 

Classifying a set of pulse wave features as ‘young’ or ‘old’82, or ‘high’ or ‘low’ PWV83. 

Neural network Predicting coronary heart disease from clinical data, haemodynamic data, and PWV52. 

Ensemble of ML piplelines Predicting CV events from biobank variables (including many which are not routinely 

recorded)84. 

  1 
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Table 2: The capabilities of selected statistical modelling and supervised machine learning techniques. 1 

Machine Learning Technique Capabilities 

Output Type Input Type 

Parameter Estimation Risk Classification Single input Multiple inputs Waveform input 

Simple linear regression ✓ X ✓ X X 

Transfer function ✓ X ✓ X ✓ 

Multiple linear regression ✓ X X ✓ X 

Gaussian process regression ✓ X X ✓ X 

Neural network ✓ ✓ X ✓ ✓ 



4 

 

Decision tree ✓ ✓ X ✓ X 

Support vector machine X ✓ X ✓ X 

 1 

Model types: (i) Parameter Estimation - estimating a vascular ageing parameter (such as central blood pressure) from more easily obtained 2 

measurements; (ii) Risk Classification - categorising patients according to whether or not they are likely to experience an event, or the presence 3 

or absence of a diagnosis. 4 

Input types: (i) single input - a single numerical value (e.g. age); (ii) multiple inputs; (iii) waveform input - whether or not the ML technique can 5 

accept a waveform as one of the inputs (e.g. a pulse wave). 6 

 7 

  8 
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Table 3: List of selected validation studies of ML techniques compared to reference methods for vascular parameters estimation. 1 

Publication Target 

parameter 

Inputs Machine Learning 

technique 

Sample size Age (years) R2 Mean error 

Greve et al. 

(2016)13 

cfPWV 

(Complior) 

Age, brachial BP 

(Cuff) 

Multiple linear 

regression 

1,045 

56±13  

(CV event), 

50±12 

(no CV event) 

- 

-0.3% 

[-15%, +17%] 

Huttunen et 

al. (2019)76 

aPWV * PPG wave * 

Gaussian process 

regression 

943 - 0.88 - 

Huttunen et 

al. (2020)78 

aPWV * PPG wave * 

Neural network  

943 

- 0.93 - 

Tavallali et 

al. (2018)41 

cfPWV 

(Tonometry) 

Carotid BP wave 

(Tonometry) 

Ensemble of neural 

networks 

 

5,020 

45±11 0.72 0.00±2.07 m/s 



6 

 

Bikia et al. 

(2020)16 

CSBP 

(SphygmoCor) 

Brachial BP 

(Cuff), cfPWV 

(Tonometry) 

Supports vector 

regressor 

 

783 61±11 0.94 

0.43 mmHg 

[-7.88 mmHg, 

8.73 mmHg] 

Huttunen et 

al. (2019)76 

CSBP, CDBP 

* 

PPG wave * Gaussian process 

regression 

 

943 

- 

0.56, 

0.87 

- 

Huttunen et 

al. (2020)78 

CSBP, CDBP 

* 

PPG wave * Neural network  

943 

- 

0.80, 

0.92 

- 

Xiao et al. 

(2017)25 

CSBP 

(Invasive) 

Radial BP 

(Invasive) 

Neural network 62 

61±11 0.94 -0.1±3.9 mmHg 

R2: Coefficient of determination; SD: standard deviation; cfPWV: carotid-femoral pulse wave velocity; aPWV: aortic pulse wave velocity; CSBP: central systolic blood 1 

pressure, CI: confidence intervals. 2 

*The study population used for the training/testing scheme was generated from a computer simulator. Local aPWV was calculated analytically using the Bramwell-Hill 3 

formula85. 4 

 5 

 6 

 7 
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Table 4: List of selected validation studies of ML techniques compared to reference methods for vascular risk classification. 1 

Publication Outcome Method to assess the 

outcome 

Machine Learning 

technique 

Sample 

size 

Age (years) Sensitivity/ 

Specificity 

AUROC 

Alaa et al. 

(2019)84 

CV event Blood tests, risk factors  

Ensemble of ML 

pipelines 

423,60

4 

56±8 69.9% / - 0.77 

Al’Aref et al. 

(2020)53 

Coronary 

artery disease 

Coronary computed 

tomography 

angiography, risk factors   

Decision tree 13,054 58±11 

78% / 62.8% 

& 80% / 81.5% 

0.77 

& 0.88 

Alty et al. 

(2003)83 

PWV 

classification 

Photoplethysmogram 

pulse wave sensor 

Support vector 

machine 

5,573 - 93% / 78% - 

Garcia-

Carretero et 

al. (2019)80 

CV event 

Tonometry- 

based PWV, risk factors, 

laboratory data 

Decision tree 88 54±16 98% / 95% - 

Jamthikar et 

al. (2019)86 

CV event 

Carotid ultrasound, 

risk factors  

Decision tree 202 69±11 

9.5% / 96.5% 

& 5.5% / 99% 

0.80 

& 0.68 
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Kakadiaris et 

al. (2018)45 

CV event Risk factors 

Support vector 

machine 

6,459 45-84 86% / 95% 0.92 

Sorelli et al. 

(2018)82 

PW 

classification 

Laser Doppler flowmetry 

Support vector 

machine 

54 0-90 65% / 90% 0.95 

Vallee et al. 

(2019)52 

Coronary 

heart disease 

Tonometry- 

based PWV, risk factors 

Neural network 437 60±11 80% / 92% * - 

Vallee et al. 

(2019)81 

Coronary 

heart disease 

Tonometry- 

based PWV, risk factors 

Decision tree 530 62 ±11 82% / 85% * 0.89 

AUC: area under the curve; CV: cardiovascular; PW: pulse wave; PWV: pulse wave velocity; ML: machine learning. 1 

*In the case that more than two classifiers are tested, we report only the results of the best performing classifier. 2 
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