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Abstract

Key message: A method to segregate trees and logs of planted Eucalyptus nitens (H. Deane & Maiden) Maiden has
been developed, showing that accounting for wood quality during the process of segregation and sorting
of timber resources allows for the recovery of structural timber of the desired quality.

Context: Appropriate sorting of raw forest resources is necessary to allocate logs to different production streams, to
ensure that the desired quality of timber is achieved. Acoustic wave velocity can be used to test the wood quality
of trees and logs, and its use as a sorting tool needs to be investigated prior to the development of a segregation
method to recover high-quality timber.

Aims: This study aimed to develop a segregation methodology for plantation E. nitens trees and logs to obtain
high-quality structural boards.

Methods: Forty-nine logs of planted E. nitens were measured, assessed with acoustic wave velocity, and processed
into 268 structural boards maintaining board, log, and tree identity. Board stiffness was determined via structural
testing and boards were ranked in structural grades. Linear mixed effect models were used to predict board
stiffness based on tree and log variables, and machine learning decision trees were used to create a segregation
method for board grades. Different segregation options were compared through scenario simulation.

Results: The prediction of individual board stiffness with tree or log variables yielded low coefficients of variation
due to large intra-log variability (R = 0.22 for tree variables and R’ = 0.28 for log variables). However, the decision
tree identified acoustic wave velocity thresholds to segregate E. nitens trees and logs. When applied in scenario
simulation, segregation based on log variables produced the best results, resulting in large shares of high-quality
board grades, showing that a segregation method based on wood quality traits can yield larger higher recovery of
higher quality timber, in respect to other scenarios.
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quality

Conclusion: Acoustic wave velocity can be used to segregate trees and logs for structural boards from plantation
E. nitens, and machine learning decision trees can support the development of a segregation method to determine
operational thresholds to increase the recovery of high-quality timber.

Keywords: Fucalyptus plantations, Stiffness, Acoustic wave velocity, Non-destructive techniques, Segregation, Wood

1 Introduction

To increase the efficiency and value of the wood produc-
tion supply chain, sorting and allocation of forest re-
sources to the appropriate productive stream is needed.
Such sorting can be performed on the basis of know-
ledge on tree and log wood quality traits relevant for dif-
ferent timber products (Murphy and Cown 2015).
Important wood quality traits such as stiffness and dens-
ity determine timber product grades, which in turn es-
tablish the value, use, and performance of the timber
elements. These wood quality traits can be assessed on
standing trees and logs and can then be used for the pre-
diction of the quality of the timber products (Wang
et al. 2007). Using this information on wood quality of
trees and logs, segregation strategies for appropriate al-
location of forest resources can then be developed and
adapted for different productive systems.

Eucalyptus plantations offer a promising opportunity to
explore forest resources segregation to obtain different
products. The increasing interest in utilising plantation
logs for timber products has moved the focus from the
dominant production of fibre for the pulp and paper in-
dustry to other uses of plantation logs. Areas planted
with species of this genus cover almost 26% of the total
planted area across the globe (Binkley et al. 2017), and
in Australia, 884,000ha are planted with these hard-
woods (ABARES 2019). Australian hardwood plantations
are dominated by the Tasmanian blue gum (Eucalyptus
globulus Labill.), covering 50% of the total estate, and
shining gum (Eucalyptus nitens H. Deane & Maiden),
occupying 26%, whilst a smaller percentage is planted
with other eucalypt species. The demand for forest prod-
ucts to supply the construction market is rapidly in-
creasing, especially for engineered wood products to
substitute steel and concrete in buildings (Brandt et al.
2021). Plantation logs could be a source of structural
timber to supply the increasing need of renewable mate-
rials in construction; however, knowledge on the quality
of these fast-growing resources both in tree, logs, and
timber products is needed prior to the production of
final timber elements.

The prediction of quality and properties of timber
from trees and logs has been the focus of decades of re-
search on non-destructive testing techniques. Several
methods have been proposed to assess wood properties
such as density, stiffness, and strength before processing

logs into timber products (Moore et al. 2013; Merlo
et al. 2014; Butler et al. 2017). Amongst those, the use of
acoustic waves in standing trees and logs has been devel-
oped and used on several species to characterise wood
quality (Wang 2013; Ross 2015) and even to predict im-
portant timber structural properties over large geo-
graphic areas (Caballé et al. 2020; Balasso et al. 2021).
Acoustic tools measure the velocity of acoustic waves in
trees and logs (acoustic wave velocity, AWYV), from
which the dynamic modulus of elasticity (MOEgy,), a
measure of stiffness, can be calculated. Although the dy-
namic modulus of elasticity is an indirect measure of
stiffness, it is closely related to the static modulus of
elasticity (MOEg,) (Ilic 2001), which is usually esti-
mated through mechanical testing of timber under
bending. Such mechanical tests are regulated by national
standards, which are used to determine the final grade
of the timber (Standards Australia 2010a, b). Studies
have correlated stiffness measured through AWV on
trees and logs with that measured mechanically on tim-
ber products, and for Eucalyptus species, moderate cor-
relations have been found. Dickson et al. (2003) have
investigated stiffness in E. dunnii timber, finding a mod-
est correlation between tree AWV and timber MOEg,.;
(R* = 0.16) and a higher correlation with log AWV (R* =
0.52). For 14-year-old E. nitens, similar log AWV-timber
MOE,,,, correlations have been found (R? = 0.47, Black-
burn et al. 2010, and R? = 0.51, Farrell et al. 2012). How-
ever, these studies sampled one to two boards per tree
(or log, as in Farrell et al. 2012), reducing the representa-
tiveness of the measurements. Similar correlations were
found for numerous other species, and the use of non-
destructive testing tools to sort raw forest resources has
been frequently suggested (Tsehaye et al. 2000; Carter
et al. 2006; Farrell et al. 2012).

Information on the variation in wood quality traits along
the stems of trees can aid the sorting of logs for recovery
of products of the desired quality. Studies on the variation
in quality traits of E. nitens wood along the stem have
shown that density increases longitudinally from the bot-
tom to the top of the stems (Raymond and MacDonald
1998; Shelbourne et al. 2002), whilst stiffness has been
shown to increase in the first part of the stems (Washusen
et al. 2009; Hamilton et al. 2015). This information,
coupled with knowledge on the external characteristics
and internal properties of logs, such as stiffness estimated
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through AWV, can be used to then develop segregation
strategies to recover a diversified set of products from raw
forest resources. To the best of our knowledge, no study
has been undertaken to develop a segregation strategy on
trees or logs on specific product types and grades of tim-
ber, in particular of E. nitens sawn timber.

In this study, we aimed to investigate how the relation-
ships among tree and log characteristics and sawn-board
structural grades can be used to develop a segregation
methodology for plantation E. nitens timber. We used the
results of our analysis to evaluate the potential of segrega-
tion choices in delivering two classes of wood products
(pulplogs and sawlogs), developing and comparing differ-
ent potential scenarios in terms of recovery of volume of
pulplogs and of different sawn-board structural grades.

The approach presented in this study builds on the
current knowledge on correlative relationships between tree
and log stiffness and timber stiffness. We first present an
investigation on the relationships between trees and log
variables with timber stiffness, using mixed-linear models
as the modelling method. We then introduce the use of
machine learning algorithms to develop decision trees. This
modelling choice allowed us to identify relevant tree and/or
log classification variables and their thresholds to classify
sawn boards into structural grades. These findings were
then used to develop segregation strategies for E. nitens
plantation timber and to evaluate the potential recovery
under different segregation options through scenario simu-
lation. The specific objectives of this study were to:

(i) Investigate the longitudinal variation in basic
density and dynamic modulus of elasticity of logs
(MOE; 4yn) along the stems

(ii) Investigate the correlative relationships between
sawn-board stiffness (static modulus of elasticity,
MOE,, 4.¢) and log and tree traits and investigate
the percentage of variability in MOE, 4. due to the
tree, log, or board strata

(iii) Develop a descriptive mixed-linear model of sawn-
board structural grades based on relevant tree and
log traits

(iv) Utilise machine learning techniques to develop
decision trees and identify important
classification variables to develop a segregation
method based on statistically relevant tree or log
variable thresholds

(v) Develop different scenarios using the segregation
strategies developed with the decision-tree analysis

2 Materials and methods

2.1 Timber material

The materials utilised for this study were structural
boards from E. nitens trees harvested and sawn as a sub-
set of a large sawing trial. The plantation was located in
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southern Tasmania, Australia (at latitude 43° 03" S, lon-
gitude 146° 59° E). The area sits at 350 m above sea
level, and receives an average annual rainfall of 750 mm.
For this study, fifteen trees of 21 years of age were se-
lected amongst the dominant and co-dominant classes
to cover the range of diameters that would deliver ac-
ceptable sawlogs. All selections were over 30 cm diam-
eter at breast height (DBH, cm), of appropriate
straightness, free of excessive sweep, forking, and decay.
Each standing tree was measured for DBH and total
height (H, m), and slenderness of the stems was calcu-
lated as the ratio between tree height and diameter. The
AWV of each tree was measured using the Director
ST300 (Fibre-gen, New Zealand) on both sides of the
stem, perpendicularly to the slope gradient to avoid
areas with compression wood. The instrument uses two
probes located approximately 1.2 m distance apart, with
the bottom probe placed at 0.5 m from the ground level
and the upper probe at 1.7 m. The bottom probe was hit
eight times per reading, three readings per side were
taken and final values averaged. Two 5-mm diameter
and 7-cm-long outerwood cores were extracted on the
two sides tested for the acoustic measurements using an
increment borer (Haglof Sweden®). Core samples were
immediately labelled, stored in individual plastic bags in
a cooler, and measured the same day for green density
(Pgs g/cm®) and basic density (p,, g/cm®) according to
AS/NZS 1080.3:2000 (Standards Australia 2000) and vol-
ume measurements performed using the water displace-
ment method (Smith 1954).

The trees were felled, delimbed and debarked during a
commercial pulpwood harvesting operation, and bucked
in log lengths of 5.5 m. Each tree was felled at 30 cm from
the stump and cut to a small end diameter of 185 mm.
Logs coming from the same tree were grouped together in
cutting order, and at the top end of each log, a disk 2.5 cm
thick was cut for laboratory density measurements. Disks
were immediately wrapped to prevent loss of moisture
and transported to the cooler until density measurements
were performed, as described above. Green density and py,
of logs were calculated as an average of the p, or p, mea-
surements of the bottom and top disks of the log. Each
log was marked with tree number and log position in the
stem as bottom log, middle logs (second or third), and
top logs, to maintain their identity. The last harvested
log was always kept as top log, whilst from the middle
part of the stems, one or two logs were harvested,
which were grouped in the analysis as middle logs. Logs
were transported the following day to the sawmill and
placed on bearers 50 cm far apart for assessment. Max-
imum and minimum diameters were measured at both
log ends (large end diameter LED, small end diameter
SED, mm), and log lengths (L, m) were measured. Log
volume (V, m®) was calculated according to:
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2
V= L;D—’_SEDX1 X xL
2 2
The taper (7, cm/m) of each log was calculated
according to:

LED-SED
T=—7—

Acoustic wave velocity of each log was tested with the
acoustic resonance device Director HM200 (Fibre-gen,
New Zealand). The test consists of tapping with a hammer
one end of the log and reading the AWV value with the
provided hand-held tool from the same end. Acoustic
wave velocity and p, measurements were used to calculate
the MOEyy,, (GPa) of the trees and logs according to:

MOE 4, = p, x AWV?

where p, represents the green density (g/cm®) of the
sample and AWYV its acoustic wave velocity (km/s). The
dynamic modulus of elasticity of the trees (MOE, gy,
GPa) was calculated using the p, measured on the cores
and the AWV on the standing trees, whilst log MOEgy,,
(MOE 4yn, GPa) was calculated through the p, of the
logs.

2.2 Sawing and board treatments

Forty-nine logs were recovered from the selected trees,
and each log was individually identified with a colouring
pattern to allow for tree, log, and board identification
(Fig. 1). Logs were processed individually in a commer-
cial sawmill with a back-sawing pattern chosen to maxi-
mise volume recovery. In total, 268 boards were sawn
and stacked to be air-dried under cover for a period of
14 months and then reconditioned prior to final kiln
drying. The kiln drying procedure followed the current
drying schedule used for eucalypt timber, to a nominal
moisture content (MC) of 12%. The dried boards were
square dressed to final widths of 70, 90, 120, 140, and
165 mm, thickness of 35 mm, ; and average board length
of 5.5 m, maintaining board identity.
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Board volume was measured prior to dressing, and the
nominal recovery rate, representing the volume of sawn
boards recovered out of the volume of the logs sawn,
was calculated as:

N, =20

Vi

where N, represents the nominal recovery rate of the
boards (%), Vo represents the volume of the boards be-
fore dressing (m®), and V; is the total volume of the har-
vested logs (m®). The dressed board static modulus of
elasticity (MOEy gy GPa) was tested through mechan-
ical testing in edge-wise 4-point static bending test, ac-
cording to the test procedures outlined in AS 4063.1
(Standards Australia 2010a), and calculated with:

3al*-4a®
3 P2=P1
(2

where b and d are the thickness and the width of the
board (mm), respectively; [ is the span length, which cor-
responds to 18 times the width of the board (mm); a is 6
times the board width (mm); and F, and F; are the loads
at 40% and 10% of the maximum load, recorded at the
failure point. ¢, and ¢; are the maximum displacement
(mm) at F, and F; loads, respectively.

Basic density and MC assessment on boards was per-
formed on samples of timber recovered from the top and
bottom ends of each board. Samples were measured follow-
ing the procedure described in AS 1080.3 and AS 1080.1

(Standards Australia 2000, 2012) using the following
equations:

MOE b.stat —

Basic *@x$
P ="y " (100 + MC)
Mc =" o 100

mo

with m; being the mass of the sample at the time of
the testing (kg), V the volume of the sample before

Fig. 1 Pattern used to maintain traceability from logs to sawn boards. Each log end was coloured with a unique colour combination

~
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oven-drying (m?), and m, the mass of the sample after
oven-drying (kg). The MC and p;, of each board were
calculated as an average of the samples at the bottom
and top ends of each board. The MOE,, 4, values ob-
tained were adjusted based on the MC of each board,
according to AS 2878. The adjusted MOE, 4, values
were used to classify each board into structural grade
equivalents, following AS 2082 and AS 1720.1 for E.
nitens (Standards Australia 2006, 2010b). The mini-
mum MOE, g, value per each structural grade is pro-
vided in Table 1, with the corresponding stress grade
(F-grade).

2.3 Statistical analyses

Analyses were performed in R statistical software with R
studio interface (RStudio Team 2016; R Core Team
2020).

The mean, standard deviation, and value ranges were
calculated for each variable. To investigate the longitu-
dinal variation in basic density and modulus of elasticity
of logs (MOE,4y,) along the stems, we employed one-
way analysis of variance (ANOVA) for linear mixed
models to test the effect of log position, accounted for as
a categorical variable to identify bottom, middle, and top
logs. Tree was used as a random factor to account for
non-independence of logs within trees, and post hoc
Tukey tests were conducted to compare basic density
and MOE, 4y, between bottom, middle, and top logs (sig-
nificance level 0.001).

A random-effects model was developed to investigate
the percentage of variability in MOE, ¢ due to the tree,
log, or board strata, according to the model:

Vi = #+ Ti+ Lji) + ey

where y;; is the adjusted MOE;, s of a single board, u
is the overall mean, T; is the random effect of the ith
tree [~ N(0,0%)], Lj is the random effect of the jth log
within the ith tree [~ N(0,07)], and e is the random
effect of the kth board from the jth log [~ N(0,0?)].

Table 1 Structural grades assigned to the sawn boards after
mechanical testing according to AS 4063.1 (Standards Australia
2010a) and the corresponding static modulus of elasticity
(MOEp, 5120 outlined in AS 1720.1, Table H2.1 (Standards Australia
2010b)

Structural grade®

Stress grade Static board modulus of

(F-grade)® elasticity (MOEy, .., GPa)®
Structural grade no. 1 F22 16
Structural grade no. 2 F17 14
Structural grade no. 3 F14 12
Structural grade no. 4 F11 10.5

@AS 2082 (Standards Australia 2006)
PAS 1720.1, Table H2.1 (Standards Australia 2010b)
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Linear-mixed effect models were used to develop de-
scriptive models of board MOE,, s, with fixed variables
being only tree, only log, and tree and log variables
(complete model), including random effects for trees |
~ N(0,02)] and logs within trees [~ N(0,07)]. The
package ‘Ime4’ (Bates et al. 2015) was used to compute
the mixed effect models. The independent variables were
chosen among those measured on trees (DBH, height,
slenderness, AWV, density, and MOEg4,,) and on logs
(log position within the trees, small end diameter, log
taper, AWV, density, and MOE, 4y). Models were built
inserting the independent variables in order of their cor-
relation coefficient with the board MOE}, 4, and ensur-
ing that tree or log variables with a Pearson correlation
coefficient of more than 0.7 were not included in the
same model. To evaluate the influence of log position in
the stem on board MOE, 4., we used ANOVA for linear
mixed models with tree and log as random factors to ac-
count for the non-independence of boards within logs
and logs within trees. Each model was compared with
the most simple one using the likelihood-ratio test
(LRT) using the package ‘Imtest’ (Zeileis and Hothorn
2002) and AIC values. The LRT procedure controls the
insertion of new variables if they significantly improve
the model’s performance at the threshold of P <0.05.
The models which performed best according to the LRT
analysis were taken as the best descriptive tree, log, and
complete models. The normal distribution of the re-
sidual of the models was evaluated through residual
plots. Model bias and precision were evaluated with 10-
fold cross-validation through the package ‘caret’ (Kuhn
2020). K-fold cross-validation (in our case k = 10) trains
the model in a subset of data (k-1) and validates it on
the left-over subset, hence evaluating model prediction
accuracy. The splitting of the dataset is performed on
sets of folds represented by the k parameter. At each val-
idation, a prediction error is recorded and when all folds
are run through the cross-validating procedure, the aver-
age prediction error is calculated. The metrics reported
are the root mean squared error (RMSE), computed as
the square root of the mean squared difference between
predicted and observed response variable values, and the
R-squared (Rz, coefficient of determination), represent-
ing the proportion of variance in the response variable
explained by the model’s predictors.

The machine learning decision trees were applied to
classify board structural grades as categorical variables
(classification trees) using as predictors the same inde-
pendent variables employed for the linear mixed effect
models. Two mixed effect classification trees were devel-
oped, one model type considering all variables together
(tree and log variables), and another with tree-only and
log position variables, to provide an insight into a deci-
sion framework for harvesting operations which would
have only tree-related variables available at the moment
of harvest. We used the package “glmertree” (Fokkema
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et al. 2018) which allows for the presence of random ef-
fects in the models and grows classification trees with
the variables provided. The decision tree classifiers were
used to model the relationship with tree and log vari-
ables and board MOE, ., accounting for the random
effect of trees and logs, as in the mixed-model technique
reported above. The tree structure is presented graphic-
ally and its potential as an aid to decision-making pro-
cesses on tree and log segregation is discussed and
presented in different segregation scenarios.

2.4 Segregation scenarios

The decision tree analysis allowed the identification of tree
and log AWV thresholds (4.56 km/s for trees and 3.91
km/s for logs), as well as depicting log position as an
important variable. These variables, were used to segregate
trees and logs in categories of product recovery. The
AWV thresholds were used to simulate product recovery
under six different segregation scenarios presented below.

(I) Scenario A, where no segregation is applied and all
the logs are used as pulplogs for the production of
woodchips for the pulp and paper industry.

(II) Scenario B, where no segregation is applied and all
the logs are used as sawlogs for the production of
structural sawn boards.

(I)Scenario C, where segregation is made only on a
volumetric basis, using the first log as sawlog and
all the other logs as pulplogs.

(IVScenario D, where segregation is applied at the tree
level only, utilising the AWV threshold of 4.56 km/
s. All logs from trees with AWV above the
threshold were used as sawlogs and all logs from
trees with AWV below the threshold were used as
pulplogs.

(V) Scenario E, where segregation is applied at the tree
level, plus log position is taken into account. This
scenario follows scenario D with a AWV threshold
of 4.56 km/s and in addition uses log position. All
logs from trees above the AWV threshold and
middle and top logs from trees below the AWV
threshold were used as sawlogs, and the remaining
logs from trees with AWV below 4.56 km/s and
from the bottom of the tree were used as pulplogs.

(VIScenario F, where segregation is applied at the log
level. This last scenario presents the case in which
only logs are segregated according to a AWV
threshold of 3.91 km/s identified from the
classification tree analysis. All logs above this AWV
threshold were used as sawlogs and all logs below
the AWV threshold were used as pulplogs.

Results are presented in cubic metre of recovered ma-
terial, being either woodchips and/or volume of dried
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board shared in grades (structural grade no. 1, 2, 3, 4).
The nominal recovery rate for each scenario is
presented, along with the amount of timber lost due to
sawing, reported as sawdust.

3 Results

3.1 Trees and log traits

The characteristics of the E. nitens sampled trees are
summarised in Table 2. There was moderate variation in
tree size and wood properties, with tree basic density
varying from 0.45 to 0.69 g/cm® and dynamic modulus
of elasticity ranging from 15.5 to 25.5 GPa. In total, 18.5
m? of logs was harvested, with a single log volume ran-
ging from 0.19 to 0.74 m>. Log wood properties also var-
ied considerably, with a lower average and range in
AWV in respect to the AWV values found on standing
trees and a lower average of log modulus of elasticity
(15.9 GPa) and range (11.5 to 19.9 GPa).

Basic density showed a longitudinal increase along
stem height, with bottom logs presenting an average of
0.52 g/cm® (range 0.45-0.57 g/cm®), middle logs 0.53 g/
cm® (range 0.45-0.59 g/cm®), and top logs 0.56 g/cm>
(range 0.48-0.62 g/cm®). Top logs were significantly
denser than bottom and middle logs (P <0.001).
Dynamic modulus of elasticity significantly increased
(P <0.001) from bottom (average of 14.4 GPa, range
11.5-18 GPa) to middle logs (average of 16.7 GPa,
range 13.8-19.9GPa) and then slightly decreased

Table 2 Descriptive statistics of E. nitens selected trees (n = 15)
and logs (n = 49). Mean, standard deviation presented in
parenthesis (SD), and minimum and maximum values (min-max)

Variable Mean and standard deviation =~ Min  Max

Trees
DBH (cm) 399 (352) 350 465
H (m) 354 (3.10) 306 405
SL (m/m) 889 (6.22) 804 1025
AWVyree (km/s) 4.15(0.32) 376 469
Pg tee (9/cM’) 4(004) 105 121
Pb tree (g/cm’) 0.59 (0.05) 045 069
MOE 4y, (GPa) 19.8 (3.04) 155 255

Logs
Log volume (m?) 0.38 (0.12) 019 074
Log taper (cm/m)  0.80 (0.31) 022 178
AWV oq (km/s) 377 (0.22) 325 420
Pg tog (g/cm’) 111 (004) 102 119
Pb l0g (g/cm’) 0.54 (0.40) 045 063
MOE, 4y, (GPa) 15.9 (1.94) 11.5 199

DBH diameter at breast height, H height, SL slenderness, AWV, tree acoustic
wave velocity, oy ree tree green density, Oy, ¢ree tree basic density, MOE, 4, tree
dynamic modulus of elasticity, AWV, log acoustic wave velocity, pg 1og 09
green density, o, g log basic density, MOE, 4,, log dynamic modulus

of elasticity
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towards top logs (average 16.4 GPa, range 14.2-19.0
GPa).

3.2 Modelling

The results of the random-effects model show that of
the overall variation in MOE,, .. 70% was attributable to
differences between boards within a log, 2% was attribut-
able to differences between logs in the same tree, and
28% was attributable to differences between trees. The
cross-correlation analysis showed that the variables most
correlated with MOE, s,, were those related to the
AWV and to dynamic MOE of logs and trees (AWV e,
AWV g, MOE; 4yn, MOE, 4y,). Moreover, we found a sig-
nificant effect of log position, with significant differences
in MOE 4, of boards coming from different positions
in the stem; hence, the variable of log position was uti-
lised in the models. Other variables did not display large
or significant correlations with MOE, ., and were
therefore excluded from the modelling.

The modelling of MOE,, ., was performed through in-
cremental insertion of variables into the simplest model,
represented only by the acoustic wave velocity of the
trees or of the logs (model 1) (Table 3). The likelihood-
ratio test (LRT) analysis on the tree models shows that
the addition of basic density to AWV improves the
model performance (lower AIC value and higher log-
likelihood), whilst further addition of the tree diameter
does not improve the model. Model 2 was hence as-
sumed to be the best, being also significantly different
than model 1. When modelling MOE,, s, with only log
variables, the LRT analysis shows that the incremental
addition of log density, log taper, and log position did
not significantly improve the accuracy of the model (P =
0.67 and P = 0.83). Hence, the simplest model 4 was
used in the cross-validation procedure.
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In building the complete model, tree and log variables
were considered together. Tree AWV was used again as
the first and only fixed variable in the simplest model 1.
With this model, the position of the log in the tree was
added, yielding a model significantly different than the
previous one (P <0.001). The further addition of the log
AWYV improved model 8 (lower log-likelihood and lower
AIC and BIC) and was significantly different than model
7 (P <0.05). This last model was then chosen for the
cross-validation procedure.

The tree model (model 2) of MOEy 4, shows an in-
crease of stiffness in the boards with increasing AWV of
the trees and increasing basic density of the timber
(Table 4). The cross-validation procedure of this model
showed a RMSE of 2.01 GPa and an R* of 0.22. The log
model (model 4) considered the best in describing the
MOE, 5a¢ shows a large positive effect of AWV in the
boards’ stiffness. The validation of this model yielded a
RMSE of 1.93 GPa and a R* of 0.28. When tree and log
variables were used in the same model, those that most
strongly influenced MOE,, s, were AWV of the trees,
with a moderate positive effect; the AWV of the logs,
with a large and positive effect; and the position of the
log in the tree. The cross-validation was applied to this
model (9) yielding a RMSE of 1.94 GPa and a R* of 0.26
(Table 4).

Whilst the log model performed slightly better than
the tree model and the tree-and-log model, (showing a
better fit and less RMSE) the variability explained was
still moderate (less than 30% in all models). This is due
to the large intra-log variability already demonstrated by
the random-effects model and shown in the Fig. 2, in
which each dot represents a board and dots stacked on
the same vertical line belong to the same log. Although
there is an increasing trend of average board stiffness (y-

Table 3 Model comparison of MOE,, ... modelled through tree-only, log-only, and tree- and log-related variables (AWV acoustic
wave velocity, p, basic density of trees or logs, DBH diameter at breast height)

Model Df AIC BIC logLik Pr (> Chisq)
Tree level

M AWV,ee 5 11353 11535 —5627

) AWViree + Ob tree 6 1133.1 1154.7 —560.6 *

3) AWV,ee + Pp tree + DBH 7 1135.1 1160.2 —560.5 0.84
Log level

(4) AWV oq 5 1109.5 11274 —549.73

(5) AWiog + Pb 10g 6 1113 113238 —549.64 067

©®) AWViog + Db 10 + taper 7 1113 11384 — 54961 083
Tree and log variables

M AWV,ee 5 11353 11535 —562.7

) AWV, oo + position 7 11219 1147 —5539 e

®) AWViree + position + AWV g 8 11143 1143 —549.1 **

Significance levels: *< 0.05, **P 0.01, ***P 0.001
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Table 4 Model equations and statistics for the mixed-linear models of MOE,, .5 With tree-only, log-only, and tree and log variables

(AWV acoustic wave velocity, py, basic density)

Model Equation and parameters RMSE R?

(2) Tree MOEpstat = — 141 + 2.31 AWVypee + 9.18 Db tree 201 022
4) Log MOEp st = =1.95 + 4.11 AWV, 193 028
(9) Tree-log MOEp star = = 3.5 + 086 AWVyee + 3.57 AWV g + log position 1.94 0.26

(bottom = 0, middle = 0.12, top = 0.018)

axis, board MOE) with increasing stiffness of the logs (x-
axis, log AWYV), as shown in the log model (model 4),
the variability in stiffness of boards sawn from the same
log is appreciable. We investigated the standard devi-
ation of MOE, 4, per each log, and the range was from
as little as 0.23 GPa up to 2.96 GPa in the log presenting
the largest variation in board MOE,, .-

3.3 Classification tree analysis

The classification tree analysis allowed the determination
of important variables on which to classify boards into
structural grades, and results are reported below.

The classification trees (Figs. 3 and 4) show the pro-
portion of boards obtained in the different grade classes
when segregating only with tree variables or with both
tree and log variables. When the mixed effect classifica-
tion tree was developed with only tree and log position
variables, AWV .. and log position were found to be the
most important variables (Fig. 3). Trees with AWV of
4.56 km/s or above yielded a significant (P <0.001) pro-
portion of stiffer boards, of which more than 56% were of

grade 1 and none were in the under-grade class (e.g. not
reaching the minimum stiffness of 10.5 GPa). With trees
of AWV less than 4.56 km/s, the next variable to signifi-
cantly (P <0.05) categorise boards of higher classes was
the position of the log in the tree, with middle and top
logs yielding a homogeneous share of boards among grade
classes and the majority (37%) of grade 3. Bottom logs of
trees with AWV less than 4.56 km/s yielded a considerable
proportion of boards of lower grades, among which 21%
of grade 4 and 17% of under-grade boards.

When both tree and log variables were considered in
the classification tree analysis, AWV, was the only im-
portant classification variable (Fig. 4) to classify boards
into structural grades. Logs with AWV,o, over 3.91 km/s
yielded a significant (P <0.001) proportion of stiffer
boards, of which 46% were grade 1, and only 6% were
under-grade. Logs with values of 3.91km/s or less in
AWV, yielded a homogeneous proportion of boards in
each grade, with the largest percentage (38%) being
grade 3. The classification trees visually present the im-
mediate results of splitting the population of trees or

18 o O°
o t{ ] e
17 9, ® %o ® °
® Oo @ og ®
% & s °
16 * O. o :o ° 8 ° .
¢ ° %
= 15 °® o oo gfod °
%) e 8 P55 o
O 1 N - K44 oo—" Structural grade
L L 3 " ’:; [ ° 1
g 1 . oo 3edtey s, <3
" e % o $ ..1.}‘ 0o 0 03
° 12 - ° ’ o ‘ e .O 0 ° -
I ® ® ° ° ® Under
B 1 I oo e
: . % .%, .Q ° ( %
10 o L] Y -
9 [ :? L
8
3.25 3.50 3.75 4.00 4.25
Logs AWV (km/s)
Fig. 2 MOE of boards in relation with the AWV of the logs. The structural grade corresponds to the categories reported in Table 1, where 1 is the
highest structural grade and ‘Under’ refers to boards under-grade, with stiffness lower than acceptable. The black points show the average value
of MOEy, s all the boards per each log
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Structural grade

Fig. 3 Classification tree with tree and log position variables. Grades are represented from the highest (1) to the lowest (4). ‘Under’ are boards
with stiffness lower than the lowest grade according to AS 2082 (Standards Australia 2006) and AS 1720.1, Table H2.1 (Standards Australia 2010b).

logs according to the variables most correlated with final
board stiffness. This procedure can be easily translated
into a segregation procedure, from which, according to
the tree or log variables available, or those of interest, a
prediction of the resulting board grades can be made.

3.4 Segregation scenarios

Utilising the thresholds identified from the classification
tree analysis, we developed a range of segregation sce-
narios (section 2.4). In Table 5, the recovery of sawlogs
or pulplogs is reported for each scenario. Different vol-
umes of sawn boards were recovered from the sawlogs,
and from each scenario, the nominal recovery rate was
different, ranging from 37.4 to 44.6% (data not shown).
The differences in recovery rates are due to the volume
of logs sawn, their characteristics, and the milling
process. For each scenario, the recovery of board grades
varied, and the highest and more valuable grades

(structural grade no. 1 and 2) and lowest grades (struc-
tural grade no. 3 and 4 and under-grade boards) are tal-
lied together for ease of presentation. Considering
scenarios where segregation was applied, scenario D pre-
sents the largest amount of pulplogs (82.6%, 15.3 m®)
and the lowest amount of logs sawn (17.4%, 3.21 m>) but
presents the highest recovery of high board grades (81.4
% of str. grades 1-2), with no boards recorded in the
under-grade class (Fig. 5). The second best scenario in
terms of recovery of high grades is scenario F, where
segregation is applied only to logs according to their
stiffness. Although this scenario still presents a high pro-
portion of logs destined for woodchips (69.3%, 12.8 m®)
and only 5.66 m® of sawlogs, almost 70% of the boards
recovered are high grades. In scenario E, half the boards
are of high grades, although having the largest volume of
sawlogs milled (76.5%, 14.1 m?), and this is due to the
lowest recovery rate of boards after milling (37.4%). The
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scenarios where no segregation is applied (A, B) or
where logs are segregated only by volume (bottom logs,
scenario C) are the lowest in terms of recovery of high
board grades.

The share of board grades recovered per scenario is
graphically displayed in Fig. 5. From this figure, it is
clear how the percentage of boards in higher grades
(st. grades 1 and 2) rapidly increases when segregating
trees or logs for stiffness values, as in scenarios D, E,
and F. Scenario F appears to be very similar to D in
terms of recovery of high board grades; however, it re-
quires almost double the amount of logs to be sawn

(5.66 m® versus 3.21 m>). Scenario B, where no segre-
gation is applied, delivers a variety of board grades,
similar to scenario C, where logs are segregated only
for their position, and E, where segregation is accord-
ing to trees stiffness and log position. Scenarios B (no
segregation) and E (tree and log segregation) require a
large amount of logs to be sawn (18.5 m® and 14.1 m?),
whilst returning both a homogeneous mixture of low-
quality and high-quality boards. Scenario C has the
lowest amount of high board grades, being developed
on a volumetric segregation without considering the
stiffness of trees or logs.

Table 5 Volume (m?) of logs harvested and recovered as sawlogs or pulplogs under each scenario and volume (m?) and amount

(%) of boards recovered divided in high and low grades

Scenario Sawlogs Pulplogs Sawn boards High grades (m®)* Low grades (m>)®
(m?) (%)* (m?) (%)* (m?) (m?)? (%)** (m?)° (%)**

A 0 0 185 100 0 0 0 0 0

B 185 100 0 0 8.05 341 424 4.64 576
C 7.54 408 109 59.2 3.21 113 352 2.08 64.8
D 321 174 153 82.6 142 1.16 814 0.26 186

E 14.1 76.5 433 235 528 265 50.2 263 49.8
F 5.66 30.7 128 69.3 2.53 1.75 694 0.77 30.6

Ranking of scenario from best (scenario D) to least optimal for recovery of high-quality structural boards (scenarios E and F)

®High grades include Structural grade no. 1 and 2
PLow grades include Structural grade no. 3 and 4 and under-grade boards

*(%) Percentages of logs are calculated as the volume of sawlogs/pulplogs over the total volume of harvested logs (18.5 m?)
**(%) Grades are calculated as the volume of boards in that category over the total volume of boards sawn in that scenario
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4 Discussion

The results of our study show that a segregation method to
obtain high-quality structural timber can be implemented
on the basis of sound statistical methods which would use
tree and log variables, delivering a higher proportion of ma-
terial of higher structural properties when selecting trees
and logs with quality above identified thresholds.

We found an increasing longitudinal pattern of density
and log stiffness (measured as dynamic modulus of elas-
ticity, MOE, 4yn) along the stems, which was reflected in
the models of board stiffness, where log position was
found to be a significant predictor of stiffness. We found
similar correlations between trees and log AWV mea-
surements, MOE 4y, and board stiffness, showing that
AWV can be used to test stiffness directly without the
need to use MOE measurements, which involve the
collection of density samples. Using only AWV, we
developed models to describe the variation in stiffness of
the boards with only-tree, only-log, and tree and log
variables together. In all models, stiffness of the boards
increased with increasing values of AWV .. or AWV,
but the validated models showed that none was able to
explain more than 30% of average board stiffness. This
low fit is due to the large within-log variability in log
properties, as demonstrated by the random-effects
model, where we found 70% of the overall variation in
board stiffness was attributable to differences between
boards within a log and only 2% was attributable to dif-
ferences between logs in the same tree. These results are
in line with research on other species used for produc-
tion of structural timber (Moore et al. 2013; Merlo et al.
2014; Butler et al. 2017), where a large proportion of the

variability in board stiffness is found within a log, rather
than between logs, and another considerable part of the
variation is due to tree-to-tree differences. Our relatively
low coefficients of determination differ from those found
in previous studies on the same species (Blackburn et al.
2010; Farrell et al. 2012) and on E. dunnii (Dickson et al.
2003) for several reasons. In our study, we used all logs
harvested from each tree, up to a small end diameter of
18.5 cm; this allowed us to capture a complete picture of
the wood properties along the stems. However, this also
reduced the strength in correlation between stiffness of
boards derived from the top logs (placed at more than
15m up the stem) and the AWV measured on the
standing tree, which is evaluated at breast height (1.3 m).
Furthermore, from each log, all sawn boards were used
for mechanical testing, thus detecting the large radial
variability in wood properties from pith to bark (Legg
and Bradley 2016). In this study, a modelling approach
different than the ones used in other studies was also
employed, as mixed-linear models are more appropriate
when dealing with clustered structures and random ef-
fects (Bolker et al. 2009); we took into consideration the
fact that boards were derived from the same logs, which
in turn have been harvested from the same tree. Along
with a different model structure, we applied cross-
validation of the models to increase the confidence in
the predictive ability of the models, and the coefficient
of determination and RMSE presented are from this
cross-validation procedure, and not from the descriptive
model developed on the training dataset only.

Utilising machine learning decision trees, we found
that AWVee, AWV, and log positions were the most
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significant variables when classifying the population of
boards into stiffness classes. This allowed for a clear and
immediate understanding of the share in board grades
after implementation of segregation through variable
thresholds. To our knowledge, this is the first study
using decision tree algorithms with clustered structure
for timber material. These novel techniques can support
forest growers and timber processors in understanding
how much material of the desired quality would be
achievable from their resource once the wood quality of
trees and logs is known. We developed two different
models, one which would better suit log processors and
one for forest growers, and used those into different seg-
regation scenarios, to understand the recovery in board
grades for each segregation choice. Our approach can be
employed for future large sawmilling trials involving a
considerable number of sawn board samples. In this
study, a limited number of trees was utilised, to maxi-
mise the number of sawn boards; however, the model-
ling methodology here presented could be scaled for
larger samples.

In terms of optimal use of the resource which might sat-
isfy different markets, we found that segregating for stiff-
ness thresholds would yield both logs for woodchips and
logs to be used for structural products. The model devel-
oped through classification for thresholds of AWV, and
log position found that from trees with AWV of more than
4.56 km/s and logs from middle and top parts of the stem,
larger recoveries of sawn timber of higher grades can be ob-
tained. This model can lead to two different scenarios,
namely, segregating only trees at the 4.56 km/s threshold
(scenario D) or trees at this threshold, and then middle and
top logs (scenario E). The first case achieves a large propor-
tion of high-grade boards (81.4%), whilst being very restrict-
ive on segregating only the best trees. This, however, leads
to an overall low recovery of only 1.42 m> of sawn timber.
In the second case (scenario E), more logs are accepted as
sawlogs, yielding in total more sawn timber volume (2.65
m®) but an equal recovery of high-quality and low-quality
boards. The model developed using only log variables
found AWV, to be the best classification variable, with a
classification threshold of 3.91 km/s. Utilising this model,
scenario F was developed, finding that whilst only a
limited amount of logs was used as sawlogs (5.66 m?),
almost 70% of boards are of high quality. These re-
sults hold considerable implications in the use of
AWV as a sorting tool. With large percentages of
sawn material being of the highest grades, the value
recovered from these boards might compensate for
the extra time that operators would need to test logs
prior to milling. However, different segregation strat-
egy models lead to scenarios which might largely dif-
fer in complexity, and the choice on the optimal
segregation will be dependent on several factors.
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Segregating logs will create both a physical and an op-
erational challenge due to the increased amount of log
sorts, which will require efforts from log harvesters and
contractor companies to organise the sorting and to al-
locate space for different log stockpiles. Log transport
will be of great impact, as different trucks will have to
leave the harvesting site, directed to the processing facil-
ities, and the structure of the supply chain will be a de-
terminant factor in selecting how many log sorts can be
created without disruption. At the processing facility,
the number and type of logs will have to be handled,
with processing costs increasing with the number of logs
to be sawn and boards to be processed and stored. The
timber resource market will be central in choosing one
type of utilisation over another, considering that at times
the market for structural products might be more de-
manding than the one for woodchips, and vice versa.

The large variation in board stiffness derived from the
same tree and from the same log, as well as the in-
creased complexity due to different segregation choices,
proves that segregation might be more useful if consid-
ered as a multi-stage process (Fig. 6). If forest growers
have the capability to implement wood quality testing to
understand where trees of higher stiffness are located in
their estates, plans for utilisation of the resource for dif-
ferent products can be developed far ahead of harvest-
ing. Different plantations can be assigned to different
uses according to their productivity, standing volume,
and tree quality. In those areas where a mix of products
(woodchips, sawlogs, and peeler logs) can be obtained,
segregation might follow at the pre-harvesting assess-
ment. During the pre-harvest assessment, the trees
which will present larger volume and higher stiffness
can be marked out for structural products (Segregation
point n.1) (Wang 2013), and at harvest, the best trees
would go directly into sawlogs, whilst logs from trees
under the threshold would be further sorted (Segrega-
tion point n.2). During harvesting, the operators have
the capability to perform a tree assessment according to
the form of the stem, and before the cross-cutting, the
harvesting machinery can optimise the cut according to
the volume of timber available and the log sorts re-
quired. If tree selection is not feasible, this study has
demonstrated that middle and top logs will deliver stiffer
logs; hence, segregation can be applied for log position
in the stem. Middle and top logs would be sorted as
sawlogs, and bottom logs under the threshold would be
destined for other uses (e.g. appearance products, ve-
neers, fibre for pulp and paper). After this first sorting at
the landing, a further segregation according to the stiff-
ness of the logs might take place on the log yard (Segre-
gation point n.3), where logs above the desired threshold
would go directly to be processed for higher structural
grades, and logs below the threshold can be processed
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for lower grades or repurposed as other log types. The
inner variability of wood properties in logs would need to
be tackled with a further segregation on the sawing line
(Segregation point n.4), to sort out boards of lower stiff-
ness from those with higher values, thus improving the
share of structural timber of higher grades. The segrega-
tion approach here presented might pose challenges due
to the numerous stages of trees, log and timber testing,
tracking, and sorting. For testing and sorting of logs and
timber, separate production lines dedicated to different
sorts could be employed. Other options include in-line
wood quality testing before log sorting and after log break-
down, with individual sawn boards marked according to
the appropriate stiffness class or timber grade.

To choose between the last three scenarios (D to F,
segregation for stiffness), a detailed analysis of the re-
covery of the product is needed, after consideration of
the operational constraints of increasing the amount of
log sorts. When the market looks more favourable to-
wards the production of woodchips, the choice can be
made in selecting only the best material at the tree
level, as presented in scenario D, where a large propor-
tion of logs will be destined for fibre production and
those streamed to sawn board production will deliver
larger shares of higher board grades. In this case, the
amount of logs to be sorted and transported is rela-
tively low, as the segregation can be made by the har-
vester operator with as little as two stockpiles, one for
woodchips and one for logs coming from high stiffness
trees. The case presented in scenario E will render the
segregation more complex, adding a step in selecting

only middle and top logs for trees of lower stiffness
values, so increasing the number of log sorts and the
number of logs to be sawn, delivering half boards of
higher quality and half of lower quality. This scenario
might be favoured when there are no specific require-
ments in terms of products from the market and the
supply chain has been structured in a way to handle
more log sorts. The last scenario (F) presents the case
where a more straightforward selection can be applied.
Operationally, log testing can be done at the harvest
site, or through the use of specialised harvester heads
(Walsh et al. 2014; Moore et al. 2016), and the creation
of log stockpiles can ease the streaming of products to
the best processing facility, where almost 70% of the
material can be woodchips and out of the smaller num-
ber of log sawn almost 70% will satisfy higher grade re-
quirements. This scenario will satisfy both forest
growers, which would avoid tree selection and tree tra-
cing, and log processors, which will have delivered
smaller number of logs of quality high enough for re-
covery of the best grades.

5 Conclusions

The results of this study show that several tree and log
variables are correlated with board stiffness, but only a
limited number of these variables are useful for predict-
ing final board grades. The classification trees developed
for this study have found statistically relevant variables
with which E. nitens trees and logs can be segregated to
obtain sawn boards of desired stiffness and provide an
understanding of the results that could be obtained
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through different segregation procedures. We have
shown that segregation can be applied according to trees
or log variables and will influence operational choices
and different recoveries of timber products. The optimal
segregation strategy will depend on the number of log
sorts that the supply chain can handle and from the
market requirements; however, segregation on the basis
of stiffness thresholds would in all cases yield larger re-
coveries of high-quality boards. The best case is repre-
sented by segregation at log level, where logs with
acoustic wave velocity higher than 3.91 km/s are used as
sawlogs, and the remaining material is used for wood-
chips. This scenario may satisfy both forest growers in-
terested in serving different markets and wood
processors looking to achieve the best grades with min-
imal numbers of logs sawn. Other scenarios represent
cases that can be chosen when there is more market
flexibility towards more products or the opposite, higher
demand for specific product types. The classification
trees developed provide insights for forest growers and
timber processors on the most important variables for
structural products and appropriate thresholds, and the
segregation methodology developed can serve as a sup-
port tool to understand when and how to segregate trees
and logs to achieve the best recovery of high structural
grades of sawn timber. This is the first work to analyse
in-depth the process and consequences of segregation
for eucalypt plantation resources, providing forest
growers and timber processors with a greater under-
standing of the potential of their resource and with a
scheme to operationally implement segregation
strategies.
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