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Abstract

Background: Plants are attacked by diverse insect and mammalian herbivores and respond with different physical
and chemical defences. Transcriptional changes underlie these phenotypic changes. Simulated herbivory has been
used to study the transcriptional and other early regulation events of these plant responses. In this study, constitu-
tive and induced transcriptional responses to artificial bark stripping are compared in the needles and the bark of
Pinus radiata to the responses from application of the plant stressor, methyl jasmonate. The time progression of the
responses was assessed over a 4-week period.

Results: Of the 6312 unique transcripts studied, 86.6% were differentially expressed between the needles and the
bark prior to treatment. The most abundant constitutive transcripts were related to defence and photosynthesis and
their expression did not differ between the needles and the bark. While no differential expression of transcripts were
detected in the needles following bark stripping, in the bark this treatment caused an up-regulation and down-reg-
ulation of genes associated with primary and secondary metabolism. Methyl jasmonate treatment caused differen-
tial expression of transcripts in both the bark and the needles, with individual genes related to primary metabolism
more responsive than those associated with secondary metabolism. The up-regulation of genes related to sugar
break-down and the repression of genes related with photosynthesis, following both treatments was consistent with
the strong down-regulation of sugars that has been observed in the same population. Relative to the control, the
treatments caused a differential expression of genes involved in signalling, photosynthesis, carbohydrate and lipid
metabolism as well as defence and water stress. However, non-overlapping transcripts were detected between the
needles and the bark, between treatments and at different times of assessment. Methyl jasmonate induced more
transcriptional responses in the bark than bark stripping, although the peak of expression following both treatments
was detected 7 days post treatment application. The effects of bark stripping were localised, and no systemic changes
were detected in the needles.

Conclusion: There are constitutive and induced differences in the needle and bark transcriptome of Pinus radiata.
Some expression responses to bark stripping may differ from other biotic and abiotic stresses, which contributes
to the understanding of plant molecular responses to diverse stresses. Whether the gene expression changes are
heritable and how they differ between resistant and susceptible families identified in earlier studies needs further
investigation.
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Introduction

Plants have evolved a variety of constitutive and induc-
ible defences to resist and tolerate herbivory. An assess-
ment of the genetic mechanisms that influence these
defences will enhance our understanding of their evo-
lution [1]. Although structural changes in DNA are the
major source of genetic variation [2, 3], the phenotypic
outcomes of several traits can be linked to gene expres-
sion [4—8]. However, the genes and genetic pathways that
underlie most phenotypes are still unknown [2]. To date,
most gene expression studies have focussed on identify-
ing transcripts (different RNA products a single gene)
or genes showing differential expression, or pathways
associated with a phenotype (case/control) or condition
(treated/untreated). In conifers, for example, transcript
abundance has been examined with respect to biotic
and abiotic environmental factors such as herbivory
[9-11], pathogens [12], artificial wounding [13], drought
[14], light intensity [15], seasonal changes [16], chemical
stressors like methyl jasmonate [17], as well as associated
phenotypic traits such as resistance and chemical com-
position [9, 10]. Studies in conifer and non-conifer spe-
cies that have simultaneously compared the expression
from different stressors, such as mechanical wounding
and methyl jasmonate, indicate both overlapping and
non-overlapping gene expression and suggest that molec-
ular mechanisms associated with varying stressors may
differ [18-20].

In conifer-herbivory studies, most gene expression
studies have focused on understanding induced defence
responses, with a premise that these may be more impor-
tant than constitutive defences as they are metabolically
cost effective and expressed only when required [21,
22]. Global transcriptome responses have been studied
in both needles and bark, monitoring the expression of
a wide range of genes related to the biosynthesis of pri-
mary and secondary compounds, and structural compo-
nents [13, 23-28]. Most of these genes are expressed at
basal levels in plants but some are only expressed in the
presence of an appropriate stimulus. Some of the genes
significantly respond to herbivory cues, by increasing or
reducing their expression either locally at the site of the
perceived effect or systemically throughout the plant [23,
29, 30]. Studies also show a high overlap in the genes that
are differentially expressed when plants are subjected to
different biotic and abiotic stresses [31, 32]. However, the
genes that show differential expression differ within and
between target plant species [10, 26], between plant tis-
sues [23, 33], as well as between biotic agents [34] and

applied treatments [35]. Intra-specific differences in the
timing of transcript expression have also been observed,
where plants may respond to injury within hours or days,
with short, or long, lasting effects [17, 23, 25, 33]. Plant
responses to different classes of herbivores may differ
due to differences in herbivore oral secretions or mode
of feeding and the amount of plant tissue damage [34,
36, 37]. While available conifer studies have documented
changes in gene expression in response to insect her-
bivory [13, 32], there are no studies from the perspective
of mammalian herbivory, and none that link changes in
gene expression to changing chemistry. Mammalian bark
herbivory is fundamentally different from insect her-
bivory in the mode of feeding [22] and possibly the oral
secretions. This particularly applies to mammalian bark
stripping, which is of increasing concern to managers of
conifer forests world-wide, including Pinus radiata plan-
tations in Australia [38—40].

Pinus radiata is native to California [41], but is now a
major plantation species in Australia (ABARES 2018)
where it is subject to bark stripping, mainly by native
marsupials (wallabies and kangaroos) [42]. The bark is
stripped from the base of the trees during the early stages
of growth [43-45], reducing tree growth rate, distorting
stems and, in extreme cases, causing death [38, 42]. The
levels of bark stripping within plantations may be highly
variable and progeny trials have shown a genetic, physi-
cal and chemical basis to this variation [42, 46, 47]. Fur-
ther, chemical profiling in P. radiata shows that needles
and bark respond differently to bark stripping and other
forms of real and simulated herbivory, mostly by increas-
ing levels of secondary compounds, especially terpenes
and phenolics [48, 49], and reducing levels of sugars and
fatty acids [46, 50]. This suggests changes in the expres-
sion of underlying genes that subsequently transforms
the chemical phenotype. Indeed, the differences in timing
of the induced changes in terpenes, phenolics and sugars
[50-52] suggest corresponding differences in the expres-
sion of the underlying genes. However, while transcrip-
tomic changes have been studied in P, radiata associated
with ontogeny, wood formation [53—55] and fungal infec-
tions [56], those underlying the induced chemical
changes to bark stripping have not been characterised.

The present study aims to quantify and compare the
transcriptome changes that occur in response to arti-
ficial bark stripping of P. radiata and whole plant stress
induced by application of the chemical stressor, methyl
jasmonate. The longer-term goal is to identify genes
that specifically mediate the previously shown induced
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chemical responses to bark stripping in P. radiata, which
may help develop strategies to reduce bark stripping.
The specific aims of the study are to: 1) characterise and
compare the constitutive transcriptome of P. radiata nee-
dles and bark; 2) identify genes which are differentially
expressed following artificial bark stripping (aimed at
mimicking mammalian bark stripping); and 3) identify
genes which are differentially expressed following whole
plant application of methyl jasmonate and compare these
induced responses with those of bark stripping. The
results are discussed in view of the holistic chemistry that
has been characterised on the same individuals with the
same treatments [50].

Materials and methods

Experimental design

In 2015, 6-month-old seedlings from 18 full-sib families
(each with 4 seedlings; total number of seedlings=72)
of P radiata (D. Don) originating from the Radiata
Pine Breeding Company deployment population, were
obtained from a commercial nursery. Seedlings were
transferred into 145mm x 220mm pots containing 4L
of basic potting mix (composted pine bark 80% by vol-
ume, coarse sand 20%, lime 3kg/m> and dolomite 3kg/
m?) and raised outdoors in a common fenced area (to
protect against animal damage) at the University of Tas-
mania, Hobart. At 2years of age, plants were moved to
a shade house and an experimental design established by
randomly allocating the 18 families to three treatment
groups (methyl jasmonate [M]], artificial bark stripping-
strip [strip] and control), each with 6 families. The three
treatment groups were arranged in a randomized block
design of 3 blocks, each block comprised a treatment
plot of two families, with the treatment plots separated
within each block to minimise any interference among
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treatments. Each family was represented by four plants
arranged linearly, and randomly allocated to four sam-
pling times (T0-T21). TO represents the time immediately
before treatment applications. T7, T14 and T21 represent
respective sampling times at 7, 14 and 21 days after treat-
ment (M] and strip) application. All TO seedlings (n=18),
irrespective of group allocation, were not treated and
were used to compare the constitutive transcriptome
of the needles and bark (i.e. plant parts). Additionally,
all seedlings allocated to the control were not treated
throughout the experimental period. One seedling
from each family in the control and treated groups was
destructively sampled at each sampling time to estimate
differential expression (n=18; Table 1). For each plant
part, comparisons were made between the control (n=6)
and methyl jasmonate (M], n=6) and between the con-
trol (n=6) and bark stripping (strip, n=6) treatments at
each sampling time (T7, T14, T21) (Table 1). Methyl jas-
monate (M]) was applied in a 25 mM solution by spraying
the whole plant with a fine mist from a hand sprayer until
‘just before run-off. The treated seedlings were sprayed
in a well-ventilated area away from untreated seedlings to
avoid cross contamination [57]. For bark stripping (strip),
18 plants were artificially stripped by removing a 30cm
vertical strip of bark, beginning 2cm from the ground
and covering 50% of the stem circumference, which is the
average upper threshold of browsing observed in natural
field conditions.

Up to 20 young needles were randomly collected per
seedling from different parts of the crown. The bark
was sampled from different points of the stem, above
and besides the area where the bark stripping treat-
ment was applied, carefully avoiding the wood, follow-
ing Nantongo et al. [50]. Individual samples were kept
separate providing 144 samples for sequencing (2 plant

Table 1 The treatments, sample size and pairwise comparisons that were made for each time and for the two treatments - bark
stripping (strip) and methyl jasmonate (MJ). The seedlings of each family were grown in a line-plot and one was chosen at random
for destructive harvesting at each time (T7 to T21). At TO, the sampled seedlings were destructively harvested just before treatment
applications. At 7 (T7), 14 (T14) and 21 (T21) days after treatment, one seedling from each family (total number of seedlings per
sampling time =18, equivalent to the number of families and n=6 are seedlings selected from each treatment) was destructively

harvested

Control MJ Strip Total # seedlings

# seedlings # seedlings # seedlings sampled at each time
T0 6 6 6 18 Sampled before application of treatments,

for constitutive transcriptome analysis

T7 6 6 6 18 sampled 7 days after treatment application
T14 6 6 6 18 sampled 14 days after treatment application
T21 6 6 6 18 sampled 21 days after treatment application
Total # seedlings for 24 24 24 72

each treatment
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parts x 72 seedlings). The needles and bark samples were
snap frozen in liquid nitrogen and were stored at —80°C
until RNA extraction. The 6 families sampled from each
treatment at each time point were treated as biological
replicates. No technical replicates were included. This
sampling occurred at the same time when the tissue for
the chemistry assays reported in Nantongo et al. [50] was
sampled.

RNA extraction and sequencing

RNA from all the 144 bark and needle samples was
extracted using the Spectrum™ Plant Total RNA
kit (Sigma Aldrich, St. Louis, Missouri, USA, lot #
SLBW2113). The RNA extraction was random with
respect to part, sampling time, treatment, family and
shade house replicate. The quality and quantity of the
RNA extracts were assessed with an Agilent 5200 Frag-
ment Analyzer (Palo Alto, California, USA). One sample
had poor quality RNA and was excluded from further
processing. Using the high-quality RNA samples, 143
separate libraries were prepared with a 6-bp nucleotide
bar-coding tag for each library. To construct the library,
approximately 1ug of total RNA was used following
the MGIEasy RNA Directional Library Prep Kit (MGI,
China). Paired-end sequencing was performed using the
Beijing Genomics Institute, (BGI, China) MGISEQ-2000
sequencer according to the manufacturer’s instructions,
yielding 100-bp paired-end reads and a total of 20m
reads per sample. Tagged cDNA libraries were sequenced
in separate lanes. The library for each lane was selected at
random. The quality of RNAseq sequences was assessed
using FastQC version 0.11.8 [58]. Quality trimming and
filtering of data was performed using Trimmomatic
v 0.39 [59]. On average, 99.9% of the sequences were
retained at phred33 [60].

A de novo assembly of the pooled transcriptome was
attempted using TRINITY v2.9.0 using default param-
eters [61], however due to the excessive computation
requirements, it could not be completed with the avail-
able resources in the required timeframe. Accordingly,
the filtered reads were aligned to the P. radiata reference
transcriptome that is harboured at Scion (the New Zea-
land Forest Research Institute trading as Scion, Rotorua
New Zealand) [54] with SALMON v0.14.1 using default
parameters [62]. This reference transcriptome (www.
ncbi.nlm.nih.gov/bioproject/482145) was assembled
from a range of P. radiata genotypes and tissue types that
were collected at different developmental and temporal
stages. Most of the samples were from healthy seedlings
under normal growth conditions but also included some
pathogen infected seedlings [54]. The reference tran-
scriptome has a total of 279,510 unique transcripts.
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Differential transcripts expression analysis

Statistical analysis of differential expression was per-
formed using the edgeR v3.24.3 package in R (v3.6.0)
[63] using default parameters [64], except for the cut-off
false discovery rate (FDR) in treated samples that was
modified as described below. EdgeR uses the Poisson dis-
tribution model to examine differential expression of rep-
licated count data, which makes it simpler than methods
that use other statistical distributions [65]. Transcripts
were first filtered retaining only those with a minimum
expression change of 2 fold and with a minimum of 100
counts per million of a single transcript in at least two
part x treatment x time groups. To adjust for library
sizes and skewed expression of transcripts, the estimated
abundance values were normalized using the trimmed
mean of M-values normalization method included
in edgeR. To detect differential transcript expression
between the needles and the bark, the samples taken at
TO were used as these comprised a single plant from each
of the 18 families (as treatments were not applied at this
stage) and an FDR value of 0.05 was used. However, to
establish transcript expression after treatment, instead of
using an FDR of 0.05, a more conservative sample-spe-
cific approach was used [66], where transcript expression
was initially compared between the samples collected
from the control plants (n=6), MJ-allocated (n=6) or
strip-allocated (n=6) groups at TO (before treatment)
to check the inherent (potentially random) differences
between sample groups. The p-values at which no dif-
ferential expression was detected between these groups
was set as the FDR for downstream pairwise compari-
sons. Accordingly, the p-value for detecting differentially
expressed transcripts (DET) in the treated needles fol-
lowing both MJ and bark stripping was set at 1.0 x 10~ .,
A p-value of 1.0 x 107! was set to detect DET in MJ
treated bark and 1.0 x 107 '° to detect DET in the bark
stripped samples. Twelve pairwise comparisons were
performed. An upset diagram was generated using the
UpSetR function in R to summarise the transcripts that
were identified as significantly differentially expressed
across different comparisons.

Principal component and unsupervised cluster analyses
were performed to detect the dominant, relative expres-
sion patterns across the needles, bark and treatments.
Following Ralph et al. [13], a subset of 500 transcripts
with the highest variability and highest expression across
the 143 libraries were selected in edgeR for this analy-
sis. Principal components analysis (PCA), using Facto-
MinerR version 1.41 [67] was based on the correlation
matrix among all identified transcripts. Clustering and
heat maps were generated using the heatmap.2 function
from the gplots package in R, with a matrix of Euclidean
distances from the log2 counts of normalised transcripts.
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Sequence similarity search

For sequence similarity search and functional analysis of
differentially expressed transcripts (DETs) the transcripts
were blasted against the nucleotide BLAST database
using BLASTn (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
BLAST analysis revealed that P. radiata transcripts were
most similar to those predicted from genome sequences
of P taeda (BLASTn with e- value <0.0001). Other spe-
cies, mostly P sylvestris, P. monticola, Picea stichensis
and Pseudotsuga menziesii, showed high similarity with
the P. radiata transcripts. Annotations of selected tran-
scripts were done by comparing P radiata transcripts
to the sequences in the SwissProt database of annotated
genes [68] using cut-off values<1. To gain clear pat-
terns of the responses, only transcripts associated with
genes of known function were included. However, there
were many uncharacterised transcripts and proteins of
unknown functions.

GO classification

Gene ontology (GO) classification was undertaken to
understand the biological process, cellular component
and molecular function categories represented in the
genes exhibiting differential expression. These assign-
ments were done for selected transcripts identified above
using protein analysis through evolutionary relationships
(PANTHER) version 14.1 [69]. This was first undertaken
using transcripts that were differentially up-regulated in
the needles over the bark and vice versa, with the aim
of understanding the constitutive differences of the GO
processes between the transcriptome of the needles and
the bark. Secondly, the GO classification was performed
on selected T1 transcripts to understand the differences
in the up-regulated and down-regulated transcripts after
treatment, as well as differences in the induced transcrip-
tome of the strip and M] treated samples. Due to the
limited annotation resources available for conifers, gene
family annotations were obtained using genomes of 10
species: Arabidopsis thaliana, Citrus sinensis, Cucumis
sativus, Oryza sativa, Populus trichocarpa, Prunus per-
sica, Saccharomyces cerevisiae, Theobroma cacao, Vitis
vinifera and Zea mays. GO term classification was done
for the top differentially expressed transcripts in the dif-
ferent conditions (time x treatment X part).

Results

The Pinus radiata reference transcriptome and read
mapping

RNA-seq of P. radiata generated a total of 2860 million
100-bp PE reads with a minimum of 20 million reads
from each of the 143 samples. 87.6% of the reference tran-
scriptome was represented among the study transcripts.
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However, after the filtration criteria described above,
only 6312 unique transcripts (2.6% of the reference tran-
scriptome) were retained as the expression of the other
transcripts was too low. The analysis was constrained to
individual transcripts, which may not be unigenes.

Differential expression of the transcriptome
The overall relationships between the transcriptome
from the different samples were visualised using a princi-
pal component analysis (PCA) plot (Fig. 1) and the unsu-
pervised hierarchical clustering (Fig. 2) of the top 500
variable transcripts in the transcriptome. Both figures
show that the major differences in expression were due to
plant parts (differences along the x-axis of Fig. 1 and the
top x-axis of Fig. 2). Within plant parts, we noted genes
that were:
(i) up-regulated in the needles relative to the bark and
generally non- responsive to treatment;
(i) up-regulated in the bark relative to the needles and
generally non-responsive to treatment;
(ili) up-regulated in either the needles or the bark and
responsive to treatment; and
(iv) not differentially expressed between the needles
and the bark but responded to treatment by up- or
down-regulation.

Differences in the constitutive needle and bark
transcriptome

Of all 6312 transcripts considered for analysis, 5 tran-
scripts were detected only in the needles and 13 tran-
scripts were detected only in the bark. Most of these
part-specific transcripts were uncharacterised (Table 2).
Gene level annotation of the top 10 transcripts expressed
in each plant part are listed in Table 3 (superscript refers
to ID number in Table 3). The type 2 light-harvesting
chlorophyll a/b-binding polypeptide!!! that is possibly
involved in photosynthesis, was the most expressed gene
in both the needles and the bark and was represented by
different copies of transcripts (isoforms). The needles had
other photosynthesis-related genes expressed such as rib-
ulose bisphosphate carboxylase/oxygenase (RuBisCO)!'?
and PSI-D1 precursor!!”) possibly due to its major role in
photosynthesis. Genes related to secondary metabolism
were also detected among these top 10 genes, suggest-
ing that constitutive defence is important in P radiata.
These included dehydrin[z], metallothionein®, chal-
cone synthasel®, defensin® and pathogenesis-related
proteins'® and were represented by more transcripts in
the bark than in the needles but their relative expression
was not statistically significantly different between the
needles and the bark.
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Fig. 1 PC1 versus PC2, each explaining 46.7 and 15.4% respectively of the total variation among the 143 samples sequenced based on the 500
transcripts with the highest variability among the samples and highest expression. The samples include the untreated bark (B) and needle (N)
controls (circled TO-N and T0-B) and samples from plants treated with bark stripping (strip) as well as methyl jasmonate (MJ) (circled T7-N-MJ and
T7-B-MJ)

At TO, 5469 out of the 6312 transcripts (86.6%) were
differentially expressed between the needles and the
bark. Of these, 3123 were up-regulated in the bark
compared to the needles, while 2346 transcripts were
up-regulated in the needles. The top 10 most strongly
up-regulated transcripts in each of the bark and nee-
dles are shown in Table 4 (superscripts are identifiers
to help locate the needle (N) or bark (B) transcripts in
the ID column of the table). Besides the general func-
tion genes and those related with photosynthesis, there
was an up-regulation of genes related to terpene B
and lipids biosynthesis !B”! in the bark and those related
to sugars N and phenolics biosynthesis ™! in the nee-
dles. Of note is the up-regulation of genes involved in
sugar transport in both the needles ™3 and the bark
(B2 but these are different genes.

To assess the overall constitutive functional differences
in transcripts differentially upregulated in the needles
and the bark, the GO annotation of the top 100 differen-
tially upregulated genes in both plant parts was obtained.
There were quantitative differences for all the molecu-
lar but not biological or cellular GO categories. In the
molecular GO category, a greater proportion of the top
upregulated genes in the needles were ascribed to cata-
lytic activity in the needles than in the bark (Fig. 3).

Overall transcript expression in the needles and the bark
after treatment

After treatment, considering all time points, a total of
1479 (23.4%) transcripts were differentially expressed
at one time or another. More transcripts responded to
treatment in the needles than in the bark and more tran-
scripts were up-regulated than down-regulated (Fig. 4).
For both treatments, most differential expression was
detected 7 days (T7) after treatment and declined there-
after, although differential expressed transcripts were
still evident in both treatments 21 days later (Fig. 4). MJ
was applied to both bark and needles and caused more
transcript expression than bark stripping in both the nee-
dles and the bark (Fig. 4). Indeed, no differential expres-
sion of transcripts was detected in the needles following
bark stripping. Of the transcripts that were differentially
expressed between the bark and needles at TO, only
20% and 1% of those respectively responded following
either of the treatments in the bark and needles suggest-
ing that the transcripts that did not differ constitutively
(i.e. at TO) between the needles and the bark were more
responsive to treatment. One uncharacterised tran-
script (NZPradTrx091980_C05) that was not present
in the transcriptome of untreated samples was present
after treatment. One isoform of ribulose bisphosphate
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Fig. 2 Hierarchical cluster analysis of the top 500 most variable transcripts selected by edgeR in the needles (N) and bark (B) treated with methyl
jasmonate (MJ) and artificial bark stripping (strip) and control (C), 7 (T7), 14 (T14) and 21 (T21) days after treatment application. Transcripts (rows)
and time/part/treatment categories (columns) were clustered using Euclidean distance. The Z-score is calculated by subtracting the trimmed mean
of the M-value of the individual from the grand mean of all the individuals and then dividing by the standard deviation. Trimmed Means of M values
are estimated in edgeR by where highly expressed genes and those that have a large variation of expression are excluded, whereupon a weighted
average of the subset of genes is used to calculate a normalization factor. Colouration; yellow = mean expression, blue = expression below the
mean and red =expression above the mean. The categories on the x-axis were re-arranged based on similarity

carboxylase preprotein (NZPradTrx098233_C06) that is
involved in photosynthesis was present before treatment
but was missing in all the samples in the bark and the
needles after treatment, including the untreated control
samples.

Annotations of the top ten genes that were up-reg-
ulated or down-regulated for each condition (time x
treatment x part) are presented in Table 5. Based on
these genes, various functions were detected, indicating
that multiple genes are involved in coordinating plant
responses to stress. Most of the genes were up-regulated,
for example genes associated with primary metabolism,
secondary metabolism, digestive inhibitors, pathogen-
esis-related (PR) protein families, genes involved with
physical strengthening of the cell-wall, transcription fac-
tors, phytohormones and signalling molecules as well
as molecules involved in broad biotic and abiotic stress
responses and broad function genes. In contrast, the

general catalysts as well as molecules involved in tran-
scription were down-regulated. A subset (968 out of
1479=64.7%) of the differentially expressed transcrip-
tome studied was differentially expressed in only one
treatment (strip or MJ) (Fig. 5, Table 5). Similarly, non-
overlapping differentially expressed transcripts, occur-
ring in only one condition, were detected at different
times in the needles and bark (Fig. 5, Table 5).

Gene expression after MJ treatment

A stronger response to the MJ treatment was detected
in the needles than the bark, where 2206 versus 683 out
of 6312 transcripts studied were differentially expressed,
respectively (Fig. 4). Annotations of the non-overlap-
ping, differentially expressed transcripts showed that MJ
caused the unique differential expression of more genes
that are directly involved in the metabolism of sugars,
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Table 2 Transcripts that were unique to each Pinus radiata plant part in the constitutive transcriptome as assessed at TO (sampled
before treatment). The Scion transcript code, predicted gene name and predicted functions of the known genes are indicated

Scion transcript code Gene name

Gene function

Transcripts expressed in the needles but not in the bark at T0
NZPradTrx008090_CO01
NZPradTrx102814_C01 Hypothetical protein 0_2136_01
NZPradTrx114705_C04 PREDICTED: uncharacterized LOC101213828
NZPradTrx119356_CO01

Unknown

NZPradTrx138443_C01 Unknown

Transcripts expressed in the bark but not in the needles at TO
NZPradTrx105287_C05
NZPradTrx068786_C02
NZPradTrx110900_C02
NZPradTrx158724_C01

NZPradTrx111161_C02

Chloroplast ELIP early light-induced protein
Unknown

Unknown

Unknown

Embryo-abundant protein

NZPradTrx032755_C01 Unknown
NZPradTrx054373_C01
NZPradTrx151188_CO01
NZPradTrx007008_CO01
NZPradTrx069030_CO01
NZPradTrx081218_CO01

NZPradTrx154223_C01

Unknown
Unknown
Unknown
Unknown
Unknown

NZPradTrx189870_C01 Uninformative

PREDICTED: tetrahydrocannabinolic acid synthase-like

Repetitive proline-rich cell wall protein 2 precursor, putative Key determinant of many cell wall proteins https://www.unipr

ot.org/uniprot/Q40375

Prevents photooxidative stress (Hutin et al. 2003)

May act as a cytoplasm protectant during desiccation. https://
www.uniprot.org/uniprot/P46520

Catalyzes the oxidative cyclization of the monoterpene moiety
in cannabigerolic acid https://www.uniprot.org/uniprot/
Q8GTB6

fatty acids and amino acids in both the bark and the nee-
dles compared with the bark stripping (Table 6).

Six transcripts were consistently differentially
expressed from T7 — T21 (Fig. 5) in the methyl jas-
monate-induced transcriptome of the bark (B-MJ) and
these were mostly up-regulated. Annotations of these
transcripts showed that the genes were mostly involved
in generating energy from various substrates, particu-
larly glucose and fatty acids. In the needles treated with
methyl jasmonate (N-M]J), 114 transcripts were consist-
ently differentially expressed from T7 - T21 (Fig. 5).
These genes were mostly directly associated with defence
as well as chemical and physical structures, for example
those involved in phenolic biosynthesis and structural
components of the cell wall (Table 5).

Gene expression after bark stripping

Bark stripping did not cause any systemic response
in the needles at any time point (Fig. 4). The strip
induced bark transcriptome had, among the top genes,
those involved in defence against pathogens, such as
chitinases!V'”], PR10!Y*") and defensins!V'®!. Bark strip-
ping also caused differential expression of water-stress

responsive genes!V'>Y3% as well as genes related to
replacement of tissues!Y** (Table 6). The difference in
the representation of genes is likely related to the kind
of damage incurred by the two stressors.

Both stressors caused differential expression of genes
related to secondary metabolism (Table 5), including
metabolism of monoterpenes (e.g. geranyl diphosphate
synthase), phenolics (e.g. laccases) and alkaloids (e.g.
phenylalanine ammonia-lyase). The differential expres-
sion of genes associated with lignification of cell walls
were also identified for both treatments in the needles
and the bark, emphasising the role of cell wall physi-
cal properties in stress responses. For some genes, the
same gene was represented by different isomorphs in
the different conditions such as geranyl diphosphate
synthase in B-strip and N-M] treatment/part combina-
tions shown in Table 5. Only 6 differentially expressed
genes were consistently differentially expressed follow-
ing both treatments across all times and plant parts,
except that no differential expression occurred in the
needles following the strip treatment. Annotations of
these transcripts mostly showed genes related to amino
acid synthesis.


https://www.uniprot.org/uniprot/Q40375
https://www.uniprot.org/uniprot/Q40375
https://www.uniprot.org/uniprot/P46520
https://www.uniprot.org/uniprot/P46520
https://www.uniprot.org/uniprot/Q8GTB6
https://www.uniprot.org/uniprot/Q8GTB6
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Table 4 Top 10 up-regulated genes differentially expressed between the bark and needles at TO (before treatment) for each plant part.
The table also shows the ID of the genes assigned in this study for ease of identification in the tables, Scion transcripts code, predicted
gene name and function

Part ID  Scion transcript code Predicted gene name Predicted gene function
Bark BT NZPradTrx054097_C01 Homeobox transcription factor KN3 Central regulators of meristem cell identity (Guillet-
Claude et al. 2004)

B2 NZPradTrx073079_C03 Transporter, putative Sugar transport (Weig et al. 1994)

B3 NZPradTrx087709_C01 Homeobox transcription factor KN1 Central regulators of meristem cell identity (Namroud
etal. 2010)

B4  NZPradTrx055579_C01 Minizinc finger 1 Regulates several development aspects, including
photomorphogenesis, apical dominance, longevity,
flower morphology and fertility, as well as root and
stem elongation (https://www.uniprot.org/uniprot/
Q9CA51)

BS5  NZPradTrx048496_C01 Plastid phosphate translocator Involved in the exchange of metabolites and inorganic
phosphate between stroma and cytosol (Bockwoldt
etal.2019)

B6  NZPradTrx101882_C01 Auxin-induced protein 5NG4, putative Transmembrane transporter activity especially during
root formation (Busov et al. 2004)

B7  NZPradTrx103825_C01 PREDICTED: GDSL esterase/lipase At5g03610-like Lipid catabolic process (https://www.uniprot.org/unipr

NZPradTrx103825_C04 ot/QILZS7)

B8  NZPradTrx184572_C01 Gl-like protein Polymerizes the backbones of non-cellulosic polysac-
charides (hemicelluloses) of plant cell wall
https://www.uniprot.org/uniprot/Q570S7

B9 NZPradTrx055645_C01 PREDICTED: squalene monooxygenase-like Converts squalene into oxidosqualene, the precursor

NZPradTrx096935 CO3 of all known angiosperm cyclic triterpenoids (Rasbery
- et al. 2007)
B10 NZPradTrx093053_C01 Ribulose 1,5-bisphosphate carboxylase/oxygenase Catalyses carboxylation of RuBP in the first step of the
small subunit Calvin cycle of photosynthesis (Tabita 1999)
Needles N1 NZPradTrx115678_C04 Anthocyanidin reductase Involved in the biosynthesis of proanthocyanidins (Zhu
NZPradTrx115678_C05 etal. 2015)

N2 NZPradTrx090889_C01 Cytochrome P450 CYPA2 Oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen
https://www.uniprot.org/uniprot/A9F954

N3 NZPradTrx114954_CO1 Glucosyltransferase Transfer of glucose (Chen et al. 2016)

NZPradTrx086877_C02

N4 NZPradTrx088783_C01 Glucose-1-phosphate adenylyltransferase, putative Involved in the pathway starch biosynthesis (https://
www.uniprot.org/uniprot/Q688T8)

N5 NZPradTrx086324_C01 PREDICTED: LOB domain-containing protein 1-like Involved in the repression of the homeobox gene BP
https://www.uniprot.org/uniprot/Q9FKZ3-1

N6  NZPradTrx065580_CO1 Catalase Crucial antioxidant enzymes that mitigates oxidative
stress to a considerable extent by destroying cellular
hydrogen peroxide to produce water and oxygen
(Nandi et al. 2019)

N7 NZPradTrx049683_C01 Photosystem Il core complex proteins psbY2C chlo-  Multi-component pigment-protein complex respon-

roplast precursor sible for water splitting, oxygen evolution, and plasto-
quinone reduction (Lu 2016)

N8  NZPradTrx097448_C02 ribonucleoprotein, chloroplast, putative Involved in chloroplast RNA processing (Tillich et al.
2009)

N9 NZPradTrx119685_C01 SOUL heme-binding protein Plays an active role in primary plant metabolic path-

N10 NZPradTrx184701_CO1

chloroplast ribosomal protein S1

ways as well as in stress signalling (Shanmugabalaji
et al. 2020)

Involvement in translation initiation via positioning of
initiation mRNA-protein complexes (mRNPs), and the
potential involvement of these unique domains in the
processivity of chloroplast translation (Manuell et al.
2007)



https://www.uniprot.org/uniprot/Q9CA51
https://www.uniprot.org/uniprot/Q9CA51
https://www.uniprot.org/uniprot/Q9LZS7
https://www.uniprot.org/uniprot/Q9LZS7
https://www.uniprot.org/uniprot/Q570S7
https://www.uniprot.org/uniprot/A9F9S4
https://www.uniprot.org/uniprot/Q688T8
https://www.uniprot.org/uniprot/Q688T8
https://www.uniprot.org/uniprot/Q9FKZ3-1
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= binding (G0O:0005488)

= catalytic activity (GO:0003824)

= molecular function regulator (GO:0098772)
molecular transducer activity (GO:0060089)

= structural molecule activity (GO:0005198)

= transporter activity (GO:0005215)

Fig. 3 The different molecular functions (GO categories) of the top 100 transcripts that showed up-regulation in the needles when compared
with the bark (inner circle) and top 100 transcripts that were up-regulated in the bark when compared with the needles (outer circle) at TO. These
up-regulated transcripts represent constitutive responses between plant parts and for each plant part, the percentage of the top 100 upregulated
transcripts that were assigned to the GO categories indicated are shown
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Fig. 4 The number of differentially expressed transcripts (DETs) that were up-regulated and down-regulated in Pinus radiata needles (N) and
bark (B) following methyl jasmonate (MJ) and bark stripping (strip) treatments quantified 7 (T7), 14 (T14) and 21 (T21) days after treatment. No
differential expression was detected in the needles following the bark stripping treatment. Note that there could be an overlap in the DETs for
different treatments

Time progression of genes

Not only did the treatments differ in the magnitude
of their general response through time (Figs. 1, 4 and
5), but the pattern of response of individual genes dif-
fered between treatments. For the top ten expressed
transcripts in the constitutive transcriptome (assessed
at TO) of the bark and the needles (ID numbers 1 to
10 in Table 3), Fig. 6 shows the time progression of

differential expression following stripping and methyl
jasmonate application.

There was a tendency for genes to be up-regulated
or down-regulated following both treatments. Of the
three genes (dehydrin, light-harvesting chlorophyll a/b-
binding polypeptide and metallothionein) that showed
marked down-regulation, only dehydrin showed
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Fig. 5 An upset plot showing the number of unique and overlapping differentially expressed transcripts following methyl jasmonate (MJ) and
the bark stripping (strip) treatments over time and plant parts (needles [N] and bark [B]). T7,T14 and T21 referred to sampling undertaken 7, 14 and
21 days after treatment respectively. As an example, 749 transcripts in the needles (N) were differentially expressed uniquely at T7 following MJ
treatment and were not differentially expressed at any time point in the bark (B) or other time point in the needles (N). Treatments or times where
overlapping transcripts occur are linked by lines. For example, the most common overlapping transcripts were the 227 that were differentially
expressed only in the needles at T7 and T14 in methyl jasmonate (MJ) treatment. The other transcript combinations are ordered by their frequency
of occurrence according to the various unique or overlapping combinations in which they were differentially expressed in the methyl jasmonate
(MJ) and bark stripping (strip) treatments at each time. Note that no transcripts were differentially expressed in the needles following bark stripping
atany time

significant down-regulation at T7 in both strip and M]J
treated samples.

Functional classification of differentially expressed
transcripts
To assess the overall effect of the treatments across dif-
ferent gene families and molecular processes, the GO
terms were determined for the up-regulated and down-
regulated transcripts for each condition (time x treat-
ment X plant part). There was an overall similarity in the
GO terms for genes that were up- and down-regulated in
the strip and methyl jasmonate treatments. For example,
in the GO-molecular processes, differentially expressed
genes were associated with catalytic activity both in
the needles and the bark (Fig. 7, Supplementary Fig. 1).
However, the proportion of the 100 top differentially
expressed genes in the catalytic activity category varied
markedly. For example in the bark, a great percentage of
top down-regulated genes following bark stripping were
in the catalytic activity category (72%) compared with the
up-regulated genes (28%).

Comparing GO terms for the top differentially
expressed genes in the constitutive (needles versus bark)

and induced transcriptome, indicated that some gene
functions that were not strongly expressed in the con-
stitutive state (T0) were notably up-regulated or down-
regulated after treatment, and this differential expression
appears to be treatment specific (Fig. 7). For example,
genes related to response to stimulus (GO:0050896), plas-
modesma (GO:0009506) and cell junction (GO:0030054)
were strongly up-regulated at T7 in the transcriptome of
the bark stripped samples but not the methyl jasmonate
samples. Accordingly, transcripts of many of the other
GO categories were under expressed in the transcrip-
tome of the bark stripped samples.

Discussion

We aimed to understand the differences in the constitu-
tive needle and bark transcriptomes, the changes that
occur following bark stripping and how they compare
with those of methyl jasmonate that have been most
commonly reported for conifer species [17, 24, 35, 80].
While the results are based on a partial transcriptome,
comparing the needle and bark transcriptome as assessed
prior to treatment (T0) showed that there were minimal
qualitative differences in terms of the transcripts found
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Fig. 6 Time progression in the differential expression (control versus treatment) of the top 10 most expressed genes in the constitutive
transcriptome of Pinus radiata. The genes are detailed in Table 3 and their differential expression in bark is shown following a bark strip and b
methyl jasmonate treatments. The average change in expression was estimated at each time point by comparing the raw counts for the bark strip
or methyl jasmonate induced transcripts and the transcripts from control treatments (mean of treatment — mean of control) for a specific time and
were adjusted according to the differences in basal expression of the treatment groups at T0. TO is before treatment applications and 77, T14 and
T21 correspond to 7, 14 and 21 days after treatment application, respectively

in the plant parts. However, after treatment there was
strong transcriptional response of the basal transcripts
in both the needles and the bark, with the expression
being different and with sometimes non-overlapping
transcripts between plant parts, treatments and at each
sampling timepoint. While the effects of methyl jas-
monate have been previously reported in various pine
species [17, 24], this is the first study to illustrate tran-
scriptional responses to bark stripping. The response to
bark stripping was less than that to methyl jasmonate
and was localised, as no systemic response extending to
the needles was detected at any time point. Differences
in responsiveness to both treatments were also detected
between the classes of genes, where genes related to pri-
mary metabolism responded to treatments with a greater
magnititude of up-regulation or down-regulation com-
pared to genes associated with secondary metabolism.
Among the genes that were homogeneously expressed
between the bark and the needles were those related
to basic life functions especially those related to pri-
mary and secondary metabolism. For example, ribu-
lose bisphosphate carboxylase/oxygenase (RuBisCO)
and a chlorophyll a/b binding protein were dominant
both in the transcriptome of the needles and the bark.
Similar observations were made in the needles of other

P radiata populations [81] and Pinus monticola [70],
although these studies did not analyse how the tran-
scriptomes change with treatment and the observations
were limited to one plant part. Genes directly related to
secondary metabolism, for example chalcone synthases,
dehydrins and defensins, were among the basal genes,
highlighting the importance of constitutive defences
in P. radiata. Chalcone synthase has been identified in
other conifers [82, 83] and plays crucial role in phenolic
biosynthesis [74]. Defensins have also been detected in
various conifers where they inhibit the growth of a broad
range of pathogens, including bacteria, fungi and viruses
[75, 76]. Dehydrins that represent a family of genes for
drought tolerance have been detected in spruces and in
other Pinaceae [72]. Metallothioneins that were strongly
expressed both in the bark and the needles are impor-
tant in protection against heavy metal toxicity [73] and
have been documented mainly in Pseudotsuga menziesii
[84, 85]. They could reflect an adaptation to leached,
heavy metal enriched soils in the coastal sites of Califor-
nia where P. radiata originates [86]. However, while the
above genes are expressed at high amounts equally in the
bark and needles, some transcripts were up-regulated in
the needles or the bark. More up-regulation was detected
in the bark, which contrasted with the higher expression
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Fig. 7 Number of transcripts in each molecular, biological and cellular categorization of up-regulated and down-regulated genes in Pinus
radiata bark (B) at TO and after treatment with methyl jasmonate (MJ) or bark stripping (strip) at T7. The categorization is based on gene ontology
(GO) annotations of the top 100 differentially expressed transcripts in each category. GO terms with < 2% gene enrichment were excluded.

(—)=down- regulated, (+) = up-regulated transcripts

of transcripts in the needles than the bark reported in
other P, radiata populations [81]. In both plant parts up-
regulated genes were predominantly related to the syn-
thesis and transfer of macro- and micro-molecules, as
well as transcription factors which are the key molecular
switches orchestrating the regulation of plant responses
to a variety of stresses.

After treatment with methyl jasmonate and bark strip-
ping, there was an up-regulation and down-regulation
of several genes involved in both primary and second-
ary metabolism both in the bark and needles, consist-
ent with other studies that have characterised responses
to other stressors in conifers [24, 79]. The top genes that
were up- or down-regulated in the present study overlap
with those observed in similar studies with contrasting
sources of stress in conifers [13, 70, 79, 80, 87], suggest-
ing that changes in gene expression following stress are
relatively conserved. Among the top expressed genes,
results showed a down-regulation of hexokinases, gran-
ule-bound starch synthase and sodium-bile acid cotrans-
porter as well as genes related with photosynthesis,
suggesting reduction in sugar metabolism in the treated

plants. However, cell wall invertase that mediates export
of sucrose or enhanced import of hexoses at the site of
damage was up-regulated in both methyl jasmonate
and strip treated plants. Cell wall invertase (CWI) is an
enzyme that cleaves sucrose, the major transport sugar in
plants, irreversibly yielding glucose and fructose, which
can be taken up by plant cells [78, 88]. An increase in
CWIT should ideally lead to a reduction in sucrose, which
is consistent with the drastic reduction in the amounts
of sucrose that has been observed following methyl jas-
monate and strip treatments in P radiata. The up-regu-
lation of CWI would also suggest an increase of glucose
and fructose, but this was not the case as a strong reduc-
tion in the amounts of glucose and fructose was observed
in treated samples [50]. This suggests that although
fructose and glucose may be potentially enhanced by
an increased break down of sucrose, their utilisation
for energy and carbon skeletons for other organic com-
pounds or for tissue recovery exceeds their production,
supporting the concept that defence is costly in terms of
energy [89]. Gould, Reglinski [90] detected a repression
of photosynthesis in P. radiata as a response to stress that
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could lead to a reduction of sugars. Sugars have also been
shown to function as signalling molecules, in a manner
similar to hormones [88, 91], but their down-regulation
contrasts to the up-regulation of other signalling mol-
ecules. However, according to Eveland and Jackson [92]
sugar signals are generated either by relative ratios to
other metabolites, such as C:N, not necessarily carbohy-
drate concentration.

In addition to the sugar-related genes, the other pri-
mary metabolism genes that were responsive to the
treatment included those genes related to fatty acid
metabolism such as the medium-chain-fatty-acid-CoA
ligase and UDP-rhamnose:rhamnosyltransferase that
were up-regulated and those related to fatty acid hydroly-
sis, such as carboxylesterase, that were down-regulated.
Observations on the same population showed a reduc-
tion in fatty acids following treatment, consistent with
their potential use as precursors to the formation of
secondary compounds [93]. Accumulating evidence
has suggested lipids and lipid metabolites as important
regulators of plant defence [94]. Genes related to amino
acid synthesis were also among the top expressed genes.
Increase in amino acid levels have been detected in
plants under stress and is hypothesized to protect plant
cells against dehydration [95, 96]. Amino acid accumula-
tion has been observed to be strongly related to abscisic
acid signalling [95]. Molecules related to abscisic acid
signalling were also strongly up-regulated similar with
pathogenicity response in the Pinus pinaster - Fusarium
circinatum pathosystem [97]. This study contributes to
the body of literature demonstrating the crucial role of
phytohormones in host defense response [98].

Genes related directly to secondary metabolism were
not detected among the top differentially expressed genes
following treatment although they are abundant in the
constitutive transcriptome of both the needles and the
bark, consistent with the observations in spruce [10].
However, the relatively weak transcriptional response
to treatment of individual genes related to secondary
metabolism in this study contrasts with other studies
[13, 17] and could possibly be due to the timing of the
sampling, which was done 7 days after treatment applica-
tion. In various studies, maximum expression of genes is
shown to be attained within 5days after treatment appli-
cation [13, 17]. On the same population, a weak response
of terpenes and phenolics was observed following similar
treatments [50], which probably suggests an inherently
weak response of secondary compounds and associated
genes to stress in P. radiata. Defence genes being strongly
expressed in the constitutive but not in the induced tran-
scriptome may suggest existence of trade-offs in induced
gene expression [99], analogous to the trade-offs in con-
stitutive versus induced chemical responses that have
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been detected in P, radiata [21]. Although alkaloids have
not been well researched as important defence com-
pounds in conifers, genes related to alkaloid biosynthesis
such as RS-norcoclaurine 6-O-methyltransferase were
among the top expressed genes but were down-regu-
lated after treatment. There were also many proteins of
unknown functions that were up-regulated or down-reg-
ulated at various time points, which potentially explains
the many unknown chemical compounds that were
quantified on the same plants.

Considerable overlap was observed between the methyl
jasmonate and the strip induced transcriptome. How-
ever, results also indicate that bark stripping can induce
transcripts that are not induced with methyl jasmonate
and vice versa. Defence responses for bark stripping
may differ from methyl jasmonate since bark stripping
causes tissue and water loss at the injured sites, and dam-
aged plants are also easily infected by pathogens through
these wounds. In this case both defence and repair
responses are required. Hence the dominant genes in
the strip-induced transcriptome involved pathogenesis-
related (PR) genes and those related to fibre synthesis.
The expression of PR genes could also be related to the
historical relationship between P radiata and various
pathogens [100]. No systemic transcript responses were
observed in the needles to bark stripping. Coupled with
the chemical changes that were observed in the needles
following bark stripping on the same population, for
example the reduction of glucose and fructose at T7 and
T14 [50], this observation suggests that some chemical
stress responses, possibly those involving sugars, may not
involve on-site gene expression changes and may result
from passive reallocation of chemistry within the plant.
For other compounds like terpenes, it has been indicated
that passive changes normally occur only in the constitu-
tive environment and that stress-induced changes in ter-
penes are entirely of a de novo nature [101].

A key finding from this study is that the main tran-
scriptome change associated with either treatment
was clearly earlier than the main chemical changes
observed on the same population [50]. The maximum
differential expression of the transcripts was observed
7 days after treatment whereas most chemical change
were detected 14 and 21days after treatment, con-
sistent with a time-lag between gene and phenotypic
expression. This discrepancy may be associated with
trade-offs between gene expression and other cellular
resources, including the nutritional quality of the plant
[99]. One GO-term that was significantly enriched
after treatment was response to stimuli and, consist-
ently, genes related to signalling were among the top
expressed genes. For example, 1-aminocyclopropane-
1-carboxylate oxidase, which is related to production of
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ethylene; lanC-like protein 2-like for abscissic acid and
Tify domain containing protein for jasmonates were
strongly responsive. Ethylene is one of the major signal-
ling molecules in plant defences in addition to others,
such as jasmonic acid, salicylic acid and abscisic acid
[102]. Ethylene can act synergistically or antagonisti-
cally with jasmonic acid in the regulation of both stress
and developmental responses. The connection between
these two signalling pathways has been demonstrated
genetically to be the transcription factor for the ethyl-
ene response [103], that was also strongly expressed.
This suggests that jasmonates, abscisic acid and eth-
ylene are involved in induced responses of P radiata
under different stresses. The involvement of jasmonates
and ethylene in induced defence responses has been
shown in other pine species [20]. In other species,
abscisic acid has been shown to be involved in defence
responses and has been reported to play a negative role
in the regulation of the major photosynthesis gene —
type 2 light-harvesting chlorophyll a/b-binding poly-
peptide [71] — which was reduced after treatment in
this current study.

Conclusion

There are marked quantitative differences in the needle
and bark transcriptome of Pinus radiata both in the con-
stitutive and induced states. The transcriptome triggered
by bark stripping substantially differed from methyl
jasmonate triggered responses suggesting that some
molecular aspects of bark stripping may differ from other
biotic and abiotic responses. Gene annotation revealed
that some of the differentially expressed transcripts have
putative functions in plant defence signalling, transcrip-
tion regulation, biosyntheses of primary and secondary
metabolites and other biological processes. The diversity
of these genes reflects the complexity of stress responses.
The expressed genes provide a basis for further iden-
tification of candidate genes that affect bark stripping
through variation in their expression levels while the
uncharacterized genes that responded to simulated her-
bivory and methyl jasmonate provide a rich resource for
future studies. Gene expression can be used by breeders
to exploit phenotype variability among individuals within
or between populations. It also remains to be tested
whether variations in the transcript levels, particularly
the differentially expressed components in reponse to the
artificial stress treatments can be linked to the suscepti-
bility classes identified in the field [46] and whether they
are heritable.
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Additional file 1: Supplementary Figure 1. Number of transcripts

in each cellular, biological and cellular categorization of up-regulated
and down-regulated genes in Pinus radiata needles (N) at TO and after
treatment with methyl jasmonate (MJ) or bark stripping (strip) at T7. The
categorization is based on gene ontology (GO) annotations of the top
100 differentially expressed transcripts in each category. Go terms with
< 2% gene enrichment were excluded. (—) = down- regulated, (+) =up-
regulated transcripts.
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