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Eucalypt plantations in Tasmania have been managed predominantly for fibre production, but there is also
growing interest in the production of solid wood products. For solid wood production, stiffness and basic density
are key wood properties as they define the suitability of the timber for particular products and ultimately value.
To inform processing options available for targeting high value wood products there is a need to understand
how wood properties vary within a tree and how thinning impacts wood quality to foster efficient processing.
Three thinning trials of 20-22-year-old plantation grown Eucalyptus nitens were used to assess stiffness and
basic density longitudinally from the base to 20 m height in the tree and radially at a fixed height of 2.5 m.
Longitudinally and radially, wood properties varied more within the tree than the variation which arose as a
result of thinning. Stiffness was lowest at the bottom of the tree irrespective of thinning treatment and the
highest stiffness was located from 7.5 to 15 m height depending on thinning and site. Commercial thinning to
300 trees ha™! had no effect on stiffness in the bottom of the tree but resulted in lower stiffness in the upper
logs. Trees in thinned stands had slightly lower basic density and that reduction was consistent within the tree
and across sites. Thinning resulted in significant radial change in wood properties and the thinning effect was
apparent soon after the thinning treatment. The results demonstrate that thinning has an adverse impact on
wood properties, but not to a degree that hinders the benefits thinning brings to maximizing wood growth.
However, the high variation in wood quality within the tree suggests that it would be valuable segregating logs

within a tree to maximize solid wood product value.

Introduction

Eucalyptus nitens is commonly planted in cool temperate zones
(Forrester et al. 2013). Most plantations are established to pro-
duce pulpwood, but this species is also considered to have poten-
tial for solid wood products (Hamilton et al. 2011; Forrester et al.
2013). A substantial plantation resource of around 18 000 ha of
E. nitens has been established in Tasmania and is being managed
for solid-wood products (Sustainable Timber Tasmania 2019).
Managing eucalypt plantations for the production of solid wood
on short rotations requires their planting at high stand densities
to establish good form and then selective thinning to increase
individual tree size and a greater volume of sawlogs suitable for
processing (Gerrand et al. 1997; Nolan et al. 2005; Wood et al.
2011; Forrester et al. 2013). In Tasmania, commercial thinning
is done in ages of 7-12 years when trees are large enough to

allow a commercial pulpwood harvest and an early financial
return (Candy and Gerrand 1997; Wood et al. 2009; Beadle et al.
2011; Sustainable Timber Tasmania 2019) with the objective of
achieving suitable log size for the remaining trees within the
planned 20-25 years rotation (Gerrand et al. 1997; Wood et al.
20009).

There are several wood properties that are important for
grading and pricing of eucalypt timber. These include dimen-
sional stability, log end splitting, warp and drying collapse
(McKenzie et al. 2003; Washusen et al. 2008). Stiffness is
also an important property for grading eucalypt timber (Dick-
son et al. 2003; Farrell et al. 2012; Blackburn et al. 2018)
and basic density is an important indicator of stiffness, as
well as hardness, strength and workability (Bailleres et al.
2008).
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Wood properties are known to change radially from the pith to
the outside of the tree, and longitudinally with height. As this vari-
ation can be large in fast-growing plantation trees, knowledge of
how wood properties vary within trees is critical for the optimal
utilization of wood as a raw material (Zobel and Van Buijtenen
1989). An ability to estimate the proportion of fit-for-purpose
wood properties in a stand, tree or log can be used to manage
wood harvesting and maximize forest value (Lachenbruch et al.
2011; McGavin et al. 2014; West 2014). To create an understand-
ing of how to best exploit harvested logs, this study examines
the longitudinal variation in basic density and stiffness in 2.5 m
log lengths to 20 m height; it also examines the radial variation
in these properties at 2.5 m height.

Two crucial properties of solid wood, basic density and
stiffness are a function of the growing environment, silvicultural
management and genetics (Zobel and Van Buijtenen 1989;
Downes et al. 1997; Blackburn et al. 2014; Vega et al. 2020;
Balasso et al. 2021; Rocha-Sepulveda et al. 2021; Vega et al.
2021). Wood stiffness is the limiting factor that determines
veneer sheet F-grade according to AS/NZS 2269.0:2012 (Stan-
dards Australia 2012) and structural timber standard AS/NZS
1720.1-2010 (Standards Australia 2010). For E. nitens, stud-
ies have shown that basic density first decreases and then
increases with height up the stem (Purnell 1988; Lausberg
et al. 1995; Beadle et al. 1996; Downes et al. 1997; Raymond
and MacDonald 1998; Raymond and Muneri 2001; Shelbourne
et al. 2002; McKenzie et al. 2003), and that stiffness increases
with increasing height; consequently the upper logs tend to
have higher stiffness (McKenzie et al. 2003; Valencia 2008;
Washusen et al. 2009; Blakemore et al. 2010; Farrell et al.
2012; Balasso et al. 2019). In some studies (McKimm and
Ilic 1987; Lausberg et al. 1995; McKenzie et al. 2003), basic
density decreased radially from the pith until ring 4 and then
increased with distance through the outer wood, in others there
was no initial decrease but stiffness increased continuously
from the pith to the outer wood (Blakemore et al. 2010;
Medhurst et al. 2012; McGavin et al. 2015; Vega et al. 2020).
This study extends this knowledge by examining these changes
to much greater heights in the stem in stands that have
also been subjected to thinning. Earlier studies indicated that
thinning has no effect on basic density in E. nitens (Munoz
et al. 2010; Bravo et al. 2012; Medhurst et al. 2012; Gendvilas
et al. 2021a) but that it can reduce wood stiffness (Bravo
et al. 2012; Gendvilas et al. 2021a). An understanding of how
thinning influences the pattern of within-tree variation of basic
density and stiffness remains limited so far, particularly in
eucalypts.

The aim of this study was to examine the variation in basic
density and stiffness of E. nitens within the tree and the impacts
of thinning on those same wood properties at three contrasting
sites in Tasmanida, to inform wood processing strategies based on
wood quality.

The specific objectives of this study were to:

1. Examine the longitudinal variation in wood property traits and
whether this is impacted by commercial thinning within the
tree from the base to 20 m height, and to

2. Examine how commercial thinning affects radial variation
within the tree from the pith to the outer wood at a height
above ground of 2.5 m.

Methods

Site description and experimental design

Three 20-22-year-old stands of E. nitens at Urana, Florentine
and Gads in Tasmania, Australia were selected for this study
(Table 1) (Gendvilas et al. 2021a). E. nitens grown in Tasmania
originate from a single region on mainland Australia, the Central
Highlands of Victoria (Hamilton et al. 2008). The plantations were
established using standard nursery stock from an open pollinated
seed source. The stocking at planting was 1100 trees ha %,
and the best formed dominant and codominant trees (300 trees
ha ~!) at all three sites had been pruned in three stages to a
maximum height of 6.5 m between ages 3 and 5 years (Gendvilas
etal. 2021a).

At either age 8 or 9 years, a commercial thinning treatment
was performed ‘from below’ where small trees were removed to
reduce the stand density to a target final stocking of 300 trees
ha=! (Table 1). Mortality in the unthinned control treatment at
Urana was greater than in the control treatments at Florentine
and Gads (Table 1 and Appendix 1). On all three sites, there were
four replicates for the control and thinned treatments except for
the thinning treatment at Florentine which had three replicates.

Tree selection

The pruned trees within each replicate were ranked in order
from the smallest to largest DBH (diameter at breast height,
1.3 m above ground level) and split into three size classes (small,
medium, large) based on DBH. A stratified, random sampling
approach was then used to select two trees for felling within each
size class, totalling six trees per replicate. As the Florentine thin-
ning treatment had three replicates, eight trees were selected
from each, two small, four medium and two large in order to have
a balanced number of 24 trees from all treatments. The stratified
random sampling ensured that the full range of tree diameters
were included. Size class itself was not a variable of interest but
used as a co-variate in the analysis.

Work in forest

All trees were felled manually with a chainsaw in June-July
2019, delimbed and cut into up to 13 2.5-m logs per tree.
To ensure consistency across the experiment, eight logs were
assessed from each tree. Stump height averaged 300 mm. Log
lengths were remeasured to centimetre accuracy. A Director HM-
200 ‘Hitman’ (Fibregen, Christchurch, New Zealand) was used
to assess log acoustic wave velocity (AWV) within 1 week of
felling; the average temperature during these measurements
was 6.4°C, 6.0°C and 5.3°C at Urana, Florentine and Gads,
respectively.

For the longitudinal wood property assessments (Figure 1), a
cross-sectional 50 mm thick disc was cut at stump height, at
2.5 m height, and then at successive 2.5 m intervals up the
tree. Two extra discs at 2.5 m height were cut for radial wood
property assessments (Figure 1). To avoid moisture loss, each
disc was numbered and sealed in a plastic bag immediately
after cross-cutting. Within 4 days of felling, the diameter of each
disc was measured with and without bark. All discs, except the
two for radial assessments, were split with an axe into four
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Table 1 Site and treatment description of Eucalyptus nitens thinning trials in Tasmania.

Florentine

Gads

Urana
Location 41°20'57.0”S 148°02'54.8"E
Elevation (m, asl.) 400
Rainfall (mm yr—1)* 1101
Mean annual temperature °C* 11.4
Coupe planted (year) 1997
Thinning code Control EC300
Replicates 4 4
Thinning age (year) N/A 8
Stocking in 2019 (trees ha —1) 579 (36) 316 (28)
Mortality up to 2019 (%) 44(7) 16 (4)
Height (m) 33.5(0.5) 32(0.5)
DBH (cm) 32.2 (0.4) 37.1(0.6)
H/DBH (m m~1) 106 (3) 89 (3)

42°36/22.0"S 146°28'09.5"E
400

41°34'22.9S 146°12'13.8"E
700

1332 1556

10.3 9.4

1999 1999

Control EC300 Control EC300

4 3 4 4

N/A 8 N/A 9

941 (6) 283 (30) 1045 (24) 315 (14)
15(9) 5(2) 7 (4) 6(9)
34.8(0.7) 36.5 (0.5) 30.7 (0.6) 29.4(0.5)
30.2(0.3) 38.7(0.7) 27.1(0.3) 35.8 (0.5)
118 (3) 96 (3) 115 (2) 83 (2)

*Temperature and precipitation data from trial planting date until 2018 were extracted for the trial site using the ‘BgetAWAP’ function of the ‘AUSclim’
package (P.A. Harrison unpublished R package); Standard error in brackets; EC300 is commercial thinning to 300 trees ha~1.

quarters (Figure 1). One quarter of each split disc was weighed
to 1 g accuracy using portable scales. The split disc quarters were
subsequently stored in sealed plastic bags in a cold room at 5°C
for up to 3 weeks (longitudinal assessments) and the two full
discs for 2 months (radial assessments).

Basic and green density, log MOE measurements

Disc quarter (wedge) basic density was determined as described
in AS/NZS 1080.3:2000 (Standards Australia 2000), and wedge
green volume by water displacement (Heinrichs and Lassen
1970). Dry mass was measured after oven drying at 103 & 2°C
until the wedge reached constant mass. Basic density was
calculated as the ratio of oven dry mass (kg) to green volume
(m3), and green density as the ratio of green mass (kg, measured
in the forest) to green volume (m?).

To account for taper when calculating log density, more
weight should be given to the density of the disc at the large
end; average wedge densities were therefore calculated using
formula (1) (Kimberley et al. 2015):

Dlog = WDwedge,L + (1 - W) Dwedge,s (1)

where WDyedger aNd Dyedge,s are wedge basic density or green
density at the large and small ends of the log, respectively, and
W is the weighting factor which is a function of the ratio of the
large- to small-end diameter of the log (Kimberley et al. 2015).

The MOE in GPa of logs was estimated using Equation (2) (Lai
etal. 2019):

MOE = p v (2)

where p (kg m~3) is the mean green density and v (km s7?) is the
AWV of the log.

Wood sample preparation for radial measurements

From one of each of the two discs for the radial assessment, a full
diameter 50 mm-wide and 50-mm thick strip passing through
the pith was cut and given a unique identification number. To
minimize splitting and checking, strips were air-dried for 4 weeks
in a ventilated room at 15°C. The strips were then fumigated and
sent to Scion, Rotorua, New Zealand where they were conditioned
for 2 monthsin a controlled environment at ~65 per cent relative
humidity and 20°C to reach an equilibrium moisture content of
~12 per cent. The surfaces were then cut with a miter saw to
create smooth and straight surfaces and an even thickness of
30 mm.

Annual ring width measurement

Each strip was scanned with an optical scanner at a resolution of
600 pixels per inch. Image J software (Schneider et al. 2012) was
used to define ring boundaries based on the latewood ring and
each ring width in millimetres calculated and expressed in terms
of ring number from the pith.

Radial acoustic measurements and adjustment to
annual rings

Ultrasonic time of flight AWV was used to assess stiffness (Mason
et al. 2017; Dahlen et al. 2019; Schimleck et al. 2019). Ultrasonic
time of flight AWV was measured in the longitudinal direction on
the strips with a pair of transducers using the DiscBot machine
(Scion, New Zealand). The strip was mounted in a frame that
moved past the sensors and precisely recorded each scan posi-
tion every 5 mm from the pith. A series of parallel paths 5 mm
apart was traced across the sample to provide complete cov-
erage. To avoid damage to the machine, the 10 mm-length at
either end of each strip was not scanned. In total, 140 out of the
144 samples were successfully scanned.

The AWV measurements were fitted to a generalized additive
model (GAM) using the mgcv R package (Wood 2011) with a fixed
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Figure 1 Tree processing description of three Eucalyptus nitens thinning trials.

smoothing parameter for all strips (Appendix 2). As the distance
from the pith until the beginning and end of each ring was known,
it was possible to allocate AWV values for each ring. The mean
AWV value was calculated from the GAM model estimates for
each annual ring in both directions of the strip and expressed
by ring number from pith. As the edges of the strips were not
scanned, there was not a complete representation of all of the
outer rings. Therefore, data were truncated at ring position 16 to
achieve balance for all treatments. The ring AWV values for each
ring from both sides of the strip were averaged.

Annual ring basic density and MOE measurement

Drilling resistance can be used for tree-ring analyses (Rinn et al.
1996; Chantre and Rozenberg 1997; Wang and Lin 2001; Wang
etal. 2003; Guller et al. 2012), but to obtain accurate basic density
measurements radially when using drilling resistance, the friction
effect has to be accounted for (Sharapov et al. 2017; Downes
et al. 2018; Fundova et al. 2018; Gendvilas et al. 2021b). Drilling
resistance of green discs from cambium to pith was obtained
from a single cross-sectional trace using an IML-RESI PowerDrill
© PD 400 (Resi) (IML System GmbH, Wiesloch, Germany) fitted
with a new needle. Sampling conditions were 1.5 m min~! speed
of forward feed and 3500 rpm. The drag as the needle travels
through the disc was accounted for using the semi-non-linear
friction correction (Gendvilas et al. 2021b). Basic density for each
ring was calculated using custom software written in R and

available at: https://forestquality.shinyapps.io/FQ_ResiProcessor/.
The parameters for basic density prediction, slope (6.6) and inter-
cept (207.3), were used (Gendvilas et al. 2021a). The annual ring
MOE (MPa) was estimated using equation (2), where p is the basic
density obtained from Resi (kg m=3) and v is the mean AWV
(km s~1) derived from the fitted GAM model from the annual rings
measured using DiscBot.

Statistical analysis

Differences in radial and longitudinal variation in wood proper-
ties between thinning treatments were examined using a mixed
linear model. The model had the following terms:

Y = u + Site + Thinning + Position + Size class
+ (Site x Thinning) + (Site x Position)
+ (Thinning x Position) + (Site x Thinning x Position)
+ Block : Site + Plot : Block
+ Tree : Site + spl (Position : Site : Thinning) + error

where Y is the observed response for longitudinal (log basic
density, log AWV, log MOE and log small end diameter) and radial
(ring basic density, ring AWV, ring MOE and ring width) variation,
and u is the overall mean. Site, Thinning, Position and their inter-
actions were fixed effects. Size class was treated as a co-variate
by being included as a fixed effect term only, and not included
in the interaction terms. Random terms were Block nested within

507



Forestry

Table 2 Statistics for the longitudinal and radial variation of each dependent variable in Eucalyptus nitens thinning trials in Tasmania. DBH class was
considered as co-variate and was not included in interaction term. F-tests for fixed effects from Wald’s table

Fixed effects and Longitudinal Radial
interactions

Basic density AWV MOE SED Basic density AWV MOE Ring width
Position 604. 2% 896.9*** 441 8% 6777.0%* 156.0%** 33856.9%** 549.6%** 1207.0%**
Thinning 14. 2% 52.6%** 20.7% 115.4%* 5.5% 27.6%** b.4* 42.6%%*
Site 20.2% 12.9%* 29.6%** 7.5% 16.9% 1.4 ns 3.4* 3.0ns
Size class 0.3ns 3.9* 2.4ns 122.9%* 1.2ns 10.5%* 0.6 ns 35.3%
Site x Thinning 0.4 ns 4.3* 2.4ns 10.6%** 0.7 ns 7.5%* 1.5ns 1.5ns
Site x Position 2.2ns 66.8*** 76.7%* 15.0%** 276.8*** 246.8%** 12.5%* 20.6%**
Thinning x Position 33ns 127.3% 149.0%** 89.5%** 9.5%* 1067.5%+* 29.0%** 94.0%**
Site x Thinning x Position 29ns 7.3%* l.4ns 10.2%** 1.4 ns 182.0%* 1.6 ns 3.1*

Note: *P <0.05, **P < 0.01, **P < 0.001, ns - not significant. AWV—acoustic wave velocity; MOE—modulus of elasticity; SED—log small end diameter.
‘Position’ for longitudinal variation is log number from bottom of the tree and ‘Position’ for radial variation is ring number from the pith.

Site, Plot nested within Block and Tree nested within Site. An spl
(Position:Site:Treatment) is the random log or ring position trend,
nested within the site and treatment, and approximated by a
cubic spline (Apiolaza and Garrick 2001; Apiolaza 2009; Butler
et al. 2009; Ivkovi¢ et al. 2013). A spline was used to account for
the nature of the non-linear trend for both radial and longitudinal
variation. The spl (Position:Site:Treatment) random term signif-
icantly improved all models as found by likelihood ratio tests.
As within-tree error is auto-correlated (Apiolaza 2009), in the
selected model a first-order autoregressive correlation structure
(AR(1)) was applied among successive annual ring or log positions
to allow separate correlations and residual error variances for
each site (Jordan et al. 2005; Auty et al. 2013; Moore et al. 2014).
The assumptions of normality and heterogeneity for each vari-
able were tested by visually assessing residual plots and where
assumptions were not met, the log (for ring AWV and width) and
square root (for ring basic density and MOE) transformations were
applied. Statistical significance of the fixed effects was assessed
using a Wald F-test. Analyses were undertaken with ASReml-R
package version 4.1 (Butler et al. 2017) within the R environment
(R Core Team 2020).

Results

Longitudinal variation

We observed significant longitudinal variation in basic density;
the highest values were observed in the upper logs and the lowest
most commonly in the third log (5-7.5 m) (Table 2 and Figure 2a).
The difference between the lowest and highest values of basic
density with position varied between 50 and 68 kg m~3. Thinning
was associated with a significant reduction in basic density, on
average by 15 kg m~3. The response patterns of basic density to
position and thinning were consistent across sites. The significant
differences in basic density across sites were associated with the
highest value at Urana (518 kg m~3), then Florentine (484 kg m—3)
and then Gads (459 kg m~3).

There was also significant longitudinal variation in AWV. In
general, AWV was highest between the third and sixth log (5-
15 m) and lowest in logs one and two (0-5 m). Thinning led to a

significant reduction in AWV, and this increased with log position
(Table 2 and Figure 2b). The reduction was not evident until log
position 7 (15 m) at Urana and Florentine and position 2 (5 m) at
Gads and the reduction was greatest at Gads.

Similarly, the highest MOE was located in the mid-section
of the tree between log 3 and log 6 (5-15 m). This significant
longitudinal variation in MOE was influenced by thinning (Table 2
and Figure 2c), however, the reduction was not evident until log
position 7 (15 m) at Urana and Florentine and position 3 (5 m)
at Gads and was greatest at Gads. There was also a significant
effect of site on the longitudinal variation in MOE; the increase up
to the mid-positions was greatest at Urana and lowest at Gads
(Table 2 and Figure 2¢).

Thinning significantly increased log size (expressed as small
end diameter; SED), however, the effect was a function of posi-
tion and not consistent across the sites (Table 2, Figure 2d). In
response to thinning, this increase diminished in the upper logs
at Urana and Gads, but remained significant at all positions at
Florentine (Figure 2d). The smallest incremental response at log
position 1 was at Urana (27 mm) and greatest at Gads (78 mm)
followed by Florentine (69 mm) and the response decreased with
increasing log position, the rate depending on site (Figure 2d).

Radial variation

There was significant radial variation in basic density with position
(Table 2; Figure 3). At all sites the lowest values were observed
betweenrings 4 and 6 but the patterns towards the pith and edge
differed between sites; at Urana, there was a steeper increase in
radial density from ring 4 to 16 but a much smaller increase from
ring 4 to ring 1, than at Florentine and Gads. Radial variation in
basic density was impacted by thinning, but a significant reduc-
tion was only evident from ring position 9 to 11 at Florentine and
9 to 15 at Gads (Figure 3a). At ring 16, the mean basic densities
were 522, 470 and 437 kg m~3 at Urana, Florentine and Gads,
respectively.

Across sites, there was significant radial variation in AWV with
position (Table 2); in the unthinned treatment it varied between
4.5 and 4.7 km s7! at the pith and 6.0 and 6.3 km s7! at
the outermost rings (Table 2, Figure 3b). AWV was influenced
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Figure 2 Longitudinal variation of wood property traits of Eucalyptus nitens from the stump to a height of 20 m. Red line: unthinned; and blue: thinned.
Shaded line is 95 per cent confidence interval estimated from the fitted model. (A) basic density; (B) acoustic wave velocity (AWV); (C) modulus of

elasticity (MOE), F-grade assigned based on MOE values according to AS
2010; Standards Australia 2012); (D) log small end diameter (SED).

by thinning but these effects were not consistent across sites
(Table 2 and Figure 3b). A significant decrease in AWV was evi-
dent between rings 8 and 16 at Florentine and rings 4 and 16
at Gads and this decrease became greater with ring position

/NZS 2269.0:2012 and AS/NZS 1720.1-2010 standards (Standards Australia

particularly at Gads where the AWV at ring position 16 was 6.3
and 5.5 km s~1 in the unthinned and thinned treatments, respec-
tively (Figure 3b). Thinning had no effect on radial AWV at Urana
(Figure 3b).
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Figure 3 Radial variation of Eucalyptus nitens thinning trials in Tasmania. The red line is unthinned and blue thinned. Shaded line is 95 per cent
confidence interval estimated from the fitted model. (A) basic density; (B) acoustic wave velocity (AWV); (C) modulus of elasticity (MOE), F-grade
assigned based on MOE values according to AS/NZS 2269.0:2012 and AS/NZS 1720.1-2010 standards (Standards Australia 2010, Standards Australia
2012); (D) Ring width. Thinning treatment was imposed at the stage of formation of the eighth ring position from the pith at a height of 2.5 m.

There were significant differences in the radial variation of 10.0 and 10.7 GPa at ring 1 to 17.7 and 19.2 GPa at ring 16.
MOE with position (Table 2, Figure 3c). At all sites, MOE increased  Thinning affected this pattern and a significant reduction in MOE
with ring position and in the unthinned treatment from between  was evident at Gads between rings 9 and 16; there was no
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reduction with radial position at Urana and apparent reductions
at Florentine beyond ring 8 were not significant (Table 2 and
Figure 3c).

As expected, thinning significantly increased ring width
(Table 2), the response coinciding with the silvicultural interven-
tion when the stand was aged 8-9 years (eighth-ninth ring).
However, this effect was not consistent across sites, and greater
at Florentine and Gads than at Urana, and sustained for longer
at Gads than Florentine (Table 2 and Figure 3d).

Discussion

This study has shown that thinning significantly affects basic
density, AWV and MOE, and that the magnitude of the effect
varies longitudinally and radially within the tree and is generally
not consistent across sites. Changes in the longitudinal and radial
values of these wood properties were always greater than in
response to thinning. Thinning reduced AWV and MOE to a much
greater extent than basic density, and the response was more
marked in the upper than the lower log sections. Understanding
this within-tree variation in wood quality traits has implications
for forest growers, wood processors and timber users, and the
consequences of the adopted thinning strategy on solid-wood
properties and log quality are discussed further below.

The longitudinal variation in MOE indicated first an increase
and then a decrease in stiffness with increasing tree height (log
position). A steep increase in stiffness towards the mid-section
of the tree followed by a shallower decrease in Pinus radiata
(Waghorn et al. 2007; Watt et al. 2011), Picea sitchensis (Simic
et al. 2019), Cryptomeria japonica (Yamashita et al. 2009) and
Populus hybrids (Himes et al. 2021) suggests that this pattern is
common to a wide variety of commercially grown tree species.
A number of previous studies of E. nitens using either two, three
or four logs of between 2.5 and 5.5 m in length have reported
that MOE was greater in the upper than lower log(s) (McKenzie
et al. 2003; Valencia 2008; Washusen et al. 2009; Blakemore et al.
2010; Farrell et al. 2012; Balasso et al. 2019), as was the case
in Pinus taeda (Antony et al. 2012), and Picea glauca and Popu-
lus tremuloides (Sattler et al. 2013). The much greater number
(eight) of 2.5 m logs used in this study showed that maximum
stiffness was generally present between the third and sixth log
(5 and 15 m), and that the patterns closely matched those for
AWV. Microfibril angle (MFA) is inversely related to stiffness and in
E. nitens and Eucalyptus fastigata it has been shown to be lowest
in the mid-section of the stem at 40-60 per cent tree height
(Kibblewhite et al. 2004). That the longitudinal changes in MOE
were dependent on site may in part be related to differences in
tree height and therefore mid-height from the ground.

Radially at 2.5 m height, MOE increased with ring position and
there was some indication that the rate of increase accelerated
in ages 6-8 years and then slowed in the outer rings. Other
studies of E. nitens have found that changes in MOE or, inversely,
MFA followed a similar pattern (Medhurst et al. 2012; Vega et al.
2020). For softwoods the region adjacent to the pith with low
MOE prior to an increase towards the outer wood is related to its
anatomical properties as ‘corewood’ or ‘juvenile wood’ (Burdon
et al. 2004; Moore and Cown 2017). It has been suggested that
ontogenetic changes in wood structure from pith to bark may

be linked to gene expression that responds to changing hydraulic
and mechanical support requirements (Lachenbruch et al. 2011).

Most commonly, basic density first decreased with height up
the stem (log position) and then increased. This pattern where
basic density reaches its lowest values at 20-30 per cent stem
height and then increases appears common for fast-growing
hardwoods such as E. nitens (Purnell 1988; Lausberg et al. 1995;
Beadle et al. 1996; Downes et al. 1997; Raymond and MacDonald
1998; Raymond and Muneri 2001; Kube and Raymond 2002;
Shelbourne et al. 2002; McKenzie et al. 2003; Kibblewhite et al.
2004), Eucalyptus globulus (Downes et al. 1997; Raymond and
MacDonald 1998; Raymond and Muneri 2001), Eucalyptus grandis
(Sette Jr et al. 2012; Trevisan et al. 2012), as well as Betula
pendula (Liepins and Liepins 2017), Populus tremula (Hergjdrvi
and Junkkonen 2006; Liepins et al. 2017), P. tremula x tremuloides
(Herdjdrvi and Junkkonen 2006) and Populus hybrids (Himes et al.
2021). Basic density is a function of the relative amounts of low-
density early and high-density late wood in the annual rings
(Zobel and Van Buijtenen 1989; Evans et al. 2000). In this study,
basic density at 2.5 m height was higher near the pith and the
outer rings than in the fourth to sixth rings. While this pattern of
radial variation appears consistent across tree height (Herdjdrvi
and Junkkonen 2006), annual ring width is not. This study indi-
cates that the very fast early growth rates of E. nitens appear
to be associated with the highest widths and lowest densities
in rings 2-6 that result in the lower logs containing a higher
proportion of low-density wood than the upper logs.

Thinning had no effect on MOE in the bottom logs. The
trees had been thinned at ages 8-9 years and this lack of
thinning effect on stiffness in this region may be explained
by the amount of wood formed before and after thinning
at various heights in the tree. The bottom logs contained at
least eight rings that were formed prior to thinning and that
are associated with high rates of diameter growth. Two other
studies on a 22-year-old plantation stand of E. nitens showed
that thinning at age 6 years had no effect on the MOE of
sawn boards up to 5.7 m (Washusen et al. 2009) and at 1.3 m
(Medhurst et al. 2012) height. That thinning has no effect on
stiffness of the bottom logs offers a valuable resource from the
largest diameter harvestable logs, albeit of lower than average
stiffness.

In contrast, the upper logs in both the unthinned and thinned
treatments had a higher MOE and stiffness associated with the
larger proportion of wood formed from rings that developed later
in the growth cycle. However, reductions in MOE in response to
thinning occurred in upper log sections, and the magnitude was
dependent on site. The greatest reduction and greatest number
of log positions affected were at Gads, the high elevation site
with the lowest mean annual temperature and highest rainfall
and the significant reductions in AWV per log position in response
to thinning matched those for MOE. Other studies (Vega 2016;
Blackburn et al. 2018; Balasso et al. 2021; Vega et al. 2021)
have shown that increasing elevation is associated with lower
stiffness and basic densities in planted E. nitens; this study has
shown that the thinning response is more associated with lower
stiffness. A decrease in the proportion of latewood which has
higher stiffness and density (Bouriaud et al. 2005; Downes and
Drew 2008; Wagner et al. 2013; Knapic et al. 2014; Kharrat et al.
2019) on cooler and wetter sites (Cown and Ball 2001) coupled
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with greater growth post thinning will also result in reduced MOE.
In addition, Watt et al. (2011) also observed that reductions
in stiffness as a result of different stocking increased radially
with tree height, and this may also explain why thinning had
a greater effect in the upper parts of the tree in this study.
Another contributing factor is tree slenderness. Thinning leads
to a reduction in slenderness and lower MOE (Watt and Zoric
2010; Caballé et al. 2020; Balasso et al. 2021); trees with high
slenderness have greater stiffness to prevent stem buckling (Watt
et al. 2006). Greater exposure to wind load on higher elevation
sites also reduces slenderness (Jacobs 1936; Wood et al. 2008;
Nicoll et al. 2019) in a way that results in a greater reduction in
stiffness.

The effect of thinning on log basic density was small and did
not exceed 15 kg m=3. That thinning has no significant effect
on log basic density has been found previously for E. nitens
(Washusen et al. 2009; Munoz et al. 2010; Medhurst et al. 2012;
Gendvilas et al. 2021a) and other species (Zobel and Van Buijte-
nen 1989; Schneider et al. 2008; Moore et al. 2009; Hegazy et al.
2014; Mdkinen et al. 2015; Krajnc et al. 2019). In the context
of this study, growing environment was the dominant factor
determining log basic density.

Except at Urana where there had been poor survival in the
control treatment, although not always significant, the effect of
thinning at Florentine and Gads on all radial wood properties gen-
erally became visible immediately after thinning and increased
with age. A similar pattern of annual increase in basic density and
stiffness due to difference in stocking was observed for radiata
pine (Lasserre et al. 2009; Watt et al. 2011) and basic density
in Acacia salicina (Hegazy et al. 2014). The thinning response on
wood growth radially appears to be inversely related to wood
quality. For example, the largest response in wood growth radially
due to thinning was at Gads where annual rings after thinning
continued to be widest, while at the other sites ring width started
to decrease. However, while thinning results in lower stiffness, it
also makes these wood properties less variable radially. Lower
variability radially results in more uniform wood which is better
for solid wood processing (Beadle et al. 2011; Washusen 2011;
McGavin et al. 2015).

For both plywood and structural timber based on AS/NZS
2269.0:2012 and AS/NZS 1720.1-2010, respectively (Standards
Australia 2010; Standards Australia 2012), at the upper log posi-
tions thinning reduced MOE by less than a single F-grade; how-
ever, the difference between the bottom log which had the low-
est MOE and those with highest MOE was three F-grade classes,
fromF14 toF22 orF11 to F17 (Figure 2c). Because radial variation
in MOE was greater than longitudinal variation, F-grades moving
from pith to edge changed by as much as five grades, from
F11 to F24; however, the difference due to thinning was only
one F-grade. Such high variation of MOE within a tree suggests
that log segregation at harvesting offers the best means of
creating greater product value as logs that do not meet the
requirement for high stress-grade products can be processed for
other purposes (Blackburn et al. 2018). This study shows that
the bottom logs, that is, those of greatest diameter can fall into
this category. In addition, further improvements in product value
could be achieved by segregating products based on stiffness

within log. That would influence the way logs are processed, for
example cutting or peeling around the lower stiffness core.

The low stiffness in the bottom log suggests that when trees
are grown for solid wood production and where the structural
grade is crucial, it may be economically advantageous to cut a
2.5-5 m log from the base for appearance product like furniture.
If this bottom part of the tree is pruned, the knot-free wood offers
a valuable appearance product. The remaining section of the
tree could then be used for purposes where knots are not critical
but higher stiffness required, for example for engineered timber
products. Given that wood products require different threshold
requirements for size and quality, the information gained in this
study can be used by wood processors to guide log allocation and
wood-processing strategies.

Conclusion

This study explored the longitudinal and radial variation patterns
of wood properties and the influence of commercial thinning
from E. nitens plantations grown specifically to produce solid-
wood products. This work found significant within-tree variation
in wood quality and that thinning of E. nitens plantations is an
important tool for manipulation of wood quantity and quality
that influences both suitability and value of different solid-wood
products. The findings of this study show that highest stiffness
was located mid-section in the tree, while basic density was
lowest at 20-30 per cent and then increased with tree height.
Thinning reduced stiffness more than basic density but thinning
had no effect at the bottom of the tree. However, the variation
in both stiffness and density was far greater within the tree
than due to thinning, suggesting opportunities might be advan-
tageous for within-tree log segregation based on wood quality.
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Appendix 1. Stocking rates at the three thinning trials in Tasmania, Australia, from 2000 to 2019. Each line corresponds to a different thinning
treatment: Control - unthinned (red); EC300 - early commercial thinning to 300 trees ha~! at age of 8-9 years (blue).
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Appendix 2. An example of one out of the 140 E. nitens wood strips that
has been scanned for ultrasonic acoustic wave velocity using the DiscBot
machine. Each individual point represents a single scan point which is
measured in distance from the pith. A GAM was fitted to the raw data
where later predictions from the model were used to define mean value
for each annual ring from known ring boundaries in distance from pith.
Solid line is the mean and dashed lines are standard error of the mean
from the GAM model.
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