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Abstract: An air-cooling battery thermal management system is a reliable and cost-effective system to
control the operating temperatures of the electric vehicle battery pack within an ideal range. Different
from most designs of the rectangular battery pack in previous research, this one proposed a novel
isosceles trapezoid layout to improve system heat dissipations. The simulation results showed that
the trapezoid design delivered better cooling performances than the rectangular one with a maximum
temperature reduction of 0.9 °C and maximum temperature difference reduction of 1.17 °C at the
inlet air flow rate of 60 L/s. Moreover, the cooling performance was further boosted by an aluminum
heat spreader. The boosted design delivers an average Max T (32.95 °C) and an average AT (3.10 °C)
at five different flow rates, which are 8.8% and 66.1% lower the one without the spreader (35.85 °C
and 5.15 °C). Compared with the rectangular design without the spreader, the average Max T and
AT of the boosted trapezoid design are reduced by 10.4% and 91.9% in addition to a space-saving of
about 5.26%.

Keywords: electric vehicle; air cooling; battery thermal management system; trapezoid battery cell
layout; aluminum heat spreader

1. Introduction

Air pollution and global warming are regarded as two major threats to the sustainabil-
ity of animals and human beings on our planet [1]. In recent years, electric transportation,
especially electric vehicles (EVs) and hybrid electric vehicles (HEVs), has been playing a
more and more critical role in the global green revolutions to tackle global warming and
climate change issues [2]. In the recent decade, the rechargeable lithium-ion (Li-ion) battery
packs have been the mainstream EV power supply sources due to their high power, superb
reliability, and long lifespan [3]. With the rapid development of higher specific energy and
lower manufacturing cost, the major problem of Li-ion batteries is shifting to its thermal
management [4]. The abnormal heat dissipations and accumulations in the battery pack at
high temperatures would adversely cause the battery accelerated degradation, capacity
fading, and even thermal runaway accidents in some extreme cases [5]. At the moment,
air cooling and liquid cooling are two major cooling methods for the battery thermal
management system (BTMS) in commercial EVs [6]. Generally, the liquid-cooling BTMS is
more favourable for its superior thermal exchangeability and compact design [7], but its
manufacturing and maintenance costs are higher than the air-cooling BTMS. Lai et al. [8]
proposed a compact and lightweight liquid-cooling BTMS with aluminum curved-surface
thermal conductive structures. The novel design was proven to deliver excellent cooling ef-
ficiency. Tete et al. [9] reviewed most of the EV BTMS research in recent years, especially the
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commercialized air and liquid-cooling techniques, and designed novel cylindrical casings
for the liquid-cooling BTMS of cylindrical cells [10]. Moreover, Murali et al. [11] reviewed
the studies about utilizing phase change materials as a cooling enhancement method to the
hybrid BTMSs by the novel thermal conductivity increase techniques. However, the cost of
these novel hybrid BTMSs are still high. Due to the fierce competitions in the global EV
market, the cost reduction has been more and more important to the commercial success
of any EV model. The extraordinary cost performance as well as excellent reliability of
the air-cooling system has gained favors by many battery pack designers and automobile
original equipment manufacturers (OEMs) including Nissan, PSA, SAIC, etc. [12]. Since the
battery electrochemical and material technologies have been improved significantly [13],
the internal heat generations of the Li-ion battery cells during charging and discharging
are effectively suppressed, especially for some state-of-the-art battery technologies such
as all-solid-state batteries [14]. Due to this technology upgrade of a lower cooling capac-
ity demand trend from the EV OEMs, the air-cooling BTMS applications are presumably
shifting from the mild heat generation ones such as HEVs to higher ones such as EVs [15].
In addition, its simple structure, superb reliability and cost-effective advantages made it a
promising and competitive cooling method for the next generation EV accumulators [16].

As a typical thermal management (especially heat dissipation) device, the mechanisms
of an air-cooling BTMS is similar to a heat exchanger [17]: transfer the heat from battery
cells to the air flows. Although battery cells are not fluid, they can be treated as an entity of
stable heat sources in the system. Theoretically, there are three major methods to improve
the heat transfer efficiency: (1) increase the heat exchange coefficient [18]; (2) change the
flow mode inside the fluid domain to increase the fullness of dimensionless parameters [19];
(3) enhance the degree of synergy between velocity field and temperature gradient field
based on Field Synergy Principle (FSP) [20].

The second method can be implemented by changing the inlets/outlet positions and
air flow channels. In this research, swapping the inlet/outlet positions of the trapezoid
BTMS is based on this method. Some studies about the inlet/outlet and/or air flow channel
improvements are briefly summarized in the following paragraph. Mahamud et al. [21]
investigated the influence of a reciprocating flow design on the cooling performance of
a rectangular layout battery pack. Compared with the one direction design, this design
under a reciprocated air flow (reciprocation frequency = 120 s) effectively reduced the
maximum temperature by 1.5 °C and the temperature difference by 4 °C. Na et al. [22]
presented a reverse layered air-cooling BTMS of a rectangular battery pack of 2 x 10 38,120
cylindrical cells: a partition is placed in the horizontal middle plane within the battery pack
to divide the cooling channel into two equal parts. The maximum average temperature
difference was reduced by 47.6% (1.1 K). Chen et al. [23] developed a U-type air-cooling
channel design for the parallel rectangular battery pack of 12 x 2 prismatic cells. The
effect of plenum widths, angles, and inlet and outlet widths on the system performance
was studied. The improved U-type design was proven to exhibit a 70% lower maximum
temperature difference with a 32% power consumption reduction compared with the
original U-type BTMS. Liu et al. [24] established a dynamic self-adapting J-type air-cooling
BTMS with a rectangular battery pack of 1 x 10 prismatic cells. The J-type design was an
integration of the conventional U-type and Z-type structures with an advanced adaptive
control approach of the model predictive control strategy. The optimized design with
mode switching control maintained the temperature difference at 1.33 K and improved
the energy efficiency. Zhao et al. [25] adopted 18,650, 26,650, and 42,110 cylindrical cells in
the rectangular designs with three types of inlets/outlets positions to compare the cooling
performances. The influences of the inlet wind speed, gap spacing size, and the ambient
temperature on the cooling performance of the BTMSs were investigated. Hong et al. [26]
explored the suitable position and size of the secondary vent design on the original parallel
rectangular battery pack of 12 x 2 prismatic cells. The results showed that adding the
secondary vents on the outlet plenum reduced both 5 K maximum temperature and
60% maximum temperature difference compared with the designs without the secondary
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vents. Zhang et al. [27] proposed a wedge-shaped layout air-cooling BTMS of a row of
12 parallel prismatic cells. The major parameters such as inlet/outlet position, flow path
width, wedge angle, and cell clearance were optimized. The maximum temperature and
average temperature of the 12° wedge-shaped design were 11.9 K and 1.5 K lower than the
rectangular design in addition to a reduction of 224 Pa pressure difference.

The third method (FSP) can be regarded as the fundamental mechanisms of most
cooling performance improvement methods. The heat generation of all the battery cells
forms a temperature gradient field within the BTMS. To enhance the synergy degree
between velocity field and temperature gradient field, both fields could be modified to form
a smaller intersection angle between two fields [28]. Some studies focused on improving
the temperature gradient field by changing the layout and/or spacing of the battery
cells. The conventional rectangular layouts usually deliver poor synergy between two
fields. Lietal. [29] adopted a wind tunnel to investigate the thermal performance of a
rectangular battery pack of 4 x 8 cylindrical cells. Because the air flow is simply one
direction from one short side of the rectangular to the other, a significant temperature
gradient was observed along the air streamline. The intersection angle between temperature
gradient field and air velocity field is almost 180°, indicating the poor fields synergy of the
rectangular air-cooling BTMS. Wang et al. [30] explored five different cylindrical battery
pack layouts: 1 x 24 rectangular, 3 x 8 rectangular, 5 x 5 rectangular, 19 hexagonal, and
28 circular arrangements. The results showed that the 5 x 5 rectangular layout with a
top fan was the optimal design. Yang et al. [31] compared the thermal performances
of aligned and staggered layouts of 10 x 6 cylindrical cells under a consistent air flow
direction. The aligned layout design with specific longitudinal and transverse intervals
(Sx = 34 mm, Sy =32 mm) was selected as the optimal forced air-cooling system in the
research. Chen et al. [32] optimized the battery cell spacings of a parallel rectangular battery
pack of 12 x 2 prismatic cells. The results showed that the adjusted cell spacings remarkably
reduced the maximum temperature difference by 42%. Chen et al. [33,34] investigated
the influences of cell number and spacing distribution on the cooling performance of a
typical parallel air-cooling BTMS with a rectangular battery pack of N x M prismatic cells.
The maximum temperature and temperature difference were reduced by 4.0 K and 69%
by the cell spacing optimization approach, and the maximum temperature and energy
consumption were decreased by 43% and 33% by structural optimization designs.

Last but not least, the approaches of the first method include adding ribs, insertions,
spoilers, and vortexes to improve the heat exchange coefficients by increasing the local
Reynolds and Nusselt numbers. Because most of the auxiliary structures require extra
space and cost, this research just added a simple aluminum heat spreader (AHS) after the
optimizations of inlets/outlets positions and battery cells layout as a further improvement
of the cooling efficiency without too much energy consumption increase. Xu et al. [35]
adopted a thermally conductive aluminum double-layer heat spreading plate with anodized
surfaces to improve the cooling performance of an air-cooling BTMS with a rectangular
battery pack of 4 x 518,650 cylindrical cells. Some heat spreaders are specially designed
for Li-ion battery pouch cells to enhance the cooling performance of forced air convection.
Saw et al. [36] designed an aluminum metal foam as the heat spreader for LiFePO, pouch
cells. The design was proved to maintain the maximum temperature below 35 °C and
temperature difference below 5 °C. Wang et al. [37] also found that the open-cell aluminum
foam spreaders between the Li-ion pouch cells could strengthen the thermal interactions
between cells and reduce the temperature rise compared with the air cooling without
aluminum spreaders; however, the foam structure also causes flow resistance and increase
the power consumption.

Based on the above three fundamental heat transfer efficiency improvement method-
ologies, this research innovatively changed the conventional rectangular layout of the
cylindrical battery cells to trapezoid one to acquire an effective temperature gradient field
change. Synergizing with the change of a wide range of inlet velocities, the optimal cooling
performance (presumably the highest degree of synergy between two fields) could be
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obtained after exhaustive orthogonal simulations between different inlet and outlet size
ratios (trapezoid base angles) and air flow rates. At the end of the research, a large-volume
battery pack design consisting of multiple trapezoid battery packs with alternate inlets and
outlets positions is presented for the commercial EV and HEV air-cooling BTMS.

2. 3D Modeling and Cooling Performance Indicators
2.1. Major Parameters and 3D Modeling of the Li-Ion 21700 Cylindrical Battery Cell

Li-ion 21,700 cylindrical battery cell is a recently developed type of commercial battery
cell to provide higher energy density with lower manufacturing cost in comparison to
the conventional 18,650 cell. The research about the 21,700 cells is relatively inadequate
compared with those about the commercial 18,650 cylindrical, prismatic, and pouch cells.
To fill this gap, this research focuses on the thermal performance of the 21,700 cell-based
air-cooling BTMS. The major parameters of the Li-ion 21,700 cell are listed in Table 1.
ANSYS Fluent software could automatically identify the numbers of the series or parallel
configurations by the busbar connections based on the correct 3D battery pack modeling.
The air is set as an incompressible ideal gas with viscosity as a function of temperature
following Sutherland’s Law.

Table 1. Li-ion 21,700 cylindrical cell major parameters.

Major Parameters Values
Cell length (mm) 70
Cell diameter (mm) 21
Anode tab diameter (mm) 21
Anode tab height (mm) 5
Cathode tab diameter (mm) 13
Cathode tab height (mm) 5
Active material density (kg/ m?) 2092
Active material Cp (Specific Heat) (J/kg-K) 678
Active material thermal Conductivity (W/m-K) 18.2
Active material electrical Conductivity (Siemens/m) 3.541 x 107
Passive material density (kg/ m?) 8978
Passive material C, (Specific Heat) (J/kg-K) 381
Passive material thermal Conductivity (W/m-K) 387.6
Passive material electrical Conductivity (Siemens/m) 1 x 107

To equalize the heat generations of each design, the cell quantities of the trapezoid and
rectangular design are both 42. The trapezoid battery pack is shown in Figure 1a. The pack
includes two rows of seven cells on one side, three rows of six cells in the middle, and two
rows of five cells on the other side. In comparison, the conventional rectangular battery
pack is shown in Figure 1b. The cell centre distance can be variable from 22 to 36 mm
(cell surface distance from 1 to 15 mm) for the air-cooling BTMS of the cylindrical cells.
From the previous research, the smaller distance usually increases the friction losses along
the air channel at the same volumetric flow rate due to a higher air velocity, indicating a
higher energy consumption [38]. The larger distance could not provide sufficient cooling
performance due to low air velocity at the same air flow rate although it consumes less
energy [3]. This research aims to balance the cooling performance and energy consumption
and selects the medium value of 30 mm following some published air-cooling BTMS
studies [39-41]. The vertical distance between the cell centres of two staggered columns in
the trapezoid design is 15 mm, which is also the unified vertical distance between staggered
columns in all derivative trapezoid designs in this research.
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Figure 1. Battery pack layouts and dimensions: (a) Novel trapezoid design; (b) Conventional
rectangular design.

2.2. Cooling Performance Indicators and Evaluation Criteria

From the literature reviews in the first section, maximum temperature (Max T), mini-
mum temperature (Min T), and maximum temperature difference (AT) are mostly used
to evaluate the overall cooling performances, while maximum pressure difference (AP) is
usually used to indicate the power consumption of the air-cooling BTMS. In this research,
these four indicators are all adopted to evaluate the overall performance. Max T/Min T
refer to the maximum/minimum temperatures on the surfaces of all cells and busbars
during the whole discharging process. AT is the maximum difference between Max T and
Min T at any time during the whole discharging process. According to the Li-ion battery
cell electrochemical model, the battery heat generation rate is usually highest at the end
of the discharging process which the Max T is achieved at the end of the discharging, so
the AT values in this research are mostly the values at the last time step of the discharging
simulation. AP is the difference between the inlet average pressure and outlet average
pressure at the end of the discharging process. Because AP is more like a constant value
during the whole discharging process which is only dependent on the inlet velocity values
and BTMS intrinsic structures, the AP values in this research are also recorded at the last
time step of the simulation.

Basically, the ideal operating temperature range for Li-ion batteries is between 25 °C
(298.15 K) and 40 °C (313.15 K) [42-47]. The overheat of battery cells would lead to
accelerated degradation, capacity fading, or even full damage of the cells [48]. Due to
the deviations of the temperature control accuracy of EV BTMS (around +1 K) and the
high power output requirement of the commercial EVs (more uniform cell temperatures
could deliver more stable and accurate power output since the battery output performance
is significantly related to the battery temperature [49]), the maximum Li-ion battery cell
operating temperature should be close to 25 °C to deliver the best output performance
and maintain the longest service lifetime [50,51]. Although 25 °C is the ideal operating
temperature for Li-ion batteries, the cooling capacities of both active and passive air-cooling
BTMSs heavily rely on the ambient temperatures. The ambient and inlet air temperatures
are initially set as 20 °C (293.15 K) in this research to obtain the optimal design. Due to
the limited difference (5 K) between ambient temperature (293.15 K) and ideal operating
temperature (298.15 K), it is almost impossible for an active air-cooling BTMS to maintain
the maximum operating temperature under 25 °C during a medium or above discharging
process (>1 C). As one of the two cooling performance evaluation criteria in this research,
35 °C (308.15 K) is chosen as the upper threshold of the Max T values to offer a reasonable
temperature control buffer (10 K) for the air-cooling BTMS. For the other criterion, the
upper threshold of the AT values is selected as 5 K, which is widely elucidated by much
other research [8,52-57].
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3. Mathematical Models and Validations

To simulate both Li-ion battery cell heat generation and forced air-cooling processes,
this research couples two models in the ANSYS Fluent: (1) battery electrochemical model
to predict the heat generations from the electrochemical reactions inside the cells during
discharging; (2) heat and mass transfer model to simulate the cooling performances of the
forced air-cooling process.

3.1. Battery Electrochemical Model

The dual-potential multi-scale multi-domain (MSMD) battery simulation approach
and electric circuit model (ECM) are adopted as the major simulation methodologies in
ANSYS for the battery cell heat generation predictions. Newman's electrochemistry model
is simplified in Equation (1) to calculate the electric potentials [58]:

/V-(JV@)dV - /jdA (1)
1% A

where V is the Del operator which denotes a partial derivative of a quantity with respect to
all directions in the chosen coordinate system, ¢ is the electric potential, j is the volumetric
transfer current density, A is the surface area of the interface, ¢ is the electrical conductivity.

The dual-potential MSMD approach is specially designed for the study of the thermal
and electrochemical behaviour of the multiple Li-ion battery cells system. The electrical
and thermal fields of the battery cells could be expressed by Equations (2)—(4) [59]:

90C, T .

1 9.(9T) = @)
V(04 Vi) = —j (©)
V(e-Vo-) =] @

where p is the mass density of the battery cell, C, is the specific heat capacity of the battery
cell, T is the temperature, k is the thermal conductivity, g is the heat generation rate which
consists of the Joule heat, the electrochemical reaction heat, and the entropic heat, o and
o are the anode and cathode effective electrical conductivities, ¢ and ¢_ are the anode
and cathode phase potentials.

For the ECM interpretations, a diagram of a six-parameter circuit model including
three resistors and two capacitors is proposed by Chen et al. [60] to simulate Li-ion battery
cell internal electrochemical behaviour in Figure 2.

0=
O_—
|||+

-0

Figure 2. ECM diagram for Li-ion battery.
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In the ECM, the relations between voltages and currents are expressed in Equations (5)—(8):

V(t) = Voc(SoC) + Vp + Vi — Ro(SoC)I(t) (5)
du, 1 1
dt —  R,(SoC)Cy(S0C) Vo~ cp(SOC)I ®) (©)
du, 1 1
dt ~ R,(S0C)C,(SoC) Vi = Cu(S0C) 1®) @

d(SoC)  I(t)
dt  3600Q 4 ®

where V is the battery voltage, I is the battery current, Vo is the open-circuit voltage, SoC
is the state of charge, V), and V;, are the voltages of R,,/C, and R;;/Cy, Ry, Rp and Ry, are
the resistance of resistor o, p, and 1, C;, and C, are the capacitance of capacitor p and 1, Q 4y,
is the total battery capacity.

Chen et al. [60] found that the open-circuit voltage (Voc), series resistors (R,), and
RC network (Ry, Cp, Ry, and C;) are all SoC-dependent parameters and independent of
discharge currents. The following single-variable Equations (9)—(14) are used to solve the
above equation set:

R, = age™5°C) 1 g, )
Ry = bpe1(5°€) + b, (10)
Cp= ce1(8°€) 4 ¢, (11)
R, = dge™(5°C) 4 4, (12)
Cu = eget5%) 4 ¢ (13)
Voc = fo+ f1(S0C) + f2(S0C)* + f3(S0C)? + f4(SoC)* + f5(S0C)° (14)

where a,,, by, ¢y, dy, ey, and f, (n =0, 1, ..., 5) are the constant coefficients.

The key ECM parameters, including nominal cell capacity, specified C-Rate, Max and
Min stop voltages, initial SoC, reference capacity, and all the constant coefficients are listed
in Table 2.

Table 2. Key ECM Parameters.

Battery ECM Parameters Values
Nominal Cell Capacity (Ah) 4
Specified C-Rate 1
Max Stop Voltage (V) 43
Min Stop Voltage (V) 3
Initial SoC 1
Reference Capacity (Ah) 4
ag 0.07446
a 0.1562
ap 24.37
bo 0.04669
by 0.3208
by 29.14
co 703.6
c1 —752.9
C2 13.51
do 0.04984
dq 6.603
da 155.2
ey 4475
e —6056
e 27.12
fo 3.685
f1 0.2156
f2 -0.1178
f3 0.3201
fa —1.031

fs 35
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3.2. Thermodynamic Model

In the ANSYS Fluent, the thermodynamic model is based on three fundamental conser-
vation equations: mass, momentum, and energy conservation equations. The mass conser-
vation equation for the incompressible ideal gas air flows is expressed by Equation (15) [61]:

g—f +V-(p7) =0 (15)

. . Lo . .
where p is the air mass density, v is the air flow velocity vector.
The momentum conservation in an inertial reference frame is expressed by Equation (16) [62]:

a(gtv) LV (ﬁQ) - Vp+ V. (?) (16)

where p is the static pressure, T is the stress tensor.
The general energy conservation equation is expressed in Equation (17) [63]:

d(pCpT
%+v(?(ﬂ+p)) = kV2T +q, (17)
where Cj, is the specific heat capacity of the air, p is the pressure, k is the thermal conductivity,

qp is the battery heat generation rate.

3.3. Mesh Independence Test and Model Validation

The mesh independence test is conducted to determine the optimal mesh sizes. From
Table 2, the Max and Min stop voltages are set as 4.3 V and 3 V. Because the output voltage
of the battery cell will decrease with the drop of the SoC, the simulation will automatically
cease when the output voltage drops to 3 V. For a 3D model of a single 21,700 cylindrical
cell, the simulation results of the mesh sizes of 25 x 50 (division number of Anode tab
diameter x division number of Cathode tab diameter), 50 x 100, and 80 x 160 during
0.3C, 0.6 C, and 1 C discharging operations are compared separately. The difference of the
temperature prediction values under three different mesh sizes are almost neglectable (less
than 0.1%). To save the calculation time and optimize the simulation efficiency, the mesh
size 25 x 50 will be adopted in this research.

The ECM battery cell and heat transfer models are validated by comparing the sim-
ulation results with the experimental data in reference research by Fan et al. [38] of an
air-cooling BTMS with a rectangular battery pack of 4 x 8 18,650 cylindrical cells in an
acrylic wind tunnel in Figure 3a. Every four cells in the column are connected in parallel,
and the eight columns are connected in series following a 4p8s connection. The reference
experiments are conducted at inlet flow rates of 0.6 m/s, 1 m/s,2m/s,3m/s, and 4 m/s.
Figure 3b shows the 3D validation model. The cell centre distance is 22 mm. The distance
between the cell centre and the acrylic wall is 13 mm. The inlet air temperature and the
ambient temperature are 20 °C. The discharge rates are 0.5 C,1 C,and 2 C.

Figure 4a shows the temperature contour and air velocity streamlines at 4 m/s 20 °C
inlet air during 0.5 C discharging. Figure 4b shows the comparison between the experi-
mental data and the simulation results during 0.5 C, 1 C, and 2 C discharging. The average
errors between experimental and simulation results at five different velocities during 0.5 C,
1C, and 2 C discharging are 0.12 K, 0.47 K, and 0.37 K, respectively. The standard deviations
of the errors between experimental and validation values at five different velocities during
0.5C,1C, and 2 C discharging are 0.35 K, 0.94 K, and 0.33 K, respectively. These comparison
results indicated that the simulation model is accurate and reliable to be used to predict
the thermal performance of air-cooling BTMSs. The relatively large error points in the
simulation might be the results of the experimental measurement errors as reported in the
reference paper.
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Figure 3. Model validation: (a) Reference experimental set up (Ref. [38]); (b) 3D validation model in
this research.

40
x Experimental@2C
35 — Validation@2C
x Experimental@1C
30 ---Validation@1C
—_ * Experimental@0.5C
225 N e Valication@0.5C
N 3
f |
g L
;‘ 15 5
< - "‘\\
10 S
e «
5 b R TTTeeeel L x
S S ST
0 1 1 1 1
(b) 0.6 1 2 3 4
Velocity (m/s)

Figure 4. Validation results: (a) Temperature contours and air velocity streamlines at 4 m/s 20 °C
inlet air during 0.5 C discharging; (b) Comparison between the experimental data in Ref. [38] and the
validation results in this research.

4. Results and Analysis

The simulation works in this research include four objectives: (1) comparison between
conventional rectangular design and novel trapezoid design; (2) optimization of inlet/outlet
positions of the trapezoid design; (3) optimization of the base angles of the trapezoid design;
(4) the cooling effects of an additional single-layer AHS.

4.1. Comparison between Conventional Rectangular and Novel Trapezoid Designs

The first objective is to evaluate the performance of the novel trapezoid design in
comparison to the conventional rectangular design. Figure 5 shows the 3D models of the
trapezoid air-cooling BTMS design (seven-cell-base inlet) and the rectangular counterpart
(six-cell-side inlet).

Figure 5. Air-cooling BTMS: (a) Trapezoid design; (b) Rectangular design.
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The simulations are conducted at the five different flow rates (20 L/s, 40 L/s, 60 L/s,
80 L/s, and 100 L/s). Because the inlet size of the trapezoid design (0.022 m?) is larger
than the rectangular one (0.02 m?), the inlet velocities of the trapezoid design will be
decreased to deliver the same flow rates as those in the rectangular design. Table 3 lists
the corresponding inlet velocities and dimensions for Rectangular design (Design R) and
Trapezoid design (Design T) at five different flow rates.

Table 3. Rectangular (R) and Trapezoid (T) BTMS.

Design Inlet Velocity Inlet Dimension Volume Air Flow Mass Air Flow Outlet Dimension
No. (m/s) (m) Rate (L/s) Rate (g/s) (m)
R-1 1 20 23.98
R2 2 0.1m x 02m 0 a7 0.1m x 02m
R-3 3 6ocell-side inl 60 71.94 6-cell-sid )
R-4 4 -cell-side inlet 80 95.92 -cell-side outlet
R-5 5 100 119.90
T-1 0.91 20 23.98
T-2 1.82 01 0.2 40 47.96 01 0.16
T3 2.73 7 el base il 60 71.94 5 el base outle
T-4 3.64 -cell-base inlet 80 95.92 -cell-base outlet
T-5 4.55 100 119.90

Figure 6 shows the simulation results of both designs at five different flow rates. The
Max T values of Design T are lower than those of Design R at flow rates from 20 to 80 L/s
while the Min T values of Design T are higher than those of Design R. This leads to an
advantage of the temperature uniformity performance of the trapezoid design. From the
FSP, the direction of the temperature gradient field of the trapezoid design is from the
seven-cell-base inlet to the five-cell-base outlet (the side with more cell numbers in one
column is presumably the side with higher temperature), which completely conforms to
the direction of the air flow velocity field (from seven-cell-base inlet to the five-cell-base
outlet). The coincidence leads to an almost zero-degree intersection angle between two
fields, leading to a better cooling performance than the rectangular design. Moreover, the
temperature difference of the trapezoid design is also smaller from 20 to 80 L/s. When
the flow rate is increased to 40 L/s, Design T firstly meets the evaluation criterion of AT
(4.31 K < 5 K), while Design R meets the same criterion (4.25 K < 5 K) when the flow rate
is 80 L/s. A 50% reduction in the cooling air flow rate and a nearly 70% reduction in AP
(AP of Design T at 40 L/s is 18.05 Pa and AP of Design R at 80 L/s is 59.14 Pa) is a superior
indication of less energy consumption. Although Design R shows a lower pressure drop
than Design T at the same inlet flow rate, the maximum temperature differences of Design
T are much lower than Design R at close pressure drops.

120
- Max T of Design R 12 AT of Design R A
317 |

Q -&-Max T of Design T & AT of Design T
~ 33 b -“~Min T of Design R 10 b -“-AP of Design R 190
=
= -4 Min T of Design T -4 AP of Design T | -
o= ~ >
> 309 b A N | ~

~ g 60 ~
= e la
g < X
= 305
» 30
> 6 17
é" 301

'
297 - . 4 ' : : 0
20 40 60 80 100 20 40 60 80 100
Flow rate (L/s) Flow rate (L/s)

Figure 6. Simulation results of Design R and Design T at five different flow rates.
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Figure 7 shows the temperature contours on the middle plane of Design T at five
different flow rates. As the flow rate increases, the hot spot regions of the cells move
from the areas near the outlet to the inlet, revealing a direction change of the temperature
gradient field. The reversed temperature gradient field gradually conforms to the velocity
field (the intersection angle between temperature gradient field and velocity field gradually
changes from 180° to 0°), leading to a better cooling efficiency and performance following
the FSP. The width of the colour range indicates the level of the temperature uniformity of
the battery pack cells. It is found that the colour ranges of the Design T at 40 L/s, 60 L/,
80 L/s and 100 L/s are relatively narrow and their corresponding AT are 4.31 K, 3.89 K,
3.95K, and 4.05 K, respectively. The Max T value at 40 L/s (310.84 K) is also lower than the
evaluation criterion of Max T 308.15 K. Thus, the trapezoid design is a qualified design at a
flow rate of 40 L/s.

AN
" Tempertature

Flow Rate =80 L/s Flow Rate =100 L/s

Figure 7. Temperature contours of Design T at five different flow rates.

4.2. Cooling Effects of Air Flow Directions on Trapezoid Design

The first section of simulations successfully proves the better cooling performance
of the trapezoid design than the rectangular one. In this section, the effect of the flow
direction on the cooling performance of the trapezoid design will be investigated. Unlike
the rectangular design whose inlet and outlet are identical, the trapezoid design has a
pair of asymmetrical sides (seven-cell-base side and five-cell-base side). The inlet on the
different sides is supposed to deliver different cooling performances. The simulations at
five different flow rates (22 L./s,44 L/s, 66 L/s, 88 L/s, and 110 L/s) with a seven-cell-base
inlet (Large inlet) are grouped as Design L and the ones with a five-cell-base inlet (Small
inlet) are grouped as Design S. To make a fair comparison, the five flow rates of two groups
are kept as same. Table 4 shows the comparison working conditions.
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Table 4. Large inlet (L) and Small inlet (S) trapezoid BTMS.

Design Inlet Velocity Inlet Volume Air Flow Mass Air Flow Outlet Dimension
No. (m/s) Dimension Rate (L/s) Rate (g/s) (m)
L-1 1 22 26.38
L2 2 0.1m x 022m b Rl 0.1m x 0.16 m
- X 7-cell-base inl o0 o 5-cell-b 1
L-4 4 -cell-base inlet 88 105.52 -cell-base outlet
L-5 5 110 131.90
S-1 1.375 22 26.38
>2 2750 0.1m x 0.16m b R 0.1m x 0.22m
S-3 4.125 5-cell-base inl 66 79.14 7-cellb )
S4 5.500 -cell-base inlet 88 105.52 -cell-base outlet
S-5 6.875 110 131.90

Figure 8 shows the simulation results of the Max T, Min T, AT, and AP values of the
trapezoid design in two groups. The Max T values in Design L are always lower than
Design S while the Min T values in Design L are higher than Design S, leading to a better
temperature uniformity (small AT) of Design L. This is because the Max T often occurred
at the allocation close to the end of the flow channel due to the air flow direction. When
the following channel cross-section area is growing smaller in Design L, the cooling air
velocity increases and hence enhances the heat transfer coefficient. In Figure 9, the poor
temperature uniformity of Design S at both 22 L./s and 110 L/s can also be explained by
FSP: even if the flow rate increased from 22 L./s to 110 L/s, the variable air flow velocities
still could not turn the direction of temperature gradient field reversely from “outlet —
Inlet” to “inlet — outlet”, keeping the intersection angle between velocity field (from inlet
to outlet) and temperature gradient field (from the higher outlet side to the lower inlet side)
being 180°, which is almost the worst degree of the synergy between two fields. Although
the pressure drop in Design L is slightly higher than that in Design S, it is worthwhile
because the cooling performance of Design L is much better than that of Design S at similar
pressure drop scenarios.

150

12 b

317 + & -=Max T of Design L AT of Design L

A .
) --Max T of Design $ 4AT of Design § . 1120
- e g o3,
= 313 | ~Min T of Design L 0t AP of Design L :
Sl A A Si: S

£ -&-Min T of Design $ - | AP of Design § %0
= 309 | <) A ]
= a7 8 ) =
2 \ : 60 ;U

305 | -
[
= 6
S o | S 130

B, |
297 . 4 : : : . 0
22 44 66 88 110 22 44 66 88 110
Flow rate (L/s) Flow rate (L/s)

Figure 8. Simulation results of Design L and Design S at five different flow rates.
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emperature Contours of Design S Temperature Contours of Design S
[Flow Rate =22 L/s Flow Rate =110 L/s

Battery Cells Temperature Gradient Field

Intesection Angle ~ 180°

Air Flow Velocity Vector Field
Figure 9. Temperature contours of Design S at 22 L/s and 110 L/s.

4.3. Trapezoid BTMS Design Optimization

From the second part of the simulations, the direction of the cooling air from the larger
inlet to the smaller outlet could achieve better cooling performance for the trapezoid BTMS
design. Because the ratio of the longer and shorter bases of different trapezoids can be different,
the next step is to investigate the optimal ratio of the short base (outlet) to the long base (inlet).
The base angle of the isosceles trapezoid can also be used to express the ratio of the short base
to the long base. In this research, a smaller base angle means a smaller ratio of the outlet size
to the inlet size. In this section, two more trapezoid BTMSs are presented to be inspected:
eight-cell-base inlet with four-cell-base outlet design in Figure 10a and nine-cell-base inlet
with three-cell-base outlet design in Figure 10b. The cell centre distances are 30 mm. The
vertical distances of the cell centres of two staggered cell columns are 15 mm.

Figure 10. Trapezoid BTMS: (a) eight-cell-base inlet design; (b) nine-cell-base inlet design.

To comprehensively compare the cooling performances of the trapezoid designs with
different base angles, the simulation results of two new trapezoid designs (eight-cell-base inlet
design and nine-cell-base inlet design) are compared with the two designs in Section 4.1 (six-
cell-base inlet rectangular design and seven-cell-base inlet trapezoid design). The rectangular
design can be regarded as a special 90° base angle trapezoid design (six-cell-side inlet). The
geometrical parameters of the four trapezoid designs are listed in Table 5.
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Table 5. The geometrical parameters of four trapezoid BTMS.

Ratio of Short Base

oS ot B S A
. Base (Inlet)

6 6-cell-side inlet 0.2000 0.2000 0.2200 90.00 1.00
(Rectangular)

” 7-cell-base .mlet 0.2200 0.1600 0.2200 78.69 0.73
(Trapezoid)

8 8-cell-base 'mlet 0.2500 0.1300 0.2200 74.75 0.52
(Trapezoid)

9 9-cell-base .1nlet 0.2935 0.0735 0.2200 63.44 0.25
(Trapezoid)

Figure 11 shows the Max T, Min T, AT, and AP values of four trapezoid designs at five
different flow rates (20 L/s, 40 L/s, 60 L/s, 80 L/s, and 100 L/s). All four designs meet
the Max T criterion (<308.15 K) when the flow rate is increased to 60 L/s. Meanwhile, only
Design 7 (3.89 K) and Design 8 (4.98 K) meet the AT criterion (<5 K) at 60 L/s. Because the
Max T of Design 7 (307.07 K) and Design 8 (307.28 K) are quite close to each other, Design
7 is the optimal design at 60 L/s due to its better temperature uniformity performance.
Figure 12 shows the temperature contours on seven cross-section planes of Design 7 at
60 L/s. The temperature distribution is quite uniform, and the dominant colour range is
narrowly clustered between dark orange and red on a rainbow spectrum. The temperature
gradient field complies with the velocity field in high consistency, indicating a perfect
synergy of two fields and a favourable heat transfer coefficient of the system. At 60 L/s,
with the decrease of the base angles, the quick drop of Min T values adversely causes the
increase of AT values of Design 8 and Design 9 (especially Design 9 with the smallest base
angle). Furthermore, the pressure drops in Design 8 and Design 9 increase remarkably
with the increase in the flow rates, showing an exponential rise in power consumption. At
80 L/s and 100 L/s, although all the designs could deliver qualified Max T values, the AT
values of Design 8 and Design 9 continue to exceed the criterion (5 K). As a result, Design 7
is selected as the optimal design among this simulation group.

321 312
#6-cell-base inlet #6-cell-base inlet
118 (Rectangular) (Rectangular)
#7-cell-base inlet 309 #7-cell-base inlet
(Trapezoid) — (Trapezoid)
@ 315 $-cell-basc inlet | | 4 8-cell-base inlet
= (Trapczoid) : 306 (Trapezoid)
= 312 +9-cell-base inlet = -+9-cell-base inlet
v T Zoi o= (Trapezoid)
-} (T'rapezoid) E 103 P
= 309
306 \ N
303 L L 297 . L L N
20 40 60 80 100 20 40 60 80 100
Flow rate (L/s) Flow rate (L/s)
400
1 W6-cell-base inlet 47-cell-base inlet ®6-cell-base inlet
(R lar) (Traj id) 350 (Rectangular)
-cell-base inlet
8-ccll-basc inlet -+9-ccll-base inlet 300 *7 z’:ral::;f);:)c
9 (Trapezoid) (Trapezoid) I .
- — 250 8-cell-base inlet
é Q“; (Trapezoid)
=] ~ 200 ~+9-cell-base inlet
< 7 : (Trapezoid)
150
5 n 100
\.>.><= 50
3 s . " 0 i . . "
20 40 60 80 100 20 40 60 80 100
Flow rate (L/s) Flow rate (L/s)

Figure 11. Simulation results of four trapezoid designs at different flow rates.
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K] Intersection Angle ~ 0°

Figure 12. Temperature contours on seven cross-section planes of Design 7 at 60 L/s.

4.4. Cooling Effect of a Single-Layer AHS

To increase the stiffness and rigidity of the battery pack, the cylindrical cells are usually
held and protected by two layers of plastic plates on both sides of the cells. In this research,
a single-layer AHS is installed on the middle plane to enhance the overall strength of
the battery pack as shown in Figure 13. More importantly, the AHS can be used as an
auxiliary component to increase the heat exchange coefficient due to the high thermal
conductivity and low volumetric mass density of aluminum. The thickness of the plate is
3 mm. The plate has complete contact to the middle cell surfaces with a total contact area of
197.92 mm?. The specific heat and thermal conductivity of the aluminum is 871 J-kg ! -K~!
and 202.4 W-m~1.K~!, respectively. The three major purposes of adding the AHS are as
follows: (1) to strengthen the stiffness and rigidity of the battery pack; (2) to help to evenly
distribute the heat unevenly generated and accumulated on different cells; (3) to increase
the heat exchange surface areas between the cells and the air flow. The total contact areas
between air flow domain and cell surfaces increase from 193,961.93 mm? (total surface
areas of 42 cells) to 239,615.28 mm? (total surface areas of the sum of 42 cells and AHS) by
about 19%.

Figure 13. The optimal trapezoid design with a single-layer AHS.

Figure 14 shows the Max T, Min T, AT, and AP values of the optimal trapezoid design
with and without a single-layer AHS at five different flow rates. The cooling performance
improvement by adding the AHS is remarkable: (1) the Max T values of the design with
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Max T and Min T (K)

314

310

306

302
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the AHS are 4.60 K, 2.58 K, 2.34 K, 2.48 K, and 2.48 K lower than those without the AHS
at the flow rates of 20 L/s, 40 L/s, 60 L/s, 80 L/s, and 100 L/s, respectively; (2) the AT
values of the design with the AHS are 3.78 K, 0.77 K, 1.52 K, 1.97 K, and 2.21 K lower
than those without the AHS at five flow rates, respectively. Although both designs meet
the AT criterion (<5 K) at 40 L/s, neither of the two designs meets the Max T criterion
(<308.15 K) at 40 L/s. However, the Max T of the AHS design (308.26 K) is only 0.11 K over
the upper threshold at 40 L/s. As a result, the trapezoid design with the AHS at 60 L/s
is regarded as the optimal design delivering satisfied Max T and AT values of 2.34 K and
1.52 K lower than the design without the AHS at the cost of only a slight AP increase of
6.43 Pa. The simulation results proved the effectiveness of AHS to further improve the
cooling performance of the trapezoid BTMS with less air flow rate.

(b) 150
+Max T w/o AHS AT w/o AHS
-®-Max T with AHS ? -B-AT with AHS m
. <-Min T w/o AHS <-AP w/o AHS S
-®Min T with AHS 71 -® AP with AHS
— {190 b
£~ =
-’ —~
=5t I
< 160 &
3 {30
1 1 L 1 1 1 1 1 l 1 1 1 1 1 1 1 1L 0
20 40 60 80 100 20 40 60 80 100
Flow rate (L/s) Flow rate (L/s)

Figure 14. The simulation results of the optimal trapezoid design with and without a single-layer
AHS at five different flow rates: (a) Max T and Min T; (b) AT and AP.

5. Discussion

The seven-cell-base inlet trapezoid design could effectively enhance the cooling perfor-
mances of the air-cooling BTMS compared with the rectangular (six-cell-side inlet) design
and smaller base angle trapezoid designs (eight-cell-base inlet design and nine-cell-base
inlet design). With the help of a single-layer AHS, its cooling performance could be fur-
ther improved. Thus, the novel trapezoid design is strongly recommended to be adopted
in the commercial EV air-cooling BTMS applications. For example, Figure 15 shows a
battery module of 84 pieces of cylindrical 21,700 cells. The layout of battery cells can be
rearranged into a novel trapezoid one in Figure 15b from the conventional rectangular one
in Figure 15a. The total area of the rectangular pack is 0.0836 m? while the total area of the
trapezoid one is 0.0792 m2. Compared with the rectangular design, the trapezoid one with
a single-layer AHS not only saves about 5.26% space but also improves the overall cooling
performances by a 10.4% decrease in Max T and a 91.9% decrease in AT. Furthermore, if the
manufacturers do not want to change the structure in the EVs due to the space concern,
the trapezoid could be achieved by simply adding some additional thin-wall partitions
through the clearances between the cells within the original modular battery packs.
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Figure 15. Air-cooling BTMS: (a) Conventional rectangular battery pack; (b) Novel trapezoid battery pack.

6. Conclusions

This research proposed a novel trapezoid air-cooling BTMS to deliver better cooling

performances with less space requirement and almost no additional manufacturing cost.
The mathematical battery heat generation model as well as the heat and mass transfer
model are validated and applied to evaluate the cooling performance of the novel trapezoid
design with an additional AHS. The optimal trapezoid base angle is figured out with the
support of both the simulation results and the theoretical analysis based on the FSP. Some
conclusions about the design optimization research are drawn below:

The air flow direction has a dominant impact on the cooling performance of the trape-
zoid BTMS. Based on the FSP, the air flow velocity vector field should be consistent
with the battery cells temperature gradient field to form a 0° intersection angle be-
tween two fields. A smaller synergy intersection angle usually leads to higher heat
transfer coefficient. Since the high-temperature profile of the trapezoid design is on
the long-base side and low-temperature profile is on the short-base side, the direction
of the temperature gradient field is always from the long base to the short base if the
boundary condition keeps constant. Thus, the velocity field should also be imposed
along the direction of the temperature gradient field—from the long-base side to the
short-base side, i.e., the inlet on the long-base side and the outlet on the short-base
side for the trapezoid design.

In this research, the optimal base angle of the trapezoid design is 78.69° (seven-cell-
base inlet design). The optimal trapezoid design delivers 0.9 °C lower Max T and
1.17 °C lower AT than the rectangular one at 60 L/s flow rate. As a trapezoid layout
battery pack design guideline, the optimal length ratio of the outlet to the inlet is
suggested to be around 0.7.

The multi-functional single-layer AHS can be used for both enhancing the battery
pack strength and increasing the heat transfer coefficient. The Max T and AT values of
the optimal trapezoid design with AHS are 4.6 K and 3.78 K lower than the design
without AHS at 40 L/s flow rate.

The novel trapezoid design could be implemented in commercial EV air-cooling BTMS
applications by using thin-wall partitions. Theoretically, the modified trapezoid air-
cooling BTMS could reduce the Max T and AT by 10.4% and 91.9% in addition to a
space-saving of about 5.26%.
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When there are many battery cells in the real EV application, it is necessary to rearrange
the battery cells in a module base to ensure the required cooling performance as proposed in
the Discussion section. The feasibility of the proposed modular design needs to be further
explored. Nonetheless, the trapezoid pack is promising to improve the cooling performance
of the battery pack and can be used as an optimized basic module of a commercial battery
pack through simulation studies. The full-scale numerical simulations on the trapezoid
battery pack module and experimental investigation are recommended to be conducted in
the future works. We are setting up the experimental facilities for this study.
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Nomenclature

an, by, ..., fn(m=0,1,...,5) constant coefficients

battery surface area (m?)
capacitance (F)

specific heat capacity (J-kg~1-K™1)
battery current (A)

=

diffusion flux

volumetric transfer current density (A-m~2)
thermal conductivity (W-m1.K1)

pressure (Pa)

battery capacity (Ah)

heat generation rate (W-m—3)

resistance ()

temperature (K)

battery voltage (V)

Al I IOl OO0
o

air flow velocity vector (m-s~1)

@
~
@
[¢)
C3
»
~<
=t
o
=N
7

o mass density (kg-m~?)

o electrical conductivity (Siemens-m 1)

T stress tensor

¢ electric potential (V)

@ electrode phase potential (V)

v Del operator used as the partial derivative of a quantity with
respect to all directions in the chosen coordinate system (m~1)

Subscripts

aor+ anode

b battery

cor- cathode

i,n(=1,...,N) arbitrary number

ocC open-circuit
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Abbreviations
AHS aluminum heat spreader
BTMS battery thermal management system
ECM electric circuit model
EV electric vehicle
FSP field synergy principle
HEV hybrid electric vehicle
Li-ion Lithium-ion
Max maximum
Min minimum
MSMD multi-scale multi-domain
OEM original equipment manufacturer
SoC state of charge
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