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A B S T R A C T   

The oocyte development (vitellogenesis) of individual fish is highly dependent upon their physiology which is 
influenced by both intrinsic and extrinsic factors. Thus, if individuals encounter poor biophysical conditions, they 
will likely be unable to reproduce. The photoperiod is an external factor that is constant between years but with 
increasing intra-annual (seasonal) variation polewards. In high-latitude marine environments, several ecological 
processes are strongly photic entrained, e.g., the planktonic spring bloom. However, it is still unclear whether 
day length or planktonic peaks (feeding opportunity) is the main timer or regulator behind gametogenesis not 
only for teleost piscivores but also for planktivores living in these waters. Hence, we experimentally investigated 
the role of photoperiod steering vitellogenesis in the planktivorous Atlantic herring (Clupea harengus), rearing 
larvae up to the mature adult stage. We imposed a natural and 6-month offset photoperiod hypothesising that 
vitellogenesis is entrained by this photic zeitgeber. The results of our experiment clearly demonstrated that 
herring have a strong photic zeitgeber acting upon vitellogenesis according to the experienced photoperiod. Thus, 
the Offset Group showed a displacement in vitellogenesis of 6 months. The second hypothesis that feeding op-
portunities play a clear role in assisting this photic zeitgeber in Atlantic herring could be rejected. This clarifi-
cation supports that the survival potential of the larvae is the main selection pressure in operation in these 
respects, i.e., rather than the extent of feeding opportunities of the adults.   

1. Introduction 

An organism's ability to induce spawning at the most favourable 
environmental time is critical for the survival and fitness of the offspring 
(Ims, 1990; Lowerre-Barbieri et al., 2011; Yamahira, 2004). This fine- 
tuning of egg release is particularly important for high-latitude marine 
organisms with planktonic larvae due to the relatively short duration of 
seasonal peaks in planktonic (prey) abundance along with the limited 
search potential of larvae (Durant et al., 2007). This framework is 
referred to as either the “critical period hypothesis” (Hjort, 1914) or, 
more commonly today, “the match-mismatch hypothesis” (Cushing, 
1990). While spawning and resulting hatching times for many marine 

phyla are difficult to predict, today such attempts are further compli-
cated by on-going ocean warming affecting reproductive processes 
including phenology (Alix et al., 2020; Regnier et al., 2019). Hence, 
understanding zeitgeber – cues that regulate key phenological events 
such as spawning time in response to photoperiod (day, month, season) 
as well as, potentially, more variable environmental regulators, such as 
temperature and food availability (Foster and Kreitzmam, 2005) – could 
improve our ability to project the level of recruitment success (Regnier 
et al., 2019; Sundby, 2000). However, in terms of teleosts the underlying 
information in question is largely based on aquaculture studies and 
thereby referring to piscivores, as exemplified below. Thus, related in-
formation on planktivores, which typically experience more seasonal 
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variable prey availability, is generally lacking. 
Effects of climate fluctuations and change as well as food availability 

on teleost reproductive phenology have received considerable attention 
(Alix et al., 2020; Ljungström et al., 2019; Shoji et al., 2011; Wieland 
et al., 2000). A particular conspicuous topic is that species may show 
abrupt shifts in spawning seasons (Shoji et al., 2011; Wieland et al., 
2000). At high latitudes, the photoperiod defines the timing of seasonal 
primary and secondary plankton production (Longhurst, 2006; Sundby 
et al., 2016) but also, physiologically speaking, the onset of gonad 
maturation (including vitellogenesis) and spawning (Akhoundian et al., 
2020; Hansen et al., 2001; Ishikawa and Kitano, 2020; McPherson and 
Kjesbu, 2012). Consequently, the application of a continuous light 
regime is a well-developed technique within intensive aquaculture to, as 
far as possible, block maturation to enhance filet production (Akhoun-
dian et al., 2020; Good and Davidson, 2016; Hansen et al., 2001; Tar-
anger et al., 2015). An alternative aquaculture protocol enforces either a 
compressed or extended photoperiod to enable “year-round production 
of gametes” (Norberg et al., 2004). Fundamentally speaking, the indi-
vidual, temperate fish apparently relies upon specific decision windows 
within the photoperiod to either proceed or not with gametogenesis. So, 
autumn equinox (shorter days) triggers the onset of maturation in e.g. 
Atlantic cod (Gadus morhua) (Kjesbu et al., 2010b; Woodhead and 
Woodhead, 1965), haddock (Melanogrammus aeglefinus) (Migaud et al., 
2010), halibut (Hippoglossus hippoglossus) (Methven et al., 1992), and 
mackerel (Scomber scombrus) (dos Santos Schmidt et al., 2021b), 
whereas spring equinox (longer days) plays the same role for salmonids 
(Salmo, Onchorhynchus, and Salvelinus spp.) (Migaud et al., 2010) and 
the present model species: Atlantic herring (Clupea harengus) (McPher-
son and Kjesbu, 2012). 

Atlantic herring is a planktivorous (Bachiller et al., 2016), capital 
breeder (Kennedy et al., 2011) that depends on the spring-summer 
plankton production for accumulation of energy for a range of meta-
bolic activities as well as major gonad growth (Kurita et al., 2003; 
Sundby et al., 2016). As a visual foraging fish targeting meso-
zooplankton, herring requires sufficient amount of light; any restriction 
may act as a barrier in terms of poleward displacement during climate 
change (Ljungström et al., 2021). Atlantic herring, as a species, spawns 
throughout the entire year, but the spawning time varies markedly be-
tween stocks (dos Santos Schmidt et al., 2021a; Parrish and Saville, 
1965). As a result, herring is predominately split into either spring or 
autumn spawners which can be genetically discriminated (Kerr et al., 
2019; Lamichhaney et al., 2017). Still, vitellogenesis of both spawning 
types commences near spring equinox, although on average 50 days 
earlier for autumn spawners (McPherson and Kjesbu, 2012). So, while 
autumn spawners will typically reproduce within the same year, spring 
spawners will reproduce the year after (dos Santos Schmidt et al., 2017). 
The dynamics between any sympatric spring and autumn spawning are, 
however, variable and the predominating type can change over time as 
observed in the Baltic Sea (autumn to spring (MacKenzie and Ojaveer, 
2018)) or in the Northwest Atlantic (spring to autumn (DFO, 2018)). In 
this study, we focused on a geographical location where both spawning 
types co-occur during the entire year utilizing the same spawning 
grounds. Individuals switching between hatching and spawning season 
and/or genetic determined spawning season have been previously 
identified in that area (Berg et al., 2021). The dominating population 
that spawns in spring, typically from March–May (Berg et al., 2021), was 
selected as the present study model. However, the underlying mecha-
nisms for any shift in spawning type (McQuinn, 1997) and how they 
influence the maturation development remains unknown. 

When aiming at predictive models for reproductive timing, it is 
important to separate various environmental cues and understand the 
isolated importance of each prior to investigating combined effects. 
Therefore, the objective of this study was to evaluate how spring 
spawning herring, grown-up in captivity from the larval stage over 3.5 
years at 60◦N, respond to changes in daylength, when all other envi-
ronmental effects are kept constant as far as possible. We imposed a 

natural and 6-month offset photoperiod expecting that the onset of 
maturation between these two experimental groups should show a 
displacement in maturation by 6 months as well. We also hypothesized 
that this photic zeitgeber might be modulated or assisted by the natural 
time of seasonal feeding (Foster and Kreitzmam, 2005), in herring 
principally restricted to summertime when the planktonic food is 
available in the surface layer (Bachiller et al., 2016; Bachiller et al., 
2018). Any impact of the photic zeitgeber within that specific calendar 
window might be curtailed by the increasing presence of extreme long 
days northwards (Foster and Kreitzmam, 2005), reaching 24 h (polar 
day) at 66◦N (Foster and Kreitzmam, 2005; Sundby et al., 2016). If so, 
maturing individuals in the presently established Offset Group would be 
challenged by either tracking the imposed photoperiod (photic zeitgeber) 
or the natural timing of prey (non-photic zeitgeber). Logically, a pisciv-
orous species will not encounter this conflict between such entrainment 
signals as their prey is typically available throughout the whole year 
(Kjesbu et al., 2014). 

2. Materials & methods 

2.1. Ethics approval 

The below-outlined larval rearing and following on-growth experi-
ments were reviewed and approved by the FOTS Norwegian Food Safety 
Authority (ID-8459). 

2.2. Fish rearing 

For the subsequent reproductive phenology experiment, coastal 
adult spring spawning herring were sampled on 25 April 2016 (60◦34′N 
and 5◦0′E), west of Bergen, Norway. Individuals were caught by gillnets 
during the night and collected the next morning. Still alive herring were 
terminally anesthetized (with Finquel), stored in individual plastic bags 
and transported on ice in a cooling box to the experimental laboratory 
within approximately two hours after retrieval of gillnets. 

Fertilizations were conducted at a salinity of 16 psu to achieve high 
fertilization rates (Berg et al., 2019). The ambient water temperature, 
typical for these waters, was approximately 9 ◦C. After 30 min, the egg 
plates were transferred into 35 psu for further incubation until hatching. 
One female was separately fertilized with two different males. The 
hatching date of larvae (defined as the day when 50% were hatched) was 
9 May 2016. Larvae of each cross were initially reared in separate green, 
squared tanks (1 × 1 m) containing 300 l of water. Both tanks were 
exposed to a constant 12 h day/night light regime during the larval 
phase of the experiment. 

Larval stocking density was initially 734 and 1000 larvae, respec-
tively. Larvae were fed daily with natural filtered zooplankton in ad 
libitum (2000 prey/l). The natural zooplankton consisted mainly of 
different copepods and their nauplii stages and were stored in their 
original water (marine conditions) for a maximum of one day. Each day 
the remaining plankton was counted within each tank, and plankton was 
added to reach the same level of prey per litre. 133 days post hatching 
(DPH), the herring larvae from the two tanks (n = 355) were combined 
in a single tank and weaned onto dry feed (AgloNorse 600–900 μm, 
protein: 58–60%, fat: 17–20%). Herring were fed ad libitum throughout 
the entire experiment and the amount of food was adjusted to the size of 
the fish. 

After autumn equinox (22 September 2016), the light regime was set 
to follow the natural light cycle at the sampling locations of the parental 
herring population (60◦N). On 28 September 2016 (142 DPH), all ju-
venile herring were separated in two different tanks: one tank (n = 151) 
followed the natural light regime (Natural Group) whereas the light 
regime of the second tank (n = 155) was displaced by 6 months (Offset 
Group) (Fig. 1). In both set-ups, all individuals experienced the same 
temperature, from 8.5 to 9.3 ◦C (mean ± sd: 8.9 ± 0.2 ◦C) and salinity 
(35 psu). During the next four months only one tank per light regime was 
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used. However, as all other rearing conditions as such were almost 
identical, the tank effect during this limited period of four month is 
considered minor, i.e., not due to any physicochemical differences be-
tween these two tanks. 

On 31 January 2017 (267 DPH) the herring were transported from 
facilities in Bergen to Matre (~85 km/~2 h distance by car; see Sup-
plementary Information for more details about this transport). At Matre, 
the light regime and temperature remained the same as before transport 
(Fig. 1), separating the herring into two replicate tanks (2 × 2 m, ~3500 
l) per light regime. The initial experimental population under the nat-
ural light regime consisted of 146 (72 + 74 per replicate) individuals and 
148 (75 + 73 per replicate) under the offset light regime. The experi-
ment ended on 14 October 2019. 

2.3. Sampling procedure and statistical analyses 

To track gonad maturation, we successively sampled at four time 
points (Table 1; Fig. 1). The first three sampling points were used to 
monitor health status, body condition and growth, as well as 

establishing oocyte development trajectories. The final sampling point 
(the main sample) was analysed to address our two hypotheses. Hence, 
the sample size in the first three instances was limited, i.e., 10 (or in one 
case 11) random specimens from each treatment (~5 from each repli-
cate tank; Table 1), to assure that all tank replicates contained a suffi-
cient number of individuals at the final sampling point. This design 
implied that all remaining alive specimens (n = 116; Table 1) were 
processed at the end of the experiment in October 2019. Hence, the main 
results presented below are based on the final sample. An exception is 
the oocyte development tracking sub-study to optimise when the 
experiment should be terminated in view of data relevance (cf. hy-
potheses), but these data also formed key baseline reproductive infor-
mation. The terminally anesthetized specimens were weighted (W) to 
nearest 0.1 g and total length (TL) measured to nearest mm. Sex and 
visual maturation stage were also determined (Mjanger et al., 2020). 
Gonads were weighed (GW), and ovaries preserved in plentiful of 
phosphate-buffered 3.6% formaldehyde for further image and histo-
logical analyses. All detailed analyses were performed exclusively on 
females, since male herring remain in near spawning conditions for 

Fig. 1. Experimentally introduced natural and 6-month offset light cycle at 60◦N during the latter half of the experiment, with an approximately constant water 
temperature. Sampling points are indicated. 

Table 1 
Overview of herring sampling scheme by period and light regime. Mean (± standard deviation [sd]) of consulted phenotypic parameters are also presented. In terms of 
the offset light regime the artificially experienced (experimental) month – in terms of daylength – is added as well. N = Number of observations; TL = Total length, W =
Whole body weight, GSI = Gonadosomatic index, and Kn = Relative condition.  

Natural date Experimental month Light regime Sex N TL 
mean ± sd 

W 
mean ± sd 

GSI 
mean ± sd 

Kn 

mean ± sd 

11 October 2018 October Natural ♀ 3 22.20 ± 2.00 95.40 ± 34.47 0.41 ± 0.08 1.05 ± 0.06 
11 October 2018 October Natural ♂ 7 23.46 ± 1.59 116.97 ± 32.11 0.23 ± 0.08 1.05 ± 0.07 
11 October 2018 April Offset ♀ 3 23.17 ± 2.68 121.47 ± 74.61 1.26 ± 1.05 1.07 ± 0.25 
11 October 2018 April Offset ♂ 7 22.17 ± 1.63 92.36 ± 26.39 1.15 ± 1.25 1.04 ± 0.14 
18 February 2019 February Natural ♀ 9 24.26 ± 1.55 121.52 ± 17.62 1.92 ± 0.68 1.00 ± 0.17 
18 February 2019 February Natural ♂ 2 23.00 ± 2.55 91.70 ± 46.53 1.05 ± 1.24 0.87 ± 0.09 
18 February 2019 August Offset ♀ 4 22.48 ± 1.18 80.85 ± 8.32 0.68 ± 0.08 0.89 ± 0.09 
18 February 2019 August Offset ♂ 6 22.40 ± 1.84 92.37 ± 35.11 0.25 ± 0.09 0.98 ± 0.14 
7 May 2019 May Natural ♀ 6 22.95 ± 1.30 100.10 ± 19.47 2.72 ± 1.14 1.01 ± 0.11 
7 May 2019 May Natural ♂ 4 23.45 ± 1.58 107.65 ± 37.43 3.63 ± 2.94 0.96 ± 0.14 
7 May 2019 November Offset ♀ 5 23.16 ± 1.44 99.52 ± 20.57 1.14 ± 0.67 0.96 ± 0.05 
7 May 2019 November Offset ♂ 5 23.38 ± 1.00 106.28 ± 15.98 0.64 ± 0.59 0.99 ± 0.05 
14 October 2019 October Natural ♀ 28 24.53 ± 1.51 126.79 ± 35.31 1.57 ± 1.43 0.96 ± 0.12 
14 October 2019 October Natural ♂ 22 23.53 ± 1.35 113.66 ± 26.44 2.41 ± 3.46 1.03 ± 0.15 
14 October 2019 April Offset ♀ 37 24.29 ± 1.37 126.92 ± 28.53 4.13 ± 1.78 1.01 ± 0.08 
14 October 2019 April Offset ♂ 29 23.79 ± 1.56 121.08 ± 31.39 7.43 ± 3.60 1.04 ± 0.08  
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several weeks (Slotte, 1999), and finer temporal scale maturation 
analysis was not feasible. However, GSI estimates were used to provide 
an indication of the reproduction development of males. Furthermore, 
female fecundity estimates are applicable for stock assessments which is 
not the case for males (Witthames et al., 2009). 

The weight-at-length relationship was established for both sexes 
combined (W = 5.2 × 10− 4 × TL3.88, R2 = 0.826, n = 177, p < 0.001, 
Fig. S1), due to no apparent difference attributed to sex as such (p =
0.087). Since the exponent of the relationship deviated from 3 (confi-
dence interval: 3.61–4.14), we instead opted for the use of the relative 
condition factor (Kn). The adopted Kn formula (Kn =Wobserved/Wpredicted) 
calculates the difference between observed and predicted body weight 
(Le Cren, 1951; Wuenschel et al., 2019). The gonadosomatic index (GSI, 
%) was estimated as: GSI = 100 × GW/W. 

A general linear model was performed to test for any between-light- 
regime slope and intercept differences in reproductive parameters as a 
function of biometric (phenotypic) parameters. Two-way ANOVA was 
carried out to contrast potential fecundity among months (sampling 
time) and oocytes stages. Final TL, W, GSI, and Kn were used in a 
Principal Component Analysis (PCA) to investigate any phenotypic 
characteristics within each light regime treatment (defined as grouping 
variable). Even though GSI and Kn were derived from consecutive so-
matic measurements, they were evidently uncorrelated (p > 0.05) and 
therefore both entered in this sex-unspecific PCA (Table 1). More in-
formation about the phenotypic characteristics of both sexes and the 
sampling scheme can be found in the Supplementary Material. All sta-
tistical analyses and figure productions were done in R (version 4.0.4) (R 
Core Team, 2020). 

2.4. Ovarian analyses 

These samples were examined by both wholemount (whole oocyte) 
and histological (sectioned oocyte) techniques. 

2.4.1. Wholemount 
The wholemount procedure was based on the methodology 

described by Thorsen and Kjesbu (2001) and Anderson et al. (2020). A 
small subsample was transferred to a vial filled with 3.6% buffered 
formaldehyde, oocytes dissociated by an ultrasonic pen for around 10 s 
and stained in 2% toluidine blue and 1% sodium tetraborate. The sur-
plus stain was removed by washing the samples several times in the 
formaldehyde solution. Oocytes of each sample were thereafter trans-
ferred into a petri dish and three random images taken. Individual oo-
cytes were automatically measured using ImageJ and ObjectJ plug-in. 
An oocyte size of 100 μm was set as lower threshold value as even tinier 
oocytes were likely lost in cases during this sample preparation 
(Anderson et al., 2020). Each oocyte diameter was based on short and 
long axis measurements. The resulting mean oocyte diameter (OD) and 
leading cohort, defined as the 10% largest oocytes diameter, were then 
calculated. 

2.4.2. Histology 
Another subsample of each ovary was used for histological analyses. 

This tissue was dehydrated in ascending ethanol concentration (from 
70% up to 100%), embedded and mounted in Technovit® 7100. The 
following 4-μm thickness sections were stained in toluidine blue. All 
slides were scanned using a slide scanner (Hamamatsu S60) with a × 40 
objective and a resolution of 220 nm/pixel. 

Ovaries were classified microscopically in the traditional way, i.e., 
based on the most advanced oocytes, split into previtellogenic (PVO), 
cortical alveoli (CAO), early vitellogenic (EVTO; primary and secondary 
vitellogenic oocytes combined), late vitellogenic (LTVO), and germinal 
vesicle migration oocyte (GVMO) stage (Brown-Peterson et al., 2011). 
Atretic oocytes were staged as early alpha (EA), late alpha residual 
chorion (LARC), and late alpha no chorion (LANC) (Kjesbu et al., 
2010a). Relative intensity of atresia (ARI, in %) was estimated as ARI =

100 × N atretic oocytes/(N atretic + N normal oocytes). 

2.4.3. Fecundity 
Potential fecundity (FP) was given as: FP = OW × 7.474 × 1010 × OD- 

2.584 (dos Santos Schmidt et al., 2017), where OW is ovary weight. The 
FP calculation was restricted to samples with oocytes diameter greater 
than 240 μm, i.e., from the CAO stage onwards (Ma et al., 1998). Hence, 
individuals showing PVO as the most advanced stage were excluded 
from this FP work. 

Realized fecundity (FR), i.e., after correcting for atretic loss, was: FR 
= FP – Nes, where Nes = FP × A × D/T, with A as the relative intensity of 
atresia, D number of days from sampling date until spawning, i.e. when 
oocytes reach the maximum diameter (1200 μm), and T the atretic 
turnover rate, i.e. the alpha atresia life span. The turnover rate was set at 
five days in this calculation exercise (Kurita et al., 2003), based on the 
temperature used during the experiment. 

3. Results 

3.1. Phenotypic traits by light regime 

The PCA indicated a slight separation of phenotypic trait data points 
of individuals held under the two light regimes (Fig. 2). Adding sex as 
grouping variable did not yield any addition explanation (Fig. S2). The 
first two axis explained 86.2% of the variation. The noted differences 
were mainly attributed to GSI and Kn, with individuals from the Offset 
Group generally showing higher GSI and Kn (Table 1), further addressed 
below. TL and W did not contribute to any further separation of the two 
experimental groups. 

3.2. Female-specific phenotypic traits by light regime 

Final Kn for Natural Group females ranged from 0.70 to 1.17, and 
from 0.89 to 1.20 for the Offset Group. Kn regressed on the corre-
sponding TL showed a significant difference among treatments (Linear 
model, slope p = 0.017), with a positive trend for the Natural Group 
whereas a negative trend for the Offset Group (Fig. 3A). A negative trend 
between Kn and TL was also observed in February and May 2019, but 
then for both groups, though sample sizes were too low to clarify if this 
was a robust pattern (Fig. S3). 

Fig. 2. Principal Components Analysis of herring phenotypic trait parameters – 
total length (TL), whole body weight (W), gonadosomatic index (GSI), and 
relative condition (Kn) – by light regime at experimental end (October 2019; N 
= 116). The ellipse shows the normal probability of 68% for each group. 
Loadings are given in Table S1. 
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3.3. Prevalence and intensity of atresia by light regime 

Atresia (ARI) was recorded at all four sampling points (Fig. 3B; 
Fig. S3). At experimental end, ARI generally diminished at better body 
condition (Fig. 3B), however, in three of these relatively fatter in-
dividuals (Natural Group: N = 2, Offset Group: N = 1) apparently all 
CAO were resorbed; the ovary displayed 100% atresia. A total of 10 
Offset Group individuals in vitellogenesis (EVTO and LTVO stages) 
showed ARI > 20%, 9 out 10 being in bad condition (Kn < 1.0). In the 
Natural Group, five individuals were recorded with complete atresia 
(ARI = 100%) – spanning a broad range in Kn – one in the PVO stage and 
four in the CAO stage (Fig. 3B). This series of ARI analyses included in 
total 65 individuals (Table 1). 

3.4. Oocyte size frequency distributions by light regime 

Oocytes exhibited a continuous development throughout the exper-
iment. However, some clear differences were found between Natural 
and Offset Groups, using (natural) calendar day as reference (Fig. 4). At 
the first sampling point (11 October 2018) (Table 1), the three females 
examined in the Natural Group only had PVO (Fig. 4A) whilst the cor-
responding three females in the Offset Group showed either PVO, CAO 
or LVTO (Fig. 4B). Contrarily, at the second sampling point (18 February 
2019) (Table 1) oocytes in the Natural Group were more advanced 
(Fig. 4C vs. D). At the third sampling point (7 May 2019) (Table 1), this 
situation still prevailed (Fig. 4E vs. F). However, at the final sampling 
point (14 October 2019) (Table 1), the Offset Group had generally 
become much more advanced (Fig. 4G vs. H). More specifically, around 
two-third of the females (N = 20) collected in the Natural Group were in 
PVO and CAO stages and the remaining ones (N = 8) in LVTO or GVMO 
(Fig. 4G), whereas all females collected in the Offset Group (N = 37) 
were developing, i.e. in CAO – GVMO stages (Fig. 4H). No spawning 
markers (postovulatory follicles) were found in any female. 

Some anomalous cytoplasmic results were detected, especially at 
experimental end (October 2019), when 8 out 65 females (Table 1) in 
both light regimes showed extremely large CAO (average range 
459–764 μm) (Fig. 4G and H). Evidently, these oocytes continued to 
grow without incorporating any vitellogenin (Fig. 5B). This pattern was 

especially noticeable in the Offset Group (n = 5, Fig. 4H). Relative 
condition in these specimens varied from slightly poor to good, i.e. from 
0.87 to 1.05 (mean ± sd = 0.98 ± 0.06). 

3.5. Fecundity 

No difference was detected between light regimes in terms of the 
relationship between FP and TL (Linear model, slope p = 0.652) (Fig. 6). 
Generally, females in the GVMO stage showed at that time, i.e., at 
experimental end, low FP compared to other stages (Fig. 6A and B). No 
clear difference in FP versus TL occurred among oocyte stages split by 
month (two-way ANOVA, F = 0.571, df = 73, p > 0.05 for both light 
regimes) (Fig. S5). This finding can, however, be related to the low 
number of observations at the first three sampling points (Table 1). In 
general, no significant different in FP was recorded between light re-
gimes and sampling months (Linear model, p = 0.526) (Fig. 7A). The 
grand mean FP of the Natural and Offset Group was 28.7 thousand and 
25.1 thousand oocytes, respectively. The FR, on the other hand, could be 
markedly lower (up to one forth at a given sampling point), mainly for 
the Offset Group (Kruskal-Wallis, p > 0.001) (Fig. 7B). The peak decline 
in FR for the Offset Group happened in October 2018 and 2019, and May 
2019 for the Natural Group (Fig. 7B). 

4. Discussion 

The outcome of this long-term common garden experiment clarified 
that our principal hypothesis could be accepted, i.e., a 6-month offset 
photoperiod results in a corresponding displacement of the reproductive 
cycle. Hence, we found that the egg production of Atlantic spring 
spawning herring is closely linked to the photic timing of the spring 
bloom (Sundby et al., 2016). This was also the case for the male's 
reproduction cycle as indicated by differences in gonadosomatic index 
between light regimes. One can thereby assume that this reproductive 
trait is under high selection evolutionary pressure (Durant et al., 2007). 
Thus, day length appears as the main entrainment signal in line with 
general principles within life sciences (Foster and Kreitzmam, 2005). 
Using, as presently done, naïve specimens (larvae) followed by manip-
ulation of the photoperiod appeared crucial because herring usually do 

Fig. 3. Female-specific relationship at experimental end (October 2019) between (A) relative condition (Kn) and total length (TL) and (B) between relative intensity 
of atresia (ARI) and Kn, split by light regime. Individuals were classified according to the most advanced oocyte (MAO) stage: previtellogenic (PVO), cortical alveoli 
(CAO), early (EVTO) and late vitellogenic (LVTO), and germinal vesicle migration (GVMO) stages. Vertical line (panel B) indicates the threshold value between 
individuals in good (Kn ≥ 1.0) and poor (Kn < 1.0) body condition (Le Cren, 1951) (Natural Group: N = 22; Offset Group: N = 37 (Table 1)). 
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Fig. 4. Smoothed oocyte size frequency distribution by month and light regime. Samples within each panel are organized in ascending order based on maximum 
oocyte diameter, i.e. advancement in oogenesis: previtellogenic [PVO], cortical alveoli [CAO], early [EVTO] and late vitellogenic [LVTO], and germinal vesicle 
migration [GVMO]. The vertical line indicates the normal threshold value for the appearance of the CAO stage (OD = 240 μm) (Ma et al., 1998). In each panel, the 
calendar sampling month is presented inside parenthesis, whereas the quotation marks refer to the artificially experienced month – in terms of daylength – with 
reference to the Offset Group (e.g. ‘April’). 
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not change spawning season after first spawning (van Damme et al., 
2009). When interpreting and discussing the results in the following, we 
focus on three main aspects; firstly, the experimental design, secondly 
the linkage between experiments and the wild, and thirdly in view of the 
broader perspective, as summarized in the Conclusion section. 

4.1. Experiment design 

Conducting long-term experiments are always challenging, and the 
results cannot be directly compared with field observations. Despite 
these caveats, we were able to rear spring-spawning herring under two 
different light regimes over 3.5-years until sexual maturation. Our 
experimental fish, independent of light regime, were approximately 6–8 
weeks delayed in their oocyte development compared to field observa-
tions; spawning time would have been ca. 2 months after their own 

hatching time (see 2 Materials and Methods). This delay of oocyte 
development can be explained by the fact that these are experimental 
fish that had suboptimal growth where their maximum size was limited 
due to a tank size effect. Further, additional seasonal environmental 
factors, such as temperature, which might influence the spawning time 
of herring were by design excluded. The spawning time of Atlantic 
herring may vary noticeably from one year to the next year and might 
result in different reproductive success (Polte et al., 2021; Slotte et al., 
2019). Thus, our results might indicate that constant environmental 
factors of the common garden experiment are not optimal for the 
reproductive development of Atlantic herring. This is in line with a 
previous common garden experiment but under a constant light regime 
where a similar trend of delayed spawning time was observed (Berg 
et al., 2019; Tonheim et al., 2020). However, as no reproductive (oocyte 
growth) information was presented no direct comparison can be made 

Fig. 5. Herring photomicrographs showing cytoplasmic differences between (A) oocytes in true vitellogenensis and (B) oocytes in the preceding cortical alveoli stage 
but of exceedingly large size. Scale bar is presented in each image. 

Fig. 6. Potential fecundity (FP) in the Natural (A) and Offset Group (B) versus total length (TL) at experimental end (October 2019). The most advanced oocyte stages 
(MAO) (cortical alveoli [CAO], early [EVTO] and late vitellogenic [LVTO] and germinal vesicle migration [GVMO]) are annotated. 
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with the current results. 
Interestingly, the two different light regimes resulted in similar 

phenotypes. So, except for oocyte development trajectories, we could 
not find any differences between the two groups in terms of body length, 
weight or condition. Here it should be noted that all individuals were fed 
ad libitum and received the same amount of food independent of day 
length. Also, they reached their experimental maximum size relatively 
early in the experiment and thereby could divert the surplus energy into 
either growth in body condition and/or reproductive investment. Both 
in the Natural and Offset Group, individuals gathered relatively high 
body reserves throughout the year, even during the winter period. 
However, in general, it seems that the Offset Group benefited from the 6- 
month displacement; these individuals had 6 months more to grow prior 
to investing in their reproduction. All individuals lived the first half-year 
under a 12 h light: 12 h dark regime before the local photoperiod was 
entered or displaced, as previously mentioned. It can be asked if the 
Offset Group would have shown a similar maturation development if the 
light conditions had been manipulated from hatching onwards. Further 
experiments should also investigate if similar findings apply for autumn- 
spawners in view of that wild herring are able to switch between 
spawning seasons (Berg et al., 2021): some of the Natural Group in-
dividuals from the final October sample showed quite developed oocyte 
and thereby were close to spawning, indicating switching of the 
spawning season (McQuinn, 1997). 

One limitation of this experiment is the use of a single mother and 
two fathers. Consequently, all individuals used in this study were full- or 
at least half-siblings which should be considered when interpreting the 
results. However, this experimental design purposely reduced the 
environmental parental effect, on purpose. Parental effects will affect 
somatic characteristics (Bang et al., 2006; Berg et al., 2019) but not 
necessarily the onset and development of maturation. The slight varia-
tion in experimental temperature mimicked the variation in natural 
temperature with reference to the nearby deep fjord. Thus, if variation in 
temperature would be the driving factor in terms of maturational 
development, both the Natural and Offset Group should have followed 
the same trajectories. In previous experiments, a constant temperature 
did not negatively affect the maturation development of Atlantic spring- 
spawning herring (Berg et al., 2019). 

4.2. Oocyte development 

Females in the Natural Group followed the expected oocyte growth 
trajectory for a spring spawner, though with exceptions. These special 
circumstances included a few females in February and May 2019 which 
were in a more advanced stage than, for instance, would be seen in 
Norwegian spring-spawning herring (NSSH) at that time in the year (dos 
Santos Schmidt et al., 2017). At experimental end in October 2019, a 
mix of oocytes stages was reported in the Natural Group, with most 
individuals in the previtellogenic and cortical alveoli stage, though some 
in the late vitellogenesis and germinal vesicle migration stage. Wuen-
schel and Deroba (2019) also detected adult spring spawners in pre-
vitellogenesis in October. However, most Natural Group individuals 
should have been in vitellogenesis as the reproduction cycle typically 
commenced in February – May, in line with the one of NSSH (Kurita 
et al., 2003; McPherson and Kjesbu, 2012). PVO- and CAO-staged fe-
males at experimental end in this Natural Group had thin ovary wall and 
no spawning markers (e.g., postovulatory follicles), indicating they still 
were sexually immature or on the way to become sexually mature, 
respectively. Herring oocytes are reasonably quickly reabsorbed with an 
atretic duration from 4.5 to 7.2 days (Kurita et al., 2003), whereas 
postovulatory follicles, on the other hand, can last for a long period, up 
to around 3 months (Wuenschel and Deroba, 2019). Therefore, due the 
relatively long span in time between the last two samplings (May and 
October 2019), we cannot firmly say whether any individuals in the 
Natural Group de facto spawned around summertime or not. 

The applied displaced photoperiod in combination with the natural 
one suggests that year-round production of gametes is also feasible for 
planktivores in an aquaculture setting; the Natural Group showed LVO 
in May (2019) and the Offset Group similarly in October (2019), though 
the latter time corresponds to ‘April’ in terms of the artificially, expe-
rienced day length. Thus, we can conclude that spring equinox 
(increasing day length) stands its advocated role as photic trigger 
(Kurita et al., 2003; McPherson and Kjesbu, 2012), though several of the 
oocyte size frequency distributions (OSFD) are difficult to interpret, e.g. 
the ‘August’ (February 2019) OSFD should have displayed more 
advanced oocytes (dos Santos Schmidt et al., 2017). 

Fig. 7. Potential fecundity (FP) (A) and realized fecundity (FR) (B) of the Natural and Offset Group at different sampling points. Significant differences between light 
regimes within a sampling were marked with an asterisk (*) coloured by the light regime with higher values. Fecundity data for the Natural Group in October 2018 
were excluded since all females had not progressed beyond the PVO stage (cf. Fig. S4). 
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4.3. Condition, atresia, and fecundity 

“The concept of threshold” (optimum fitness), represented by e.g. 
body growth and condition, feeding success, and energy availability, 
determining the subsequent commitment to gametogenesis (ending with 
sexual maturation) is key within reproductive physiology, as originally 
developed for Salmo salar (Metcalfe, 1998) and thereafter generalized to 
other species (Migaud et al., 2010). Thus, the projected trajectory from 
this sensitive window should ultimately define whether the individual in 
question becomes sexually mature or not (Saborido-Rey and Kjesbu, 
2005). Several females in both light regimes showed poor condition (Kn 
< 1) and these poor-condition herring, in general, had high intensity of 
atresia. Herring in poor condition spawn later, show increased level of 
atresia (Óskarsson et al., 2002), and reduced fecundity (dos Santos 
Schmidt et al., 2017). A clear drop in realized fecundity compared to 
potential fecundity was noticed across the experiment. This decline was 
especially seen in the Offset Group. Herring in both light regimes were 
continuously fed during the experiment, so unsuccessful acclimation to 
the tank situation rather than any lack of food seems to be the under-
lying reason behind low-condition individuals and their high atresia. 

5. Conclusion 

To the best of our knowledge, this is the first experiment investi-
gating if the onset of gametogenesis and sexual maturation of a high- 
latitude, planktivorous teleost can be manipulated by changing the 
photoperiod. The results of our experiment support our hypothesis as 
these findings demonstrate that the planktivorous Atlantic herring 
respond in very much the same way as the well-studied, piscivorous 
Atlantic cod (Norberg et al., 2004), both cold-temperature species. 
However, we would have expected that the fact that the Offset Group 
artificially experienced short days (experimental winter) at a time in the 
year when there is normally plentiful of zooplankton (prey) in the wild 
(natural summer) would have impacted the reported biometrics in one 
way or the other. Both experimental groups were fed throughout the 
experiment, but the term zeitgeber implies an imprinted “clock” running 
even without the evolutionary-established entrainment signal (or syn-
chronizing agent) necessarily being in place all the time (Foster and 
Kreitzmam, 2005). In effect, we thus reject the second hypothesis that 
feeding opportunities play a clear role in assisting the photic zeitgeber in 
Atlantic herring. This clarification supports that the survival potential of 
the larvae is the main selection pressure in operation in these respects, i. 
e., rather than the extent of feeding opportunities of the adults. 
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