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ABSTRACT

Background: Although evidence suggests that the immune system plays a key role in the
pathophysiology of nut allergy, the precise immunological mechanisms of nut allergy have not
been systematically investigated. The aim of the present study was to identify gene network
patterns and associated cellular immune responses in children with or without nut allergy.

Methods: Transcriptome profiling of whole blood cells was compared between children with and
without nut allergy. Three genes were selected to be validated on a larger cohort of samples
(n ¼ 86) by reverse transcription-polymerase chain reactions (RT-qPCR). The composition of im-
mune cells was inferred from the transcriptomic data using the CIBERSORTx algorithm. A co-
expression network was constructed employing weighted gene co-expression network analysis
(WGCNA) on the top 5000 most variable transcripts. The modules were interrogated with pathway
analysis tools (InnateDB) and correlated with clinical phenotypes and cellular immune responses.

Results: Proportions of neutrophils were positively correlated and CD4þ T-cells and regulatory T-
cells (Tregs) were negatively correlated with modules of nut allergy. We also identified 2 upre-
gulated genes, namely Interferon Induced With Helicase C Domain 1 (IFIH1), DNA damage-
regulated autophagy modulator 1 (DRAM1) and a downregulated gene Zinc Finger Protein
512B (ZNF512B) as hub genes for nut allergy. Further pathway analysis showed enrichment of type
1 interferon signalling in nut allergy.

Conclusions: Our findings suggest that upregulation of type 1 interferon signalling and
neutrophil responses and downregulation of CD4þ T-cells and Tregs are features of the patho-
genesis of nut allergy.

Keywords: RNA sequencing, Food allergy, Nut allergy, RT-qPCR, Biomarker, WGCNA
ool of Public Health, Curtin University of Technology, Bentley, 6102,
tern Australia, Australia
rresponding author. School of Public Health, Curtin University of
nology, Kent St, Bentley, 6102, Western Australia, Australia. E-mail:
.zhang@curtin.edu.au
list of author information is available at the end of the article

://doi.org/10.1016/j.waojou.2022.100631

Received 22 February 2021; Received in revised from 23 November 2021;
Accepted 18 January 2022
Online publication date xxx
1939-4551/© 2022 The Authors. Published by Elsevier Inc. on behalf of
World Allergy Organization. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:brad.zhang@curtin.edu.au
https://doi.org/10.1016/j.waojou.2022.100631
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.waojou.2022.100631&domain=pdf
https://doi.org/10.1016/j.waojou.2022.100631


2 Lee et al. World Allergy Organization Journal (2022) 15:100631
http://doi.org/10.1016/j.waojou.2022.100631
INTRODUCTION

Today, food allergy affects up to 11% of infants
and 3.8% of children, with progressively increasing
prevalence over the last few decades.1 Children
with food allergy are at risk for potentially life-
threatening allergic reactions including breathing
difficulties, swollen tongue, throat tightness and
wheezing, particularly when exposed to nut aller-
gens.2 Moreover, nut allergy tends to be persistent
over the full duration of a person’s lifetime and can
cause anaphylactic reactions.2,3 With the
exception of treatment of peanut allergy,4

immunotherapy for desensitizing in food allergy
is still not recommended for clinical practice.5

Hence, the best management for food allergies is
to strictly avoid specific food allergens. As such,
it is crucially essential to elucidate the
fundamental mechanisms of food allergy to help
develop effective prevention and treatment for
this condition in children.

Food allergy is mechanistically characterized by
the development of an overactive immune
response to an otherwise harmless allergen,
resulting in a T helper 2 (Th2) polarized cytokine
response to the allergen and the production of an
Immunoglobulin E (IgE) antibody response. Upon
recognition of food allergens by antigen present-
ing cells, mainly dendritic cells (DCs), naïve T-cells
are instructed to differentiate into allergen-specific
Th2 cells,6 which are characterized by the
expression of type-2 cytokines including inter-
leukin (IL)-4, IL-5, and IL-13.7 These cytokines then
mediate immune responses to food allergens by
supporting B-cell proliferation,8–10 promoting IgE
isotype switching, and inducing the activation of
mast cells and basophils.11–14 Given that immune
responses to food allergens are complex and
involve multiple cell populations, we reasoned
that an unbiased systems biology approach
could reveal a unique level of insight into the
underlying immunological mechanisms. RNA
sequencing has been widely used for
investigating the pathogenesis of complex
human diseases,15 because it enables the
systematic study of the molecular states that
underpin pathogenic states.16 RNA sequencing
data can be analysed with systems biology
methods such as weighted gene co-expression
network analysis (WGCNA), to elucidate the
global architecture of the gene expression pro-
gram and unmask systems-level properties of the
biological systems under study.17 In the current
study, we applied an RNA sequencing approach
coupled with cell deconvolution and weighted
gene co-expression network analysis to identify
gene network patterns and associated cellular
immune responses in children with or without nut
allergy, in order to better understand immuno-
logical mechanisms of nut allergy.
METHODS

This study was approved by the Curtin Human
Research Ethics Committee (Curtin HREC
HRE2016-0178) and Child and Adolescent Health
Service (CAHS) Human Research Ethics Committee
(CAHS HREC 2016046 EP) and conducted in
accordance with the National Health and Medical
Research Council National Statement on Ethical
Conduct in Human Research. Written informed
consent was obtained from all parents on behalf of
participants. Our study included a total of 92 in-
dividuals (84 children with a nut allergy and 8
children without a nut allergy). Children (aged 1–
16 years old) with suspected or diagnosed al-
lergies to tree nuts and peanut were recruited from
the outpatient clinic of the Immunology Depart-
ment. Children that were older than 16 years were
excluded. Diagnoses of nut allergy were deter-
mined by an immunologist on the day of recruit-
ment based on the clinical outcomes of the
patients. Nut allergy was defined by immediate
symptoms (1–2 h) after nut ingestion combined
with either failed oral food challenge or with pos-
itive skin prick test wheal diameter�3 mm to nuts).
In contrast, a negative skin prick test and/or a
passed oral food challenge for any food allergens
defined the subject as children without a nut al-
lergy. Venous blood was collected into PAXgene
RNA blood tubes (PreAnalytiX, Qiagen, Hilden,
Germany) by a trained phlebotomist.
RNA extraction

Total RNA samples were extracted using PAX-
gene Blood RNA Kit according to the manufac-
turer’s instructions (Qiagen). Briefly, samples were
incubated at room temperature for at least 2 h
before RNA extraction. After washing with RNase-
free water, the pellet was resuspended in 350 ml
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resuspension buffer and incubated with 300 ml
binding buffer and 40 ml proteinase K for 10 min at
55 �C. The lysate was transferred into a PAXgene
shredder spin column and centrifuged for 3 min at
14 000 g.The flow-through fraction was mixed with
350 ml ethanol and transferred to a PAXgene RNA
spin column. After washing the column with
washing buffer 1, samples were incubated with 80
ml DNase 1 of (RNFD) incubation mix at room
temperature for 15 min. The sample was washed
several times with washing buffer before RNA was
eluted with 40 ml elution buffer and stored
at �80 �C. Total RNA concentration and purity
were assessed by determining the A260/280 and
A260/230 ratios, respectively (NanoDrop).
Library preparation, RNA sequencing and quality
control (QC)

The library preparation, sequencing read, QC
and read alignment of 30 samples were performed
at the Australian Genome Research Facility (AGRF).
Briefly, Ribosomal RNA was removed using the
Ribo-Zero Gold rRNA removal kit prior to prepa-
ration of the cDNA libraries. Library was prepared
using TruSeq stranded mRNA Library Prep Kit
(Illumina) as per the manufacturer’s instructions.
The process included purification of mRNA purifi-
cation via oligo (dT) beads, fragmentation of
mRNA with divalent cations and heat, as well as the
synthesis of first strand cDNA and 2nd strand
cDNA. cDNA libraries were prepared by DNA
fragment end repair, 30 adenylation of DNA frag-
ments, sequence adaptor ligation and amplifica-
tion of library via PCR. In total, 30 cDNA libraries in
2 separate batches (13 samples and 17 samples)
were constructed for sequencing. Samples were
then sequenced on Illumina HiSeq 2500 platform
with a 100 bp single end read.

Post run processing, including demultiplexing
and generation of Fastq files was performed the
Illumina bcl2fastq 2.20.0.422 pipeline. The quality
of Fastq data were assessed for quality check using
FastQC. The data were also screened for the
presence of any Illumina adapter/overrepresented
sequences and cross-species contamination.

The cleaned sequence reads were then aligned
against the Homo sapiens genome (Build version
HG38) by the Tophat aligner (v2.1.1). The tran-
scripts were assembled with the Stringtie
toolv1.3.3 (http://ccb.jhu.edu/software/stringtie/)
utilising the reads alignment with hg38 and refer-
ence annotation based assembly option (RABT)
generating assembly for known and potentially
novel transcripts. The reads corresponding to each
gene were summarized using the featureCounts
v1.5.3 utility of the subread package (http://
subread.sourceforge.net/).
Gene expression data of RNA sequencing

The raw gene read counts were converted into
counts per million by using edgeR package of R.
Genes with less than 20 counts in the sample with
the lowest sequencing depth were excluded to
reduce potential noise. Counts were then con-
verted to log2-counts-per-million (logCPM) with
precision weights, based on voom method using
Limma package of R prior to statistical analysis.18

Empirical Bayes statistics were applied to
compute model statistics and calculate log-fold
change (log2FC) of differential expressed genes.
The cut-off criteria for significant analysis was: |
log2FC|>0.3 and p < 0.05. Age, sex and batch
effect were considered as potential confounders.
Reverse transcription-polymerase chain reactions
(RT-qPCR)

RNA was reverse transcribed to cDNA using the
QuantiTect Reverse Transcription Kit (Qiagen,
Germany). One mg of the total RNA from each
sample was mixed with gDNA wipeout buffer and
RNase-free water to prepare annealing mix, fol-
lowed by incubation at 42 �C for 2 min. The
annealing mix was stored on ice until reverse
transcription master mix was added. The final
mixture was incubated for 30 min at 42 �C and
3 min at 95 �C to inactivate reverse transcription
reaction before storing at �80 �C.

RNA-specific primers for reverse transcription-
polymerase chain reactions (RT-qPCR) were
designed on the specific region of the genes
(Supplemental Table 1) (Supplemental Figure 1).
Quantitative PCR was performed on a ViiA7 �
Real-Time PCR System (Thermo Fisher Scientific).
qPCR thermal cycling was set as follows: initial
denaturation at 95 �C for 5 min, followed by 40
cycles at 95 �C for 10 s and 55 �C for 30 s and a
final extension at 95 �C for 15 s, 60 �C for 1min and
95 �C for 15 s 18s rRNA was measured as the
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housekeeping gene for qPCR. The fold change in
the expression of targeted genes was computed
using the DDCt method.19

Quantification of immune cells

The RNA-Seq data was then used to estimate
the cellular composition of the whole blood sam-
ples using CIBERSORTx.20 CIBERSORTx is a
deconvolution algorithm, which can estimate the
abundance of different cell types from RNA-Seq
data based on cell type specific reference gene
expression profiles. CIBERSORTx provides 22
types of functionally defined human immune cells
(LM22 signature matrix) as a reference, and we
focused on proportions of 12 human immune cells
(B cells, CD8þ T-cells, CD4þ T-cells, follicular
helper T-cells, Tregs, gamma delta T-cells, NK
cells, monocytes, dendritic cells, mast cells, eo-
sinophils and neutrophils). The cell type pro-
portions in children with and without nut allergy
were compared employing an independent t-test,
and were correlated with coexpression modules
derived from WGCNA.

Gene co-expression network construction

Genes with low variation from RNA sequencing
data were then filtered out using a coefficient of
variation cutoff (CV > 0.05). This resulted in the
identification of 9462 stably expressed genes in all
the samples. Top 5000 genes with high coefficient
of variation values were selected for additional
analysis.

The selected genes were then used to construct
a co-expression network by using the WGCNA.21

First, the goodSamplesGenes function was used
to filter genes with many mixing values. Then,
hierarchical clustering of samples was analysed
using the hclust function. The soft-thresholding
power was then calculated by using a scale-free
topology and the soft-thresholding power was
determined based on a scale-free topology index
(R2) of 0.85 (Supplemental Figure 2). According to
Zhang and Horvath,21 the gene distribution
conformed to a scale-free network if R2 value
(model fitting index) is close to 1. Next, the
selected soft-thresholding power of 8 was used to
calculate the adjacency matrix (correlation
strength) between the corresponding pair of
genes. The adjacency matrix was then transformed
into a Topological Overlap Matrix (TOM) to mea-
sure the connectivity of network of the genes and
to remove any spurious association. TOM was later
performed average linkage hierarchical clustering
in order to identify modules of highly co-expressed
genes. Network modules were subsequently
identified using a dynamic tree cut algorithm with
a minimum cluster size of 30 and merge cut height
of 0.25 (default). The minimum size of the modules
was set to 10 to ensure that small as well as large
modules are detected. Subsequently, highly co-
occurred genes were merged into modules and
these modules later assigned to different colours
for visualization.
Module trait relationship construction

Module eigengenes were used to perform
principal component analysis of the expression
matrix from each gene module. The correlation
between module eigengenes (ME), proportions of
immune cells, phenotype as well as demographics
traits such as age, gender, and batch effect were
calculated using Pearson correlation coefficient.
Gene modules, which have p-value <0.05, were
identified to have significant correlations with nut
allergy and these modules were selected for
further analysis.
Hub genes selection and visualization

Next, an intramodular analysis was performed to
determine the hub genes in the selected modules
by summing the connection strengths with other
module genes. Hub genes were defined based on
the standard cut off of module membership
(MM) > 0.8 and gene significance (GS) > 0.5.
Module membership (MM) is defined as the cor-
relation between expression profile of a gene and
each module eigengene. MM takes values be-
tween 0 and 1 and tells “how well a gene belongs
to a module”; hub genes have an MM value closer
to 1. Gene significance (GS) is defined as the cor-
relation between gene expression and the
outcome, nut allergy. The correlation between a
module and nut allergy status is in fact a correla-
tion between the module eigengene and nut al-
lergy status. Hub genes of the significant modules
were then visualized using Cytoscape v3.8.0.22
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Fig. 1 The volcano plot for differentially expressed genes. The horizontal axis represents the log2 fold change, and the vertical axis
represents the -log10 (pvalue). Red denotes upregulated genes with log2FC > 0.3 and p-value<0.05 while blue denotes downregulated
genes with log2FC < �0.3 and p-value<0.05. The top 15 differentially expressed genes are labelled.
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Functional enrichment analysis

The biological function and associated path-
ways enriched in each module was characterized
by employing gene ontology (GO) and using
InnateDB.23

RESULT

Study population

A total of 92 whole blood samples (30 whole
blood samples for RNA sequencing and 86 whole
blood samples for RT-qPCR) were obtained from
children with nut allergy and children without nut
allergy (Supplemental Table 2). The 2 study
cohorts (RNA sequencing and RT-qPCR cohorts)
were well-balanced (p > 0.05) for all the major
demographic characteristics. Around sixty three
percent of the subjects were boys, with the
median age for RNA sequencing cohort and
RT-qPCR cohort of 10.5 years and 9.3 years,
respectively.
Gene expression profiling of whole blood in
children with or without nut allergy

We utilized RNA sequencing to compare gene
expression patterns of whole blood samples of
children with nut allergy (n ¼ 23) to whole blood
samples of children without nut allergy (n ¼ 7).
RNA sequencing produced a total of 520 million
reads with an average of 17 million mapped reads



Module colours No. of genes Associated biological processes Adjusted p-value

Black 190 malonyl-CoA biosynthetic process 0.020

Blue 643 innate immune response <0.001

Brown 384 negative regulation of dendritic cell differentiation 0.032

Green 266 positive regulation of humoral immune response 0.122

Greenyellow 90 chronic inflammatory response to antigenic
stimulus

0.003

Magenta 132 establishment of T-cell polarity 0.037

Pink 187 gene expression 0.001

Purple 116 regulation of cytokine secretion 0.015

Red 229 IMP biosynthetic process 0.174

Tan 71 type 1 interferon signalling pathway <0.001

Turquoise 1807 transcription, DNA-templated <0.001

Yellow 349 protein import into peroxisome matrix,
translocation

0.211

Table 1. Modules and associated biological processes.
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per sample. A total of 12 523 genes were detected
in both samples with and without nut allergy. Dif-
ferential expression analysis adjusted for age, sex,
and batch effect identified 184 upregulated genes
(log2FC > 0.3) and 490 downregulated genes
(log2FC < �0.3) (Fig. 1). However, it is noteworthy
that these results were not significant after multiple
corrections.

Validation of RNA sequencing results with RT-
qPCR

We selected 3 genes, which were G Protein
Subunit Beta 4 (GNB4), Golgi Associated Kinase 1B
(GASK1B) and LysM Domain Containing 2
(LYSMD2), for validation by RT-qPCR on a larger
cohort of samples according to the following
criteria: 1) dysregulated genes based on RNA-seq;
2) high abundance based on logCPM of RNA-seq
data; 3) these genes are particularly interesting,
associating with infection and inflammation based
on literature. We observed the results of RT-qPCR
were significantly correlated with RNA
sequencing (p < 0.01) (Supplemental Figure 3).
These results suggested that our RNA-Seq data
was reliable.
Gene co-expression network construction

We constructed a coexpression network on the
top 5000 most variable genes as described in the
methods. Through WGCNA, we identified 12
modules of co-expressed genes, and each module
comprised between 71 and 1807 genes (Table 1).
Among the highly variable genes, only 536 genes
(10%) were not assigned to any module, and
these genes were clustered into the grey module
as per default. Pathways analysis of the modules
with InnateDb demonstrated that the modules
were significantly enriched for coherent
biological functions (Table 1).

Module trait relationship construction

The module eigengenes were further compared
between children with and without nut allergy us-
ing module trait association analysis to identify the
nut allergy-associated modules. Four modules out
of 12 modules were identified to be significantly
associated with nut allergy (Fig. 2), which included
tan module (r ¼ 0.43, p ¼ 0.03), purple module
(r ¼ 0.4, p ¼ 0.04), green module (r ¼ �0.48,
p ¼ 0.01) and grey module (r ¼ �0.56,
p ¼ 0.003). However, we did not try to find a hub
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gene for grey module since genes in this module
were not co-expressed. It was also observed that
greenyellow module was marginally associated
with nut allergy (r ¼ 0.4, p ¼ 0.05) and there was no
hub gene identified in this module. The upregu-
lated modules (tan and purple modules), were
negatively correlated to CD4þ T-cells and posi-
tively correlated to neutrophils. In addition, the
purple module was also negatively correlated to
Tregs. In contrast, the downregulated module
(green module) was positively correlated to CD4þ

T-cells and Tregs as well as negatively correlated
to neutrophils. However, two modules that were
not significantly associated with nut allergy (red
and greenyellow modules) were also observed to
be strongly correlated with neutrophils.

The proportions of the 12 human immune cells
in children with or without nut allergy are shown in
Fig. 3. The cellular composition was dominated by
neutrophils, Monocytes, CD8þ T-cells, CD4þ T-
cells, B cells and Tregs. Among all the cell types,
CD4þ T-cells and macrophages were observed to
have a significant difference between children
with and without nut allergy.

Significant modules and associated biological
process

The tan module was revealed to have the
highest positive correlation with nut allergy. In the
Fig. 2 Module-trait associations. Each row corresponds to a module eig
(NA: nut allergy) or demographic traits such as age and gender. Each ce
top of the cell) and corresponding p-values for each module (display at
the spectrum on the right denote low and high correlation, respective
tan module, 71 genes were identified to be
correlated with nut allergy and these genes were
found to be involved in type 1 interferon signalling
pathway. Particularly, Interferon Induced With
Helicase C Domain 1 (IFIH1) was identified as a
hub gene of the tan module (Gen-
eSignificance>0.5 and Module Membership>0.8,
Fig. 4).

The purple module was also positively corre-
lated with nut allergy. In the purple module, 116
genes were identified to be correlated with nut
allergy and these genes were found to be involved
in the regulation of cytokine secretion. Particularly,
DNA damage-regulated autophagy modulator 1
(DRAM1) was identified as a hub gene within the
purple module (GeneSignificance>0.5 and Mod-
ule Membership>0.8, Fig. 4).

In contrast, the green module was found to
have a negative correlation with nut allergy. In the
green module, 266 genes were identified to be
correlated with nut allergy and these genes
were found to be involved in the positive regula-
tion of humoral immune response. Particularly,
Zinc Finger Protein 512B (ZNF512B) was identified
as a hub gene of the green module (Gen-
eSignificance>0.5 and Module Membership>0.8,
Fig. 4).
engene (ME) while each column corresponds to either phenotype
ll contains the corresponding correlation coefficient (display at the
the bottom of the cells within parentheses). Blue and red colours of
ly.



Fig. 3 Differential immune cell type expression was observed between children with and without nut allergy. Blue colour represents
children without nut allergy, while red colour represents children with nut allergy.
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DISCUSSION

Food allergy can cause severe, life-threatening
anaphylactic reactions. Here, we profiled the tran-
scriptome of immune cells to provide a window
into the regulation of immune function in the
context of food allergy and anaphylaxis. The
application of WGCNA identifies the global con-
nectivity structure of the gene expression program,
and unmasks systems-level features of the under-
lying biology.24,25 Herein, we analysed gene
expression profiles obtained from whole blood
transcriptome of children with and without nut
allergy using WGCNA to identify molecular and
cellular immune features associated with nut
allergy. In the present study, we identified
upregulation of the type I interferon production
(tan) and cytokine production (purple) modules
and downregulation of the humoral immune
responses (green) module in children with nut
allergy. These changes were positively correlated
with proportions of neutrophils and negatively
correlated with propotions of CD4 T cell/Treg.
The upregulated modules were characterized by
hub genes, namely IFIH1, DRAM1, which were
involved in type 1 interferon signalling pathway
and the regulation of cytokine secretion while the
downregulated module was characterized by a
hub gene, namely ZNF512B, which was involved
in the positive regulation of humoral immune
response. Together, our data suggest that the
pathogenesis of nut allergy is associated with the
upregulation of type 1 interferon and neutrophil
responses, and downregulation of CD4 T cell/
Treg responses. Consistent with our studies,
previous studies have also identified the
enrichment of type 1 interferons in subjects with
allergic diseases compared to control.26,27 The
exposure to allergens activates toll like receptors,
which in turn mediates the production of type 1
interferons, inducing phosphorylation of STAT1

https://doi.org/10.1016/j.waojou.2022.100631


Fig. 4 Co-expression network of top 30 genes in 3 distinct modules (purple, tan and green), hub gene is indicated with yellow triangle
shapes and other highly correlated genes are in round shapes and colour coded according to the module colour.

Volume 15, No. 2, Month 2022 9
and inducing expression of pro-inflammatory
cytokines.27

A limitation of gene expression profiles ob-
tained from whole blood transcriptome is that the
data are potentially confounded by variations in
cellular composition. The integration of the co-
expression network and cell deconvolution ap-
proaches allowed us to link co-expression patterns
within each module with specific immune cells.
CD4þ T-cells and Tregs are already the focus of
investigation in studies of food allergy.28–30 Mouse
models of food allergy demonstrated a critical role
for CD4þFoxp3þ Treg cells in suppressing food
allergy. These studies observed a significant
increase in the percentage of CD4þFoxp3þ Treg
cells in ovalbumin sensitized mice with mucosal
tolerance induction compared to the intolerant
group.31–33 In addition, CD4þFoxp3þ Treg cells
were found to inhibit the activation of dendritic
cells, mast cells, basophils, and eosinophils,
suppress the production of allergen-specific IgE,
inhibit Th1, Th2, and Th17 migration patterns and
effector functions as well as promote the secretion
of IgG4.34 Consistent with these studies, we also
observed a downregulation of CD4þ T-cell and
Treg responses in the pathogenesis of nut allergy.

Our analysis also pointed to a possible contri-
bution of neutrophils to the pathogenesis of nut
allergy. However, we also observed a significant
association of neutrophils with other modules that
were not associated with nut allergy. These con-
trasting results could be due to the heterogeneity
of neutrophils as previous studies have revealed
variations in phenotype and functions of neutro-
phils in the development of allergic diseases. On
the one hand, neutrophil Fc gamma receptors,
FcgRIIIA and FcgRIV as well as several markers of
neutrophil activation, S100A8, S100A9, TLR4,
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TREM1, S100A935 and interleukin 17A,36 are
shown to induce acute anaphylaxis.37,38 On the
other hand, neutrophils are revealed to be a
source of anti-inflammatory and
immunomodulatory cytokines, such as
interleukin-10.39 Moreover, neutrophils can
suppress NF-kB activation in the macrophage,
which in turn reduces the expression of pro-
inflammatory cytokines (tumor necrosis factor,
chemokine ligand 8 and interleukin-6), leading to
the resolution of inflammation.40 Therefore our
findings require further research on neutrophils-
related gene networks with nut allergy.

Our study has several limitations. First, the
sample sizes used for RNA sequencing are small
(n ¼ 30), but gene expression levels of three
selected genes are validated using RT-qPCR in a
larger sample (n ¼ 86). Second, it is not known if
the observed patterns of gene expression are
related to the mechanisms that drive nut allergy or
alternatively are reacting to nut allergy due to the
cross-sectional nature of our study. Third, our study
only focused on nut allergy, and therefore it is not
known if the mechanisms we identified are rele-
vant to the pathogenesis of other food allergies.
Fourth, flow cytometry-based assays to target
multiple cell populations were not feasible due to
the volume restriction on blood collection from
children. However, we have applied an unbiased
deconvolution approach to infer the proportions of
12 human cells in whole blood transcriptome.
Fifth, we were unable to deconvolve the co-
linearity between the module, the phenotype and
the cell counts. Therefore, the module train corre-
lations were all explained by cell compositions.
Lastly, our study does not define whether changes
in cellular proportions precede or follow tran-
scriptomic changes. Further experiments are
needed to identify the cellular origin of the gene
expression signals associated with nut allergy.

Our study suggests immunological mechanisms
of nut allergy can possibly be explained by
changes in cell composition. This is related to type
1 interferon signalling, regulation of cytokine re-
sponses and the humoral response. Our findings
represent plausible pathways for further mecha-
nistic investigation.
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