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Abstract Savanna fire management is a topic of global

debate, with early dry season burning promoted as a large-

scale emissions reduction opportunity. To date, discussions

have centred on carbon abatement efficacy, biodiversity

and cultural benefits and/or risks. Here we use a case study

of Darwin, Australia to highlight smoke pollution as

another critical consideration. Smoke pollution from

savanna fires is a major public health issue, yet absent so

far from discussions of program design. Here, we assess the

likely impacts of increased early dry season burning on

smoke pollution in Darwin between 2004 and 2019,

spanning the introduction and expansion of carbon

abatement programs. We found increased smoke

pollution in the early dry season but little change in the

late dry season, contributing to a net annual increase in air

quality standard exceedances. Geospatial analysis suggests

this relates to increased burning in the path of early dry

season trade winds. This study highlights the complex

health trade-offs involved with any large-scale prescribed

burning, including for carbon abatement.
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INTRODUCTION

Savanna fire management is currently a topic of substantial

global interest and debate. Much of this interest stems from

the carbon abatement potential of prescribed burning pro-

grams that shift savanna burning from the late to the early

dry season (Lipsett-Moore et al. 2018; Edwards et al. 2021;

Laris 2021; Russell-Smith et al. 2021). Given that savanna

fires contribute some 62% of global fire emissions annually

(van der Werf et al. 2017), if effective, the emissions

reductions could be substantial. In Australia, savanna

burning programs for carbon abatement were developed in

the mid-2000s and integrated into the carbon market with

apparent success (Russell-Smith et al. 2015; Edwards et al.

2021). On this basis, it has been proposed that a substantial

opportunity exists to implement carbon-marked-based

savanna burning programs across other regions of the globe

(Lipsett-Moore et al. 2018; Russell-Smith et al. 2021).

Without discounting the potential value of emissions

reductions on a substantial scale, as with any landscape-

scale intervention, the collateral benefits and/or risks of

savanna burning for carbon abatement must be carefully

factored into program implementation and design. To date,

discussions of the impact, appropriateness and design of

savanna burning programs have focused on carbon abate-

ment efficacy (Laris 2021), emission measurement

methodologies (Perry et al. 2020; Laris 2021), biodiversity

(Perry et al. 2016; Corey et al. 2019), and economic and

cultural benefits and/or risks (Russell-Smith et al.

2013, 2015, 2017; Ansell et al. 2020).

One critical factor—smoke pollution—has been notably

absent. Smoke pollution from landscape fires is a globally

significant public health problem (Johnston et al. 2012) and

this is particularly true for the highly fire-prone savanna

biome. Indeed, global analysis found that the greatest

burden of disease from landscape fire smoke is associated

with fires in tropical rainforests and savannas throughout

the world, particularly in developing nations where

savannas support substantial human populations (Johnston

et al. 2012).
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In this context, there is a clear need to consider the

smoke pollution consequences of savanna burning pro-

grams, yet no studies have yet considered this relationship.

One outcome of increased savanna burning for carbon

abatement may be reduced smoke pollution, given the

expected correlation between greenhouse gas and particu-

late emissions (Andreae 2019). This could be a valuable

co-benefit. However, we argue that reduced smoke pollu-

tion exposure (and hence health costs) should not be

assumed: the trade-offs between smoke exposure from

prescribed and wildfire can be complex (Williamson et al.

2016a) and factors such as weather patterns and fuel con-

ditions may impact smoke exposure patterns in unexpected

ways.

In this paper we use Darwin, Australia as a case study

with which to investigate the relationship between savanna

fire regime change and smoke pollution, over a period

spanning the introduction and expansion of early dry sea-

son burning programs for carbon abatement. Darwin offers

an ideal natural experiment with which to consider this

problem for several reasons. First, its smoke pollution

problem is substantial. Surrounded by vast and largely

uncleared Eucalyptus savannas, the city suffers severe

smoke pollution every dry season, recording regular

exceedances of the Australian air quality standard for 24-h

average concentrations of particulate matter less than

25 lm in diameter (PM2.5) (25 lg m3) (Lorelei et al. 2020).

The health impacts of this pollution are known to be sub-

stantial, including increased risks of asthma emergency

department presentations and hospital admissions for res-

piratory and cardiovascular diseases (Johnston et al. 2002;

Hanigan et al. 2008; Crabbe 2012), and disproportionately

impact Indigenous peoples (Hanigan et al. 2008). Second,

Darwin’s savanna fire pollution, including that derived

from prescribed burning, can be traced with very little

confounding: with little traffic or industrial pollution,

almost all (95%) of Darwin’s particulate pollution is

attributable to landscape fires (Denlay et al. 2001), and

almost all early dry season fire is attributable to prescribed

burning practices (Russell-Smith et al. 2020). Finally,

Darwin offers a robust historical baseline in which to

contextualise the nexus between fire management, fire

activity and smoke pollution (Bowman et al. 2007b).

We exploit these characteristics to consider the rela-

tionship between prescribed burning and smoke pollution

in Darwin over the period 2004–2019. Over this period

there has been a substantial increase in early dry season

burning linked to financial incentives for greenhouse gas

abatement. In 2006, the Western Arnhem Land Fire

Abatement Program began as a carbon abatement enter-

prise based on early dry season prescribed burning (Rus-

sell-Smith et al. 2013); in 2012, the Australian Government

introduced early dry season savanna burning as a certified

emissions reduction mechanism under its Carbon Farming

Initiative (currently known as the Emissions Reduction

Fund, ERF). The underlying premise is that early dry

season burning releases fewer emissions than late dry

season burning, because the fuel is moister and weather

conditions milder—hence fires will be less extensive,

combustion will less complete, and a smaller amount of

fuel will be pyrolised (Russell-Smith et al. 2013; Edwards

et al. 2021). By shifting burning from the late to the early

dry season, emissions can thus be reduced on a net annual

basis. Since its introduction, there has been a steady

increase in the number of carbon abatement projects reg-

istered under the ERF, and these programs now cover ap-

proximately 25% of Australia’s 1.2 million km2 tropical

savanna biome (Edwards et al. 2021). This includes 55.5%

of the land within a 500 km radius of Darwin (Australian

Government Clean Energy Regulator 2021). Within this

500 km radius, 48% of land area under carbon abatement

projects was indigenous land, 31% was pastoral land and

21% was conservation land (Australian Government Clean

Energy Regulator 2021).

In this study we seek to establish whether the marked

increase in early dry season prescribed burning between

2004 and 2019, increasingly motivated by carbon abate-

ment schemes, has influenced smoke pollution over Dar-

win. Although it is a localised study, we seek to (i) raise the

profile of this issue and (ii) demonstrate an approach to

assessing smoke pollution impacts with applicability to

other contexts in which prescribed burning, particularly

burning for carbon abatement, is driving savanna fire

regime change. Using statistical modelling that considers

interannual, seasonal and daily meteorological variability

and fire activity we test the following expectations:

(1) Net annual smoke pollution in Darwin has declined in

line with lower greenhouse gas emissions from

regional savanna fires.

(2) On a seasonal basis, smoke pollution in Darwin has

shifted from the late to early dry season in response

increased prescribed burning across a range of land

tenures.

MATERIALS AND METHODS

In order to address the research questions articulated above,

we first assessed PM2.5 concentrations in Darwin over the

period 2004–2019. We then conducted a parallel analysis

of fire activity over all land within a 500 km radius.

Finally, we used a novel combination of geospatial and

statistical modelling techniques to assess the linkages

between pollution, meteorology and fire activity trends.
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Study area

Darwin (pop. 158 000) is the capital of Australia’s

Northern Territory. As shown on Fig. 1a, the region is

dominated by tropical open Eucalyptus forests and wood-

lands, collectively known as savanna. The climate is

monsoonal: conditions are hot, wet and humid in the

summer (November/December to March/April), and hot

and dry for the rest of the year (Fig. 1b). Mean annual

rainfall declines from approximately 1700 mm on the coast

to 500 mm inland (Fig. 1c).

These climatic conditions promote high fire frequency:

grasses and shrubs grow quickly in the wet season and cure

during the dry season to form a continuous layer of fine

surface fuel (Pausas and Ribeiro 2013). This pattern of

intermediate and strongly seasonal productivity is the core

factor that renders savanna systems the most flammable of

any global biome (Pausas and Ribeiro 2013). Grass fuels

are abundant, comprising nearly 90% of fine fuel biomass

(Bowman et al. 2007a). As shown in Fig. 1d, many parts of

the region burn with a return interval of 1–2 years; almost

all fires occur in the dry season, although the proportion of

fires that occur in the early vs late dry season varies

regionally due to both climatic and land management

factors (Russell-Smith et al. 2020). A significant portion of

the study area is Aboriginal freehold land (see Fig. S1);

there are also large areas protected for conservation, most

notably Kakadu National Park. Pastoral land covers

approximately 35% of the study area, mostly to Darwin’s

south and west (Fig. S1).

Data sources

We sourced daily average PM2.5 data from four monitoring

stations across Darwin (Fig. S2). Casuarina operated from

April 2004 to December 2011, Palmerston from January

2011 to December 2019, Stokes Hill from July 2017 to

December 2019, and Winnellie from January 2013 to

December 2019. Data were sourced directly from the

Northern Territory Environment Protection Agency. No

data were available for the period Oct–Dec 2012.

Weather data were derived from modelled 12 km his-

torical weather grids (Su et al. 2019).

Fig. 1 Vegetation, climate and fire characteristics of the study region, defined as all land within a 500 km radius of Darwin, Australia. Panel

a Distribution of major vegetation types; the vegetation types that collectively comprise the savanna (eucalyptus forest, open woodland and

woodland) cover 83% of the study region. Panel b Monthly temperature (red bars) and rainfall (blue columns) for Darwin. Panel c Mean annual

rainfall, which decreases from north to south. Panel d Number of times burnt 2000–2020. Vegetation data were obtained from National

Vegetation Inventory System 5.1 (Australian Government 2020). Precipitation data were sourced from WorldClim (Fick and Hijmans 2017). Fire

history data were obtained from the North Australia and Rangelands Fire Information fire scar dataset (Jacklyn 2018)
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We focused on wind speed, wind direction, a continuous

Haines Index (a measure of atmospheric instability), and

the previous year’s precipitation, as these variables have

been shown to strongly influence the effect of landscape

fire on smoke pollution (Price et al. 2012). We extracted

wind speed, wind direction, temperature and relative

humidity for central Darwin and used these to calculate the

Haines Index (Mills and McCaw 2010); total precipitation

(mm) was derived across the study region for each ante-

cedent wet season (defined as Nov–April).

Fire activity data were sourced from two products

derived from the Moderate Resolution Imaging Spectro-

radiometer (MODIS) in order to combine the strengths of

the two datasets. First, we extracted monthly fire extent

data from the North Australia and Rangelands Fire Infor-

mation fire scar dataset (Jacklyn 2018) and used these to

calculate monthly, seasonal and annual area burnt. Second,

we extracted thermal anomaly data collected by MODIS

twice daily at 1 km resolution (NASA FIRMS 2020). This

method registers map pixels with a substantially higher

temperature than their surrounding environment as having

an active fire, referred to as a ‘hotspot’ (Justice et al. 2002).

While hotspot data provide a less accurate metric than area

burnt, data are available to support daily analysis and each

hotspot is ascribed a Fire Radiative Power (FRP) metric.

We used FRP as our measure of fire intensity (Wooster

et al. 2005), which has been demonstrated to be a good

predictor of smoke pollution (Price et al. 2012).

Finally, we obtained land tenure and land use data for

land within 500 km of Darwin from the Northern Territory

Department of Infrastructure, Planning, and Logistics

(Staben and Edmeades 2017).

Data analysis

All data analysis was performed in R version 3.5.5 (R Core

Team 2020) using the packages sf, geosphere, and openair

(Carslaw and Ropkins 2012; Karney 2013; Pebesma 2018).

First, we generated a daily time series of PM2.5 for

Darwin by taking the maximum daily (24-h) average PM2.5

reading recorded at any of the stations that were opera-

tional on a given day. Daily average PM2.5 was closely

correlated across the stations (Fig. S2).

We then used this dataset to assess temporal trends in

smoke pollution over the 2004–2019 study period. Trends

were assessed in two separate smoke pollution metrics:

(i) daily average PM2.5; and (ii) the number of exceedances

of the Australian 24-h air quality standard (25 lg/m3).

Similar to Williamson et al. (2012), we used generalised

linear models (GLMs) to assess pollution trends, specifi-

cally gamma GLMs for PM2.5 and Poisson GLMs for

exceedances. We tested trends on an annual, seasonal and

monthly basis. We explored the importance of year, season

and month in explaining smoke pollution via a model

selection process. Specifically, we compared combinations

of variables using Akaike Information Criterion (AIC)

scores; the model with the lowest AIC score considered the

model of best fit (Burnham and Anderson 2002). Alterna-

tive models with AIC scores within 2 of the best fit model

(i.e. DAIC B 2) were considered to be equally supported

(Burnham and Anderson 2002); any other models not

meeting this criterion were considered to have less statis-

tical support We also calculated a KL divergence-based

pseudo R2 for each model as a complementary measure of

variance explained (Cameron and Windmeijer 1997). For

seasonal analyses, we defined the early dry season as May–

July, the late dry season as August–October and the wet

season as November–April.

Second, we assessed trends in regional fire activity over

the same period. We assessed trends in both (i) annual and

seasonal area burnt and (ii) annual and seasonal number of

hotspots. Both analyses used a gamma GLM with a log-

link function. As with our PM2.5 analysis, we used an AIC-

based model selection process to determine which combi-

nation of variables provided the best model fit. In order to

better understand the distribution of fire activity and tem-

poral trends, we conducted two supplementary analyses:

(i) an assessment of temporal trends by land tenure cate-

gory (using a gamma GLM); and (ii) an assessment of

geographic patterns in fire activity trends. For the latter, we

created a heat map showing the strength and direction of

change in fire activity in each landscape cell. We did this

for the early and late dry season, and for (a) days associated

with exceedances of the national air quality standard

(‘exceedance days’) and (b) days not associated with

exceedances of the national air quality standard (‘non-ex-

ceedance days’). This allowed us to assess whether specific

regions were driving changes in early and/or late dry sea-

son exceedances. Given that smoke pollution has been

shown to be influenced by fire activity in previous days

(Price et al. 2012), ‘exceedance days’ were categorised as

the day of the exceedance plus the two days leading up to

the exceedance, all other days were categorised as non-

exceedance days. To create each map, we calculated the

average daily number of hotspots for each landscape cell

and then used the slope of a linear model predicting the

average daily number of hotspots in each cell as a function

of year to assign that cell a rate of change in burning

between 2004 and 2019.

Third, we investigated the factors influencing smoke

pollution in Darwin on a daily basis, in order to inform

what might be driving changes over time. Using a gamma

GLM with a log-link function, we tested the relative

importance of meteorological factors and fire activity on

different land tenures in explaining daily PM2.5 concen-

trations. Specifically, we modelled PM2.5 concentrations as
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a function of fire extent (number of hotspots), fire intensity,

wind speed and direction, atmospheric stability, and ante-

cedent wet season precipitation. As smoke pollution is

affected by fire activity in previous days (Price et al. 2012),

our input variables for fire extent and intensity were cal-

culated over the two days leading up to and the day of

observation (for full details of all input variables see

Table S1). We used an AIC test (Burnham and Anderson

2002) to sequentially subtract variables from a model with

all potential variables until we found an optimal (full)

model, and calculated a KL divergence-based pseudo R2

measure of variance explained (Cameron and Windmeijer

1997). We then assessed the relative importance of each

variable in predicting smoke pollution in Darwin using the

change in model AIC (DAIC) and R2 associated a single-

variable model. As with our previous analyses, we used the

criterion DAIC B 2 as an indicator of equivalence between

models. To assess the relative importance of burning on

each land tenure category, we replaced the fire extent term

(HSlag) from across the landscape with HSlag in each land

tenure category separately and reran the model, assessing

variance importance as stated above. As a supplementary

analysis, we used wind roses to understand differences in

wind patterns for the two days leading up to and on the day

of exceedances of the PM2.5 standard (‘exceedance days’),

and on all other days (‘non-exceedance days’) in both the

early and late dry seasons.

Finally, we assessed the relationship between net annual

and seasonal PM2.5 with (i) fire activity (represented by

area burnt) and (ii) all other factors supported by analysis

outlined above as predictors of daily PM2.5 (the Haines

Index, sine of wind direction and antecedent precipitation).

These analyses used gamma GLMs with a log-link

function.

RESULTS

Trends in PM2.5 pollution

Over the period 2004–2019, the data show an increase in

the annual number of exceedances of the national 24-h air

quality standard for PM2.5 (Fig. 2a). The AIC values in

Table 1 (Model A) provide strong support that the model

with year as a predictor outperforms the null model: the

null model has a DAIC of 51, supporting the hypothesis

that there is an increase in the number of exceedances over

time. Further support is provided by a pseudo R2 of 0.59,

indicating that year and exceedances are moderately cor-

related (Table 1, Model A). The trend in annual average

PM2.5 concentrations is less clear (Fig. 2b; Table 1, Model

B). Here, AIC values suggest the model including year as a

predictor performs no better than the null model (DAIC

B 2, with the null model having the lower AIC), and the

proportion of variance explained by year is just 0.07

(Table 1, Model B). Overall, this suggests annual average

PM2.5 has not increased over time.

When considered by season, strong differences between

early and late dry season trends emerge. As shown in

Fig. 2c, d, both exceedances and average PM2.5 pollution

increased strongly in the early dry season (for statistical

details see Table 1, Models C and D). In contrast, late dry

season exceedances and PM2.5 concentrations recorded

only a very slight increase (Fig. 2c, d). In the wet season,

both air pollution metrics showed little change. For both

exceedances and PM2.5 concentrations, the model includ-

ing an interaction between season and year out-performed

both the null and all simpler models, suggesting the com-

bination of seasonal and annual trends best explains Dar-

win’s air pollution over our study period (Table 1, Models

C and D).

On a monthly basis, the most substantive increases in

the number of exceedances occurred in June and July (see

Fig. S3). There were less pronounced increases in May and

August and no increases in September and October.

Trends in fire activity

There is no clear trend in net annual area burnt within a

500 km radius of Darwin. As shown in Fig. 3a, there

appears to be a slight decrease in net annual area burnt over

the 2004–2019 study period, however there is a significant

amount of scatter and the trend is not supported by AIC or

pseudo R2 values (Table 1, Model E). Once again, clearer

trends emerge when broken down by season. As shown in

Fig. 3b, there was a clear increase in area burnt in the early

dry season and a decrease in area burnt in the late dry

season. Here, AIC values provide strong support for the

interaction of year and season; this combination of vari-

ables outperformed the null and all simpler models. This

indicates statistical support for different trends in different

seasons (for full details, see Table 1, Model F). Trends in

hotspots were very similar, see Fig. S4.

Our geographic analysis found clear spatial and land

tenure-based patterns in fire activity trends. As shown in

Fig. 4, the strongest increases in the number of hotpots in

the early dry season were observed in two areas: first, the

region east of Darwin, particularly the Arnhem Land Pla-

teau, and second, the region to Darwin’s south and south-

west. These areas also recorded the strongest decreases in

the number of hotspots recorded in the late dry season.

Trends were stronger on exceedance compared to non-ex-

ceedance days. When considered by land tenure, the most

substantial increases in early dry season fire activity have

been in Arnhem Land and on other Aboriginal Land (see

Fig. S5). On protected lands (whether Commonwealth or
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Northern Territory Government) and pastoral land, there

was negligible change.

Daily PM2.5 pollution drivers

Our statistical modelling indicated that daily fire activity

has a much stronger association with smoke pollution in

Darwin than any meteorological factor. The optimal model

for daily PM2.5 pollution included fire activity, antecedent

precipitation, sine of wind direction, and the Haines Index;

however, when each variable was considered indepen-

dently, the landscape-wide number of hotspots recorded in

the previous 2-day period was clearly the strongest pre-

dictor of daily smoke pollution, explaining 39% of the

variation (pseudo R2 = 0.39, full details in Table 2). By

comparison, the effect of meteorology on smoke pollution

in Darwin was insubstantial. Although the antecedent wet

season’s precipitation, wind direction and atmospheric

stability all had some support as predictors (based on AIC

values at least 2 lower than the null model), they explained

extremely small amounts of variance (pseudo R2 B 0.05 in

all cases, see Table 2).

Notably, however, our wind rose analysis found that

exceedances of the national air quality standard were

strongly associated with winds from the south-east quad-

rant (Fig. S6). This is the prevailing wind direction in the

early dry season, when the trade winds blow (Fig. S7).

Almost all early dry season exceedances were associated

Fig. 2 Panel a Annual number of days on which there was an exceedance of the national air quality 24-h standard (25 lg/m3) at one or more of

the active monitoring stations. Panel b Annual average PM2.5 concentration, where the daily value was based on the maximum daily value across

the active monitoring stations. Panel c Seasonal number of days on which there was an exceedance of the national air quality 24-h standard

(25 lg/m3) at one or more of the active monitoring stations. Panel d Seasonal average PM2.5 concentration, where the daily value was based on

the maximum daily average across the active monitoring stations. The trendlines are derived from generalised linear models; the grey ribbon

represents one standard error. For c and d, early dry season = May–July, late dry season = Aug–Oct and the wet season = Nov–April. Statistical

details relating to each trend are in Table 1; a Model A, b Model B, c Model C, d Model D
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with winds from this south-east quadrant (Fig. S7). In the

late dry season, wind direction is more variable but the

prevailing winds are onshore from the north–north-west

(Fig. S7). In the late dry season, exceedance days included

a disproportionate representation of days with winds from

the east; however winds from a wider range of directions

were associated with exceedances of the air quality stan-

dard (Fig. S7).

When considered by land tenure, daily PM2.5 pollution

in Darwin has the strongest relationship with hotspots on

Aboriginal land other than Arnhem Land (R2 = 0.35),

followed by Kakadu (R2 = 0.21), Arnhem Land (R2 = 0.2)

and pastoral land (R2 = 0.16, full details in Table S2).

Drivers of annual and seasonal PM2.5 pollution

trends

Our analysis of the relationship with PM2.5 pollution and

fire activity on an annual and seasonal basis provided

strong evidence that the relationship between daily smoke

pollution and fire activity extends to annual and seasonal

time scales. As shown in Fig. 5a and Table 1 (Models G

and H), the relationship between area burnt and both

annual and seasonal average PM2.5 concentrations was

positive and supported by AIC and pseudo R2 values. On a

seasonal basis, the slope of the relationship is steepest in

the early dry season; indicating that early dry season

burning has a stronger association with PM2.5 concentra-

tions in Darwin than late dry or wet season fire activity.

Table 1 AIC table displaying results for generalised linear models (GLMs) predicting average PM2.5 concentration, number of exceedances of

the national 24-h PM2.5 standard, or area burnt, on the basis of the year and/or season of observation. The model with the most support is listed

first, all other models are ranked according to DAIC (the difference in Akaike Information Criteria between the best model and given model). K is

the number of parameters in the model, and the pseudo R2 represents an estimate of variance explained. The direction of the effect, namely the

sign of the coefficient, is also given

Outcome variables Predictor variable/s K AIC DAIC Log likelihood Pseudo R2

Model A Annual # of exceedances Year 2 106 0 - 50.5 0.59

Null model 1 157 51 - 77.3 0

Model B Annual average PM2.5 Null model 2 64.5 0 - 29.8 0

Year 3 66.5 2 - 29.2 0.07

Model C Seasonal # of exceedances Season ? Year ? Year:Season 6 201 0 - 93.6 0.71

Season ? Year 4 214 13.1 - 102.7 0.65

Season 3 266 64.4 - 129.5 0.47

Year 2 350 148.6 - 172.8 0.18

Null model 1 401 200.1 - 199.6 0

Model D Seasonal average PM2.5 Season ? Year ? Year:Season 7 211 0 - 96.9 0.84

Season 4 214 3.8 - 102.8 0.8

Season ? Year 5 216 5 - 102.1 0.81

Year 3 290 79.6 - 141.8 0.02

Null model 2 289 78.3 - 142.3 0

Model E Annual area burnt Null model 2 517.1 0 - 256.1 0

Year 3 519 1.9 - 255.5 0.07

Model F Seasonal area burnt Season ? Year ? Year:Season 7 1484 0 - 733.4 0.7

Season 4 1491 7.2 - 740.9 0.59

Season ? Year 5 1491 7.4 - 739.8 0.61

Year 3 1532 48.4 - 762.7 0.01

Null model 2 1530 46.5 - 762.9 0

Model G Annual average PM2.5 Annual area burnt 3 57.3 0 - 24.7 0.47

Null model 2 64.5 7.1 - 29.8 0

Model H Seasonal average PM2.5 Seas. area burnt ? Season ? Seasonal area burnt:Season 7 190 0 - 86.8 0.9

Seas. area burnt ? Season 5 196 5.9 - 92.5 0.87

Season 4 214 24 - 102.8 0.8

Seas. area burnt 3 254 64 - 124 0.52

Null model 2 289 98.5 - 142.3 0
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Fig. 3 Temporal trends in area burnt within a 500 km radius of Darwin on an annual (a) and seasonal (b) basis. Data cover the period

2004–2019. Trendlines are derived from generalised linear models; the grey ribbon represents one standard error. For b early dry season = May–

July, late dry season = Aug–Oct and the wet season = Nov–April. For statistical details see Table 1

Fig. 4 Heat map of change in fire activity in the study area by season. The map specifically shows the geographic distribution of changes in fire

activity between 2004 and 2019, on days where the air quality exceeded the national air quality standard (‘exceedances’), and on days when it did

not (‘non-exceedances’). Rate of change was calculated using the slope of a linear model predicting average daily number of hotspots per grid

cell as a function of year. Colouring indicates the rate of change as indicated, with red representing increases in fire activity, and green

representing decreases. Black outlines represent locations of tenure class categories as indicated in Fig. S1 for reference
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There is statistical support for a substantial difference

between seasons in the relationship between area burnt and

PM2.5 concentrations (Table 2, Model H).

Our analysis of the relationship between annual and

seasonal PM2.5 pollution and meteorological factors found

no support for a relationship between meteorological fac-

tors and early dry season PM2.5 (Table S3). In contrast, a

relationship between meteorology and late dry season

PM2.5 concentrations was supported; here, the full model

including all three meteorological factors as predictor

variables had the strongest statistical support (Table S3).

Wind direction explained the greatest amount of variation

as an independent predictor, with a pseudo R2 of 0.52

(Table S3). In the wet season, Haines Index appeared to be

the strongest predictor of PM2.5. On an annual basis, there

is no clear relationship between average PM2.5 and any

meteorological variable (Table S3).

DISCUSSION

We have shown that between 2004 and 2019, air quality

has worsened in Darwin in the early dry season (particu-

larly the months of June–July), and has not changed sub-

stantially in other seasons. Trends in smoke pollution are

very closely linked to seasonal trends in fire activity in at

least a 500 km radius of Darwin; and notably, the rela-

tionship between fire activity and smoke pollution in

Darwin is strongest in the early dry season, when the south-

easterly trade winds blow. Exceedances of the national air

quality standards are strongly associated with winds from

Table 2 AIC table displaying results for a gamma generalised linear model (GLM) predicting daily average PM2.5 concentration from fire

activity and weather. To assess relative importance, single-variable models were compared with the model with the most support (first model

listed). Models are ranked according to DAIC (the difference in Akaike Information Criteria between the best model and given model). K is the

number of parameters in the model, and the pseudo R2 represents an estimate of variance explained.
ffiffiffiffiffiffiffiffiffiffiffi

HSlag3
p

represents the number of hotspots

on lag days (the 2 days leading up to and the day of the PM2.5 concentration measurement), and FRPlag=HSlag is a measure of the intensity of

those hotspots. The direction of the effect, namely the sign of the coefficient, is also given for each individual predictor variable

Variables Direction of effect K AIC DAIC Log likelihood Pseudo R2

Full Model 7 20 728 0 - 10 357.1 0.42
ffiffiffiffiffiffiffiffiffiffiffi

HSlag3
p

: Total ? 3 20 924 195.4 - 10 458.8 0.39

FRPlag=HSlag ? 3 22 604 1875.8 - 11 298.9 0.05

Antecedent Precipitation ? 3 22 636 1907.9 - 11 315 0.04

Sine of Wind Direction - 3 22 693 1964.5 - 11 343.3 0.03

Haines Index ? 3 22 739 2010.5 - 11 366.3 0.01

Null Model 2 22 792 2063.4 - 11 393.8 0

Fig. 5 The relationship between average PM2.5 concentrations in Darwin and area burnt within a 500 km radius on an annual (a) and seasonal

(b) basis. Early dry season is defined as May–July, the late dry season as Aug–Oct and the wet season (Nov–April). Data cover the period

2004–2019. Lines represent trends derived from generalised linear models, the grey shading represents one standard error. For statistical details

see Table 1
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this quadrant; and in the late dry season, seasonal average

PM2.5 was higher in seasons with a greater proportion of

winds from the east–south-east. The implications of these

results highlight some complex trade-offs and considera-

tions with respect to landscape-scale savanna burning

programs, both within and beyond our northern Australian

study context.

First, given the correlation between greenhouse gas and

particulate emissions (van der Werf et al. 2017), our find-

ings are surprising, given the expectation that early season

burning reduces greenhouse gas emissions. Savanna burn-

ing for carbon abatement is premised on the assumption

that less intense and/or extensive early dry season burning

reduces more intense and/or extensive late dry season

burning, and thus has a net positive impact on annual

greenhouse gas, and presumably particulate, emissions

(Russell-Smith et al. 2015).

Our findings highlight that the story is more complex

with respect to particulate emissions and/or population

exposure: despite a substantial expansion of savanna

burning for carbon abatement over our study period, net

annual PM2.5 concentrations did not decline, and the

number of exceedances of the national air quality standard

increased. Part of this apparent conflict can be explained by

the nexus of meteorology and the location prescribed early

dry season burning in relation to population centres. Our

findings indicate that one important driver of worsening

early dry season particulate pollution is the coincidence of

large areas of savanna being burned for carbon abatement

to the east–south-east of Darwin in the early dry season,

when there are steady south-easterly trade winds (see

Figs. S7, S8). Wind directionality may also explain the

stronger relationship between fire activity on Aboriginal as

compared to other tenures of land, given large areas are

upwind of the prevailing south-easterly trade winds.

Fuel dynamics may be another important consideration.

It is also possible that the ongoing expansion of highly

flammable native and non-native grasses has rendered

landscapes more prone to extensive and/or intense fires in

the early dry season, reducing the smoke emissions benefits

of early dry season burning. There is evidence that annual

sorghum (Sarga sp.), which cures early in the dry season,

has become dominant on frequently burned Eucalyptus

savannas, driving a grass-fire cycle (Bowman et al. 2014).

Additionally, the invasive exotic grass species, Andro-

pogon gayanus (gamba grass) has become established in

the savannas surrounding Darwin, increasing fuel loads by

up to seven times compared to native grass-dominated

savanna, resulting in fires with up to eightfold higher

intensity (Rossiter et al. 2003). Overall, these fuel-related

trends have the potential to substantially impact fire

activity and air pollution trends and should be carefully

considered in the context of carbon abatement programs. It

is also possible that climate change is affecting the north

Australian savannas in ways that reduce fuel moisture in

the early dry season: for example by altering rainfall totals,

seasonal rainfall patterns, and by increasing temperatures,

noting that we were unable to investigate this hypothesis

because the very high interannual variability of rainfall in

the Australian monsoon tropics (Harris and Lucas 2019)

makes it difficult to detect trends in fire weather from short

record length (Williamson et al. 2016b).

Overall, our analysis of smoke pollution and fire activity

over this fire-prone region, based on the integration of

remote sensing, meteorological, geographic and air quality

data over 15 years, has enabled us to highlight patterns,

trends and relationships between fire activity and smoke

pollution originating from different directions and land

tenures. We acknowledge we have not undertaken detailed

back-trajectory analyses and are thus only able to draw

broad inferences about the geographic sources of smoke

over Darwin. Notwithstanding these limitations, these data

clearly demonstrate that Darwin’s already significant air

quality problem is worsening, rather than improving, in

association with increased early dry season burning. The

clear implication for policy makers locally and globally is

that population exposure to smoke pollution cannot be

assumed as a co-benefit of savanna burning for carbon

abatement: to the contrary, care must be taken to ensure

there are not unintended negative smoke exposure

consequences.

In this context, policy levers may need to consider how

to regulate burning to avoid increased health impacts

associated with smoke pollution exposure. In Darwin’s

specific context, particular attention may be needed in

locations to the east–southeast of the city from whence the

trade winds blow.

One solution, in Darwin or elsewhere, may be a coor-

dinated smoke management system that works across

multiple land managers to regulate the amount of smoke

that can be released into a specific airshed on a given day.

In flammable landscapes it is increasingly recognised that

prescribed burning plans must be integrated with smoke

management (Hardy et al. 2001). For example, in Tasma-

nia, land managers participate in a bidding system for the

right to conduct prescribed burning, based on burn loca-

tion, predicted smoke emissions, and meteorological con-

ditions. In this way the system aims to cap the amount of

smoke released into a specific airshed on a given day and is

considered to be generally effective (Chuter 2011). Such a

scheme could be applied to cap the amount of smoke

released per day from locations where pollution will be

directed towards Darwin and/or other target populations.

We assert it is a reasonable policy response to regulate

burning to offset the impacts of smoke pollution which

carry quantifiable health costs (Borchers Arriagada et al.
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2020): especially given that prescribed burning is increas-

ingly undertaken to earn carbon credits for land owners,

leading to potential inequity in the distribution of benefits

and costs.

In this context, given the significant human health threat

posed by smoke from savanna fires (Johnston et al. 2012),

our research highlights the importance of understanding the

trade-offs between prescribed burning and human exposure

to particulate pollution across flammable environments,

such as tropical savannas, around the globe. Of particular

importance is understanding the relative health costs

compared to the income generated from carbon offsets

associated with prescribed tropical savanna burning pro-

grams. Given the likely continued expansion of savanna

burning for carbon abatement, both in Australia and

beyond, further research to inform program designs that

minimise health-carbon abatement trade-offs, would be

highly valuable.

CONCLUSION

Our geospatial analysis has identified that early dry season

burning is associated with worsening air quality in Darwin,

the capital of Australia’s Northern Territory. The cause of

the increased pollution appears related to the combination

of large areas of tropical savanna to the southeast of Dar-

win being intentionally burned in the early dry season

when south-easterly trade winds prevail. A driver for the

increased early dry season burning in this region has been

the introduction of a carbon abatement scheme. Given the

demonstrable human health impacts of biomass smoke air

pollution, our study highlights the need to more fully

understand the trade-offs of prescribed burning schemes

designed to generate income through carbon abatement,

and develop solutions that minimise unintended impacts on

human health.
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