
1.  Introduction
Marine ecosystems are responsible for more than 40% of the total primary productivity on Earth (Baumert 
& Petzoldt, 2008; Simon et al., 2009), and play a key role in the global carbon cycle on centennial to millen-
nial timescales (Ducklow et al., 2001; Herndl & Reinthaler, 2013; Mariotti et al., 2012; Sarmiento et al., 2004; 
Sarmiento & Gruber, 2006) by exporting carbon from the surface into the deep ocean via the biological 
pump. The net efficiency of the biological carbon export depends partly on the relative competitive fitness 
of a variety of phytoplankton functional types (Kvale et al., 2015b; Kvale et al., 2019). Major groups of these 
plankton include diazotrophs, coccolithophores, and diatoms. These groups differ in size, shape, and cell 
wall composition, which affect their sinking velocities (Collins et al., 2014; Klaas & Archer, 2002; Miklasz & 
Denny, 2010) and thus the amount of carbon exported into the deep ocean (DeVries et al., 2012). Calcifiers 
(e.g., coccolithophores) and silicifiers (e.g., diatoms) are two functional types thought to exert a dominant 
influence on global carbon cycling (Matsumoto et al., 2002) due to both their relatively efficient carbon 
export properties as well as their dominance in the Southern Ocean. Both diatoms and coccolithophores 
photosynthesize, which leads to oceanic CO2 uptake. However, coccolithophores also produce calcite plate-
lets, which leads to a decrease in surface alkalinity, that induces a net CO2 outgassing (a mechanism also 
called the calcium carbonate counter-pump). Diatoms tend to dominate export production (EP) in the High 
Nutrient Low Chlorophyll (HNLC) regions. As EP is limited by the availability of Fe in HNLC regions, it has 
been hypothesized that iron fertilization of HNLC regions might be an efficient mechanism for enhancing 
ocean sequestration of carbon both in the modern climate as well as in the past (Martin, 1990).

It is therefore important to better constrain the response of ecosystems to climatic changes, and in par-
ticular the response of diatoms and coccolithophores in the Southern Ocean. One example of significantly 
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different climate conditions is the Last Glacial Maximum (LGM, ∼21,000  years ago), during which the 
concentration of atmospheric CO2 was 190 ppm (Marcott et al., 2014), and sea-level was ∼130 m lower 
(Lambeck et al., 2014) than today, with ice-sheets covering North America, Scandinavia and Siberia (Char-
bit et al., 2007). Despite significant progress in recent years, there are still significant uncertainties associ-
ated with the quantitative contribution of the different processes that led to the ∼90 ppm atmospheric CO2 
decrease during the last glaciation (e.g., Jeltsch-Thömmes et al., 2019; Khatiwala et al., 2019; Kobayashi 
et al., 2015; Kohfeld & Ridgwell, 2009; Menviel et al., 2012). Surface ocean temperatures were up to 10°C 
lower in the mid North Atlantic, and 2–6°C lower in the Southern Ocean at the LGM compared to pre-in-
dustrial (PI) times (Waelbroeck et al., 2009). These globally colder conditions, and associated changes in 
sea-ice extent, might have led to significant changes in phytoplankton distributions. For example, diatom 
abundance records north of the Antarctic Polar front during the LGM are associated with a major north-
ward winter sea-ice extension in the Southern Ocean (Benz et al., 2016; Gersonde et al., 2005). Furthermore, 
as there is some evidence that smaller cell-sized plankton might have a competitive advantage over larger 
cell-sized ones in warmer conditions (i.e., coccolithophores over diatoms) (Marinov et al., 2010), lower tem-
peratures during the LGM might have been advantageous for diatoms.

In addition, as the LGM was globally drier and windier, the aeolian input of dust, and therefore Fe and 
silica input into the ocean, was most likely higher (Harrison et al., 2001; Kienast et al., 2016; Kohfeld & 
Harrison, 2001; Lambert et al., 2015; McGee et al., 2010; Ohgaito et al., 2018; Shoenfelt et al., 2018). As Fe is 
a limiting nutrient today, a greater Fe flux might have enhanced marine productivity (Martin, 1990). This is 
hypothesized to have been especially effective in the Southern Ocean, resulting in a higher export of organic 
carbon into deep ocean layers, thus contributing to a decrease in atmospheric CO2 concentrations (Lambert 
et al.,  2021; Martínez-García et al.,  2014). For example, reconstructed glacial Fe fluxes and productivity 
proxies from Southern Ocean cores show a strong correlation between increased lithogenic flux in the sub-
antarctic zone and low atmospheric CO2 concentrations (Graham et al., 2015; Martínez-García et al., 2014).

The complexity of ecosystems and dependence between different plankton groups, especially during glacial 
times, is not well understood and warrants more research. Earlier studies on glacial iron fertilization (Bopp 
et al., 2003; Lambert et al., 2015; Muglia et al., 2017; Oka et al., 2011; Yamamoto et al., 2019) have used dif-
ferent biogeochemical models for investigating the role of marine plankton on glacial primary productivity 
and EP. However, none of these LGM iron fertilization studies were performed with a model including ex-
plicit prognostic equations for both coccolithophores and diatoms. In this study, we use a newly developed, 
state-of-the-art ecosystem model (Kvale et al., 2020), which includes four distinct classes of phytoplankton 
such as, explicit calcifiers and explicit silicifiers in addition to general phytoplankton, diazotrophs, and 
zooplankton. Along with the nutrients, calcium carbonate, silica, and iron cycling are incorporated in this 
model. We therefore have a more resolved ecosystem network to simulate global plankton community dy-
namics. We analyze the simulated differences in phytoplankton distributions, NPP and EP under LGM 
climate boundary conditions compared to PI boundary conditions in the Southern Ocean. We also explore 
the impact of varying aeolian Fe and silica input into the Southern Ocean by performing a set of sensitivity 
experiments.

2.  Methods
2.1.  Model Description

The model used in this study is the University of Victoria Earth System Climate Model (UVic ESCM) ver-
sion 2.9. It consists of the ocean general circulation model MOM2 (Pacanowski, 1995), coupled to a dynam-
ic-thermodynamic sea-ice model based on Semtner (1976), Hibler (1979) and Hunke and Dukowicz (1997), 
with a spatial resolution of 1.8° by 3.6° and 19 ocean depth levels. It also includes a vertically integrated 
two-dimensional atmospheric energy moisture balance model (Fanning & Weaver, 1996), a land surface 
scheme (Meissner et al., 2003), a dynamic vegetation model (Meissner et al., 2003) and a sediment mod-
el (Archer & Maier-Reimer,  1994; Meissner et  al.,  2012). The model is driven by seasonal variations in 
solar insolation at the top of the atmosphere and seasonally varying wind stress and wind fields (Kalnay 
et al., 1996). A full description of the model physics and structure can be found in Eby et al. (2009), Meissner 
et al. (2003), Mengis et al. (2020), Weaver et al. (2001).
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The ocean carbon cycle is based on the new Kiel Marine Biogeochemical Model version 3 (KMBM3, Kvale 
et al., 2020). It is a Nutrient Phytoplankton Detritus Zooplankton (NPDZ) model (Schmittner et al., 2005) 
which now includes prognostic silica, prognostic CaCO3 (calcium carbonate), as well as silicifying plankton 
(diatoms) and calcifying plankton (coccolithophores) (Kvale et al., 2015a, 2015b). The model also incorpo-
rates a prognostic iron cycle (Nickelsen et al., 2015), which features hydrothermal sources (Yao et al., 2019). 
The model therefore now comprises general phytoplankton, nitrogen fixers (diazotrophs), calcifiers, silicifi-
ers, zooplankton with a new zooplankton grazing parameterization, freely sinking, and CaCO3 ballasted de-
tritus (representing particulate organic carbon, or POC), CaCO3 (representing particulate inorganic carbon, 
or PIC), and dissolved nitrate, oxygen, phosphate, iron, alkalinity, dissolved inorganic carbon (DIC), and 
silica. Different phytoplankton functional types have unique half saturation constants for nutrient uptake 
and thus compete with each other for nutrients and light. In addition, ocean temperature affects the total 
growth rate of plankton. All biogeochemical parameter values and model-related equations can be found 
in Kvale et al.  (2020). Of particular interest to this study are the different growth rates for diatoms and 
coccolithophores (0.76  days−1 and 0.6  days−1), respectively) and half saturation constants for Fe uptake 
(0.12  nmol  m−3 and 0.1  nmol  m−3, respectively). These parameters advantage diatoms in high nutrient 
environments, and in environments with short growing seasons. The zooplankton grazing preferences are 
identical for both coccolithophores and diatoms in this model, and therefore grazing selectivity does not 
exert a different effect on either phytoplankton functional type.

2.2.  Experimental Design

The simulations are integrated under two background climatic conditions: LGM and PI. The PI simulations 
are forced with an atmospheric CO2 concentration of 283.86 ppm (Marcott et al., 2014) and orbital parame-
ters corresponding to the year 1800 (Berger, 1978). The LGM simulations are forced with orbital parameters 
corresponding to year 21 ka BP (Berger, 1978), and a global ice-sheet extent, topography and albedo corre-
sponding to 21 ka BP (Peltier, 1994) as well as an atmospheric CO2 concentration of 189.65 ppm (Marcott 
et al., 2014). A subgrid bathymetry parameterization is used to represent finer-scale processes relevant to 
iron cycling at the bottom of the ocean where the sediment to water column transfer occurs. This is done in 
order to account for the actual bathymetry of the ocean floor which is not well resolved in a coarse resolu-
tion ocean model (Nickelsen et al., 2015). It is adjusted to the LGM sea-level (Somes et al., 2017) and applied 
to the biogeochemical module of the ocean model without affecting the model grid for ocean physics. The 
PI and the control LGM simulations (called PI and LGM-clim hereafter) are forced with aeolian dust inputs 
based on the BASE-PI simulation of Mahowald et al. (2006) (Fe-PI and Si-PI). To obtain aeolian Fe input, 
we multiply the dust fluxes with a two-dimensional field of Fe and silica dust content based on Zhang 
et al. (2015) (Figure S1). We further apply a 1% solubility factor (Mahowald et al., 2009; Schroth et al., 2009) 
to the resulting Fe flux. Both PI and LGM-clim simulations are integrated for 10,000 years to reach an equi-
librium state.

From this LGM-clim equilibrium simulation, we integrate a suite of LGM sensitivity experiments to assess 
the impact of changes in aeolian Fe and silica input on ecosystems (Table 1), using four different iron masks 
(Fe-PI, Fe-BASE-LGM, Fe-lamb-LGM, Fe-glac-LGM) and two different silica masks (Si-PI and Si-BASE-
LGM) (Figure 1). The method to convert dust fluxes into Fe and Si fluxes is described above and is the same 
for all masks. The first sensitivity simulation, LGM-BASE-ref, is integrated with LGM iron and silicate dust 
fluxes (Fe-BASE-LGM, Si-BASE-LGM) based on the BASE-LGM simulation of Mahowald et al. (2006). The 
other sensitivity study (LGM-glac, described below) uses the glaciogenic mask from Ohgaito et al. (2018), 
based on the Tune 1 dust flux from Mahowald et al. (2006) but with a lower dust loading.

In order to disentangle the ecosystem response to changes in Fe and silicate fluxes, we also run an exper-
iment forced with LGM climate boundary conditions, LGM iron fluxes and PI silica fluxes (LGM-BASE-
HFe), and another LGM experiment forced with LGM silicate fluxes and PI iron fluxes (LGM-BASE-HSi). 
The globally integrated silica dust flux for PI (Si-PI) is 21 Tmoles (1012 mol) per year and 36.5 Tmoles per 
year for LGM (Si-BASE-LGM), with a plume of higher silica input in the South Atlantic originating from 
Patagonia at the LGM compared to PI (Figure 1d). However, the overall prescribed silica flux is reduced by 
55% during the LGM in the Southern Ocean south of 30°S.
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The globally integrated values for different iron masks (Table 1) are within the range listed in previous stud-
ies (Hopcroft et al, 2015; Lambert et al, 2015; Pasquier & Holzer, 2018). Fe-PI iron flux to the surface ocean 
is 3.47 Gmoles (109 mol) Fe/yr while Fe-BASE-LGM amounts to 7.037 Gmoles Fe/yr and therefore corre-
sponds to a 50% iron flux increase during LGM compared to PI. However, there is a small decrease in Fe 
input into the Southern Ocean in Fe-BASE-LGM compared to Fe-PI (0.2213 compared to 0.2279 Gmol/yr).

To include scenarios with an enhanced LGM aeolian Fe flux into the Southern Ocean, we thus perform 
two additional LGM experiments. These experiments are forced with LGM dust fluxes from Lambert 
et al.  (2015) (called Fe-lamb-LGM hereafter), and with glaciogenic dust fluxes based on a simulation by 

Ohgaito et al. (2018) (called Fe-glac-LGM hereafter) (Table 1). The glob-
ally integrated iron fluxes into the ocean amount to 9.072 Gmoles/yr and 
6.532 GMoles/yr for LGM-lamb and LGM-glac, respectively. They there-
fore represent a global 2–3 fold increase in aeolian iron input at the LGM 
compared to PI. Table 1 shows that the LGM iron flux is also increased 
regionally by a factor of 2–3 over the Southern Ocean.

We perform an additional sensitivity experiment (LGM-W), which tests 
the effect of a change in Southern Ocean circulation on ecosystem dis-
tribution. In this experiment, the Antarctic Bottom Water (AABW) for-
mation in the Weddell Sea is weakened by adding 0.1 Sv of freshwater 
between 54°W:30°W and 64°S:74°S. This experiment is forced with the 
Fe-lamb-LGM iron mask (since this is the most consistent with the proxy 
records, as discussed below) and the Si-BASE-LGM silica mask.

2.3.  Model Data Comparison

We compare the LGM-PI iron dust flux anomalies used in this study, 
which are based on earlier studies by Mahowald et al. (2006); Lambert 
et al. (2015); Ohgaito et al. (2018), with proxy records of LGM-Holocene 
lithogenic flux anomalies. To build the database of lithogenic flux anom-
alies, we compiled estimates of total lithogenic flux to the seafloor based 
on 230Th normalization and 232Th concentrations (Kienast et  al.,  2016) 
from 90 Southern Ocean cores (Anderson et al., 2009, 2014; Bradtmiller 
et al., 2009; Chase et al., 2003; Dezileau et al., 2000; Durand et al., 2017; 
Francois et al., 1993; Frank et al., 1995, 2000; Jaccard et al., 2013; Kumar 
et al., 1995; Labeyrie et al., 1996; Lamy et al., 2014; Lippold et al., 2012; 
Martínez-Garcia et al., 2009; Negre et al., 2010; Studer et al., 2015). Age 
models and derived fluxes were taken as published. LGM values for each 
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Experiments Climate
Aeolian iron 

input
Global Fe dust flux into 
the ocean (Gmoles/yr)

Fe dust flux into the Southern 
Ocean (30°S:90°S) Silica mask

PI PI Fe-PI 3.47 0.2279 Si-PI

LGM-clim LGM Fe-PI 3.47 0.2279 Si-PI

LGM-BASE-HFe LGM Fe-BASE-LGM 7.037 0.2213 Si-PI

LGM-BASE-HSi LGM Fe-PI 3.47 0.2279 Si-BASE-LGM

LGM-BASE-ref LGM Fe-BASE-LGM 7.037 0.2213 Si-BASE-LGM

LGM-lamb LGM Fe-lamb-LGM 9.072 1.031 Si-BASE-LGM

LGM-glac LGM Fe-glac-LGM 6.532 1.513 Si-BASE-LGM

LGM-W LGM (with reduced AABW formation) Fe-lamb-LGM 9.072 1.031 Si-BASE-LGM

Abbreviations: AABW, Antarctic Bottom Water; LGM, Last Glacial Maximum; PI, pre-industrial.

Table 1 
List of Experiments and Associated Climatic Boundary Conditions and Aeolian Fe and Si Inputs

Figure 1.  Anomalies of iron and silica dust fluxes between Last Glacial 
Maximum (LGM) and pre-industrial (PI). (a) Fe-BASE-LGM minus Fe-PI 
(Mahowald et al., 2006; Zhang et al., 2015), (b) Fe-lamb-LGM minus 
Fe-PI (Lambert et al., 2015; Mahowald et al., 2006; Zhang et al., 2015), (c) 
Fe-glac-LGM minus Fe-PI (Mahowald et al., 2006; Ohgaito et al., 2018; 
Zhang et al., 2015), (d) Si-BASE-LGM minus Si-PI (Mahowald et al., 2006; 
Zhang et al., 2015). Iron fluxes are shown in μmol m−2 yr−1, silica fluxes in 
mmol m−2 yr−1; triangles show proxies of lithogenic dust flux anomalies 
between LGM and Holocene; dark (light) orange represents significantly 
higher (slightly higher) and dark (light) blue represents significantly lower 
(slightly lower) dust during LGM compared to Holocene.



Paleoceanography and Paleoclimatology

core represent an average of observations between 28 and18 ka BP, and 
Holocene values represent an average of observations between 10 and 
0 ka BP.

The qualitative comparison between our new database of observed lith-
ogenic flux anomalies and the aeolian flux anomalies used to force our 
model is shown in Figure 1. The best agreement is achieved by the dust 
flux of Lambert et al.  (2015) (Figure 1b), which suggests a higher dust 
input into the South Pacific during the LGM, whereas the other dust re-
constructions show a lower dust input in that region compared to PI (Ma-
howald et al., 2006; Ohgaito et al., 2018).

We compare anomalies in simulated diatom abundance in the surface 
water column with anomalies in opal flux proxies, and simulated EP 
anomalies at 177.5  m depth with EP anomalies compiled in Kohfeld 
et  al.  (2013). Changes in EP are based on a combination of proxies 
(Kohfeld et al., 2013). The proxy of opal flux considers changes in opal 
rain recorded in sediment cores using a constant flux proxy to account for 
sediment redistribution. Both opal and export proxies represent chang-
es that are archived in marine sediments and represent qualitative dif-
ferences between LGM and Holocene. We also compare our simulated 
opal flux at the ocean-sediment interface with the opal proxy compilation 
(Figure S2). We find that the spatial distribution of diatom abundance 
and opal fluxes at the bottom of the ocean are highly correlated in the 
model. The model data comparison is qualitative: we provide a simple 
metric of fit based on the sign of simulated anomaly versus proxy anoma-
ly by counting matches and mismatches at each proxy location.

3.  Results
3.1.  Simulated LGM Southern Ocean Surface Conditions

In this section, we compare the LGM-clim simulation to the PI control 
simulation (PI) with both simulations being forced with the same PI iron 
and silicate fluxes. The simulated LGM sea surface temperature (SST) 

anomalies, shown in Figure 2a, are broadly consistent with reconstructed LGM SST data (Annan & Har-
greaves, 2013; Waelbroeck et al., 2009).

There is a significant advance of sea-ice in the Southern Ocean, with the simulated LGM austral winter 
sea-ice edge located at 51°S in the Atlantic and Indian sectors and at 57°S in the Pacific sector. The austral 
summer sea-ice edge reaches 56°S in the Atlantic and Indian sectors and 60–63°S in the Pacific sector 
(Figure  2a). These results are consistent with the recent PMIP3 multi-model mean estimates of austral 
winter and summer sea-ice extents of 51.5°S and 60.5°S, respectively (Green et al., 2020). The mean South-
ern Ocean (45°S–75°S) austral summer and austral winter SSTs are respectively 2°C and 1°C lower in the 
LGM simulation compared to the PI simulation, consistent with summer SST estimates from Gersonde 
et al. (2005). A strong SST decrease is simulated north of ∼55°S with less cooling south of it, in agreement 
with Kohfeld et al. (2013), and the smallest anomalies are within the permanent sea-ice region (south of the 
PI summer sea-ice edge). Under LGM conditions, deep-water formation is enhanced in both the Weddell 
and Ross Seas (Figure 2b), with implications for surface nutrient concentrations as detailed below.

3.2.  Impact of LGM Climate on Southern Ocean Ecosystems

In this section, we examine how glacial-interglacial changes in physical conditions, such as temperature, 
salinity, and ocean circulation, impact Southern Ocean ecosystems. We therefore compare the LGM-clim 
simulation with the PI simulation. While diazotrophs and general phytoplankton are abundant in the 
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Figure 2.  Last Glacial Maximum (LGM)-clim to pre-industrial (PI) 
anomalies of annual mean (a) sea surface temperatures (°C) with contours 
of mean 15% ocean ice concentration during LGM austral winter (JJA, 
solid black), austral summer (DJF, solid green), PI austral winter (dashed 
black), and austral summer (dashed green); (b) ocean ventilation depth 
(meters). Please note the intervals are non linear in both (a) and (b); 
0–240 m depth averaged (c) NO3− mmol m−3, (d) 3

4PO  (mmol m−3), (e) dFe 
(μmol m−3), and (f) silica concentrations (mmol m−3).
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subtropics, they are not present in the Southern Ocean. We therefore con-
centrate our analysis on the two major plankton functional types in polar 
regions, diatoms, and coccolithophores (Figures 3a and 3b).

Due to stronger deep-ocean ventilation in the Weddell and Ross Sea re-
gions in the LGM-clim simulation, surface nutrient concentrations are 
higher everywhere in the Southern Ocean, except in the Pacific sector, 
where stratification increases (Figures  2c–2f). This leads to higher di-
atom abundance over most of the Southern Ocean south of 40°S (Fig-
ure 4a). Regional changes in diatom abundance closely mirror regional 
nutrient changes (Figures 2c and 2d and Figure 4a). However, there are 
also regions with a significant decline in diatoms that are not directly 
linked to nutrient changes. For example, it has been suggested that the 
extension of ice-shelves around Antarctica and the equatorward expan-
sion of sea-ice during the LGM led to a decrease in diatom abundance 
around the Antarctic coastline, and an increase north of the sea ice edge 
(Crosta et al., 1998; Gersonde et al., 2005; Nair et al., 2015). The simulated 
decrease in LGM diatom abundances in the Ross and Weddell Seas due to 
light limitation under sea-ice, despite increased nutrient concentrations, 
is consistent with this paleo-data evidence, as is the simulated 19% and 
26% increase in diatom abundances north of the winter sea-ice edge in 
the South Atlantic (40°S–50°S) and the South Pacific, respectively. How-
ever, high macro and micro nutrient concentrations aid diatom growth 
in the seasonal sea-ice region and increase the diatom abundance by 9% 
in the Indian Ocean and by 31% in the South Atlantic sector (55°W:0°E; 
50°S:60°S).

While changes in diatom abundance are mainly driven by changes in 
the availability of nutrients (and therefore circulation changes) and the 
presence or absence of sea-ice, changes in coccolithophores are driven 
by the dynamic competition with diatoms. For example, the increase in 
diatom abundance north of the summer sea-ice extent (52°S–65°S) in the 
LGM-clim simulation is associated with a decrease in coccolithophores 
(by −21%) (Figure 4b). Diatoms are prescribed a faster growth rate, which 
is an advantage in nutrient-rich environments and/or regions with short 
growing seasons such as the Southern Ocean. Fast utilization of nutri-
ents by diatoms causes a decline in the coccolithophore population that 
might not otherwise have occurred. However, in the Pacific sector, where 
ventilation depth and nutrient availability decrease in the LGM-clim sim-
ulation, diatom abundance also decreases, while coccolithophores show 
a slight increase. Only in regions such as in the southwestern Atlantic at 
40°S–54°S, where diatoms are not as competitive, coccolithophores can 
take full advantage of higher Fe availability and increase by ∼11% in the 
LGM-clim simulation (Figures  3a and  3b and Figure  4b). Overall, dia-
toms outcompete coccolithophores in most of the Southern Ocean under 
LGM conditions.

While diatoms increase by 31% in the South Atlantic south of the winter 
sea-ice edge (55°W:0°E; 50°S:60°S) and by 9% within the sea-ice zone in 
the Indian Ocean, coccolithophores decline by 21%, thus leading to a 2% 
decrease in NPP within the seasonal sea-ice zone. However, as diatoms in 
colder environments are more efficient at exporting carbon than cocco-
lithophores in warmer environments, EP increases by 7.6% in this region. 
Overall, NPP decreases by 11% in the Southern Ocean (30°S:90°S) with a 
7.4% decrease north of the LGM winter sea-ice edge, and a 15% decrease 
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Figure 3.  PI distribution of (a) depth integrated diatoms (in g C m−2), 
(b) depth integrated coccolithophores (in g C m−2), (c) export production 
at 177.5 m (in kgC m−2 yr−1) and (d) depth integrated net primary 
productivity (in kgC m−2 yr−1).

Figure 4.  Last Glacial Maximum (LGM)-clim to pre-industrial (PI) 
anomalies of annual mean (a) depth integrated diatom abundance (in 
g C m−2) with LGM-Holocene opal flux proxies, (b) depth integrated 
coccolithophore abundance (in g C m−2), (c) export production at 177.5 m 
(in g C m−2 yr−1) with LGM-Holocene export production index based 
on proxies, and (d) depth integrated net primary productivity (NPP) (in 
g C m−2 yr−1). Please note that the intervals are non linear in subpanel (c). 
Qualitative changes in opal flux (a) and export production (c) as estimated 
from proxy records (Kohfeld et al., 2013) are shown with significantly 
higher values represented by dark orange triangles, slightly higher values 
by light orange triangles, significantly lower values by dark blue triangles 
and slightly lower values by light blue triangles.
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south of it (Table 2). The integrated EP at 177.5 m increases by 4.7% north of the LGM winter sea-ice edge, 
while it decreases by 7% south of it (30°S–50°S) (Table 2). The overall EP decreases by 2.4% in the Southern 
Ocean (30°S:90°S).

We compare the simulated LGM-PI surface diatom abundance anomalies and EP at 177.5 m anomalies 
against the proxy-based LGM-Holocene opal flux and EP index anomalies of Kohfeld et al.  (2013) (Fig-
ures 4a and 4c). In agreement with proxy data, diatom abundance and EP are higher north of the winter sea-
ice edge in the South Atlantic. In the other sectors of the Southern Ocean the agreement between model and 
data is low north of the winter sea-ice edge, 42% and 51% for diatom and EP, respectively, based on counting 
fit or misfit at proxy locations. This is due to both a lack of a consistent signal in the proxy records (e.g., in 
the Pacific sector) and a complex pattern of simulated anomalies (e.g., eastern part of the Indian sector). In 
broad agreement with proxy data, diatom abundance is lower south of the winter sea-ice edge in the Pacific 
and eastern Indian sectors of the Southern Ocean. This translates into lower EP in these regions. However, 
contrary to the data compilation, higher diatom abundance and EP are simulated in the seasonally ice-free 
Atlantic and western Indian sectors of the Southern Ocean, as well as north of the Ross Sea.

As mentioned in Section  3.2, the increase in diatom abundances in the Atlantic sector of the Southern 
Ocean is due to increased nutrients resulting from enhanced bottom water formation in the Weddell Sea. 
While this higher diatom abundance within the seasonal sea-ice zone of the South Atlantic is at odds with 
the proxy compilation of Abelmann et al. (2006), Kohfeld et al. (2013) show that the seasonal sea-ice zone 
in the south Atlantic could have hosted blooms of fast growing diatoms due to higher iron concentrations. 
This could have been sustained by a deeper winter mixed layer at the LGM, which would have led to surface 
nutrient refueling (Abelmann et al., 2015), as simulated here.

3.3.  Impact of Glacial Aeolian Iron and Silica Fluxes on the Southern Ocean Ecosystems

In this section, we analyze the impact of the combined effect of climate change and LGM aeolian dust sup-
ply on the simulated ecosystems during the LGM. We force the model with an LGM iron dust deposition 
flux based on Mahowald et al. (2006) (Figure 1a, Fe-BASE-LGM, experiment LGM-BASE-ref) that is, char-
acterized by a 83% increase in dust compared to PI in a small area at ∼60°S extending from South America 
to 20°W in the South Atlantic. Interestingly, the aeolian dust input decreases by 96% southeast of Australia, 
and by 57% at ∼40°S in the South Atlantic compared to PI. While experiment LGM-BASE-ref is integrated 
with full glacial dust fluxes (Fe-BASE-LGM and Si-BASE-LGM), the individual effects of iron and silica 
supply are studied in experiments LGM-BASE-HFe and LGM-BASE-HSi, respectively. We find that, despite 
a 50% global increase in iron dust in LGM-BASE-HFe (Table 1), and a 42% increase in silica dust in LGM-
BASE-HSi, iron and silica deposition decreases over most of the Southern Ocean, except for the southwest 
Atlantic (Figures 1a and 1d). We do not see any significant changes in global NPP (Table 2) and ecosystem 
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Experiments
Global NPP 
(Pg C yr−1)

SONPP 
(30°S:90°S, 
Pg C yr−1)

SONPP north of 
winter sea-ice 

edge (30°S:50°S, 
Pg C yr−1)

SO NPP south 
of winter sea-ice 
edge (50°S:90°S, 

Pg C yr−1)
Global EP 
(Pg C yr−1)

SO EP 
(30°S:90°S, 
Pg C yr−1)

SO EP north of 
winter sea-ice 

edge (30°S:50°S, 
Pg C yr−1)

SO EP south of 
winter sea-ice 

edge (50°S:90°S, 
Pg C yr−1)

PI 47.45 14.63 7.62 7 7.19 3.84 1.58 2.267

LGM-clim 39.46 (−16.8) 13.02 (−11) 7.057 (−7.4) 5.96 (−15) 6.85 (−4.7) 3.75 (−2.4) 1.65 (+4.7) 2.10 (−7)

LGM-BASE-HFe 39.37 (−17) 12.87 (−12) 6.97 (−8.6) 5.9 (−15.7) 6.88 (−4.4) 3.72 (−3.3) 1.63 (+3.4) 2.08 (−8)

LGM-BASE-HSi 39.46 (−16.8) 13.02 (−11) 7.05 (−7.3) 5.96 (−15) 6.84 (−4.8) 3.75 (−2.5) 1.65 (+4.7) 2.09 (−7.5)

LGM-BASE-ref 39.39 (−17) 12.88 (−12) 6.97 (−8.5) 5.90 (−16) 6.87 (−4.5) 3.72 (−3.4) 1.64 (+3.5) 2.08 (−8)

LGM-lamb 38.34 (−19) 13.18 (−10) 6.6 (−13) 6.58 (−6) 6.94 (−3.5) 3.92 (+1.9) 1.61 (+1.9) 2.3 (+1.8)

LGM-glac 38.22 (−19) 13.07 (−10.6) 6.51 (−14) 6.55 (−6) 6.90 (−4) 3.91 (+1.7) 1.6 (+1.8) 2.32 (+2.2)

LGM-W 37.02 (−22) 13.36 (−8.7) 6.93 (−9) 6.43 (−8.2) 6.894 (−4.1) 4.01 (+4.4) 1.708 (+8) 2.31 (+1.8)

Note. The values in bracket are percentage anomalies from PI.

Table 2 
Integrated Biogeochemical Properties
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distribution between LGM-BASE-HFe (Figure  S3) and LGM-BASE-HSi (not shown) compared to LGM-
clim. LGM-BASE-ref results are also similar to the results of LGM-BASE-HFe (Table 2), showing that there 
are no non-linear effects. We therefore do not discuss LGM-BASE-HFe, LGM-BASE-HSi and LGM-BASE-
ref further. We limit this study to iron sensitivity tests only and leave the silica sensitivities for future study.

Since the Southern Ocean is an iron-limited area (Assmy et al., 2013), we focus on two additional iron sen-
sitivity experiments (LGM-lamb and LGM-glac, Table 1, Figures 1b and 1c) based on Lambert et al. (2015) 
and Ohgaito et al. (2018) with a 78% and 84% increase in aeolian iron-deposition in the Southern Ocean 
respectively. First, we compare LGM-lamb with PI (Figure 5, upper panels). Overall, the regional patterns of 
changes in diatoms are very similar to the LGM-clim simulation, and are therefore still circulation driven, 
but the magnitude of change has increased. An iron enrichment of Southern Ocean waters leads to an ad-
ditional increase in coccolithophores north of the winter sea-ice edge and an additional increase in diatoms 
south of the winter sea-ice edge over the Atlantic sector (compare Figures 5a and 5b with Figures 4b and 4a). 
Coccolithophores thus increase by 43% in the southwest Atlantic (65°W:20°W and 40°S:50°S), leading to a 
23% NPP increase in that region compared to PI. Diatoms increase by 52% and 13% within the seasonal sea-
ice zone (50°S:60°S) of the South Atlantic and the Indian Ocean, respectively, further increasing EP by 60% 
in this sector (Figure 5c) compared to PI. Diatoms use the high iron supply more efficiently because of the 
prescribed higher growth rate parameter and higher half saturation constant for iron uptake in the model 
(Section 2.1). North of 50°S, the increase in coccolithophore biomass seen in LGM-clim is enhanced by the 
larger iron dust flux. Interestingly, NPP further decreases north of 50°S, while it slightly increases south of 
50°S compared to LGM-clim (Table 2).

We next test the impact of a higher iron input by including glaciogenic dust sources (Figure 1c) in our LGM-
glac experiment. Surprisingly, only small differences are simulated between LGM-glac and LGM-lamb (Fig-
ure 5): between 50°S and 60°S EP in the South Atlantic shows an additional increase of 7% in LGM-glac 
(compared to LGM-lamb) while NPP increases by 3% near Argentina. It is interesting to note that although 
the addition of aeolian iron to the ocean leads to an increase in phytoplankton biomass, the spatial pattern 
of change in plankton distributions are similar in all of these experiments. For example, the Fe-lamb-LGM 
iron flux shows higher dust input into the South Pacific compared to the other iron fluxes (Figures 1a–1c). 
This higher aeolian input leads to higher coccolithophore abundance (also slightly higher diatoms), and 
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Figure 5.  Annual mean anomalies for Last Glacial Maximum (LGM)-lamb (top row) and LGM-glac (bottom row) 
minus pre-industrial (PI); (a) and (d) depth integrated coccolithophores (in g C m−2), (b), (e) depth integrated diatoms 
(in g C m−2) and (c), (f) export production at 177.5 m (in g Cm−2 yr−1). Please note that the intervals are non linear in 
subpanels (c) and (f).
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thus higher NPP (not shown) and EP (Figure 5), between 45°S and 50°S 
in the South Pacific in the LGM-lamb experiment, while keeping the eco-
system distribution pattern similar in all three experiments. As a result, 
the averaged EP increases by ∼1.8% (Table 2) north and south of the win-
ter sea-ice edge (50°S) in both LGM-lamb and LGM-glac compared to 
PI. Overall, NPP decreases by 13%–14% north of 50°S and by 6% south of 
50°S in both LGM-lamb and LGM-glac compared to PI (Table 2).

By mostly modulating the magnitude of the anomalies and not signifi-
cantly changing the spatial patterns, LGM-lamb and LGM-glac do not 
substantially improve the model-data comparison. The increase in dia-
tom abundance and EP in the South Atlantic simulated in all our LGM 
simulations are not supported by paleo-proxy records. Since this increase 
seems to be driven by enhanced bottom water formation in the Weddell 
Sea, we perform an additional experiment in which we reduce bottom 
water formation in the Weddell Sea (LGM-W), and thus analyze the im-
pact of a more stratified glacial Southern Ocean on marine ecosystems.

3.4.  Impact of Weaker Weddell Sea Ventilation on Ecosystems

Earlier research has suggested a more stratified Southern Ocean during 
the LGM compared to PI, which would have enhanced the sequestra-
tion of glacial carbon into the deep ocean (Francois et al., 1997; Huang 
et al., 2020; Menviel et al., 2017; Sigman & Boyle, 2001; Sigman et al., 2020; 
Skinner et al., 2010). Changes in stratification in the Southern Ocean are 

therefore studied in our last sensitivity experiment (LGM-W), where we suppress bottom water formation 
in the Weddell Sea by adding a sustained freshwater flux of 0.1 Sv into this region. We force this experiment 
with the same iron and silica forcing as LGM-lamb. The resulting changes in SST and ventilation depth 
are shown in Figures 6a and 6b. Simulation LGM-W is characterized by a reduction in ventilation in the 
Weddell Sea, as well as reduced ventilation and SSTs in the Indian Ocean and Pacific sectors at ∼55°S, while 
there is an increase south of the African continent. In this simulation, increased stratification in the Wed-
dell Sea leads to reductions in diatom abundance in this region and downstream of this region. The large 
decrease in SST in the South Atlantic and South Indian sectors leads to a sharp decrease in coccolithophore 
abundance. As the growing season is shorter due to lower SSTs and sea-ice expansion (not shown), diatoms 
outcompete coccolithophores due to their higher growth rate (Figures 6c and 6d).

Reducing ventilation in the Weddell Sea leads to an increase in both diatom abundance and EP in the 
eastern Indian Ocean and between 52°S and 65°S in the South Atlantic Ocean. Overall, Southern Ocean EP 
increases by 4.4% in this experiment with a large ∼8% increase north of the LGM winter sea-ice edge com-
pared to PI (Table 2). Figure 7 shows that the model data consistency is higher in this experiment (LGM-W), 
especially in the Indian Ocean sector. This improves our model data comparison to 61% in the Southern 
Ocean.

4.  Discussion
Our simulations suggest that without changes in aeolian iron input there is a 16.8% decrease in global NPP 
and a 4.7% decrease in global EP (Table 2) during the LGM (LGM-clim experiment) compared to PI. In the 
Southern Ocean, the simulated EP decreases by 2.4% while NPP decreases by 11%. These results are consist-
ent with previous studies. Due to LGM boundary conditions Yamamoto et al. (2019) simulate a 7% and 4% 
decrease in global and Southern Ocean EP, respectively. Muglia et al. (2017) suggest larger changes with a 
13% and 26% decrease in global and SO EP, respectively.

Due to larger sea-ice extent and therefore a shorter growing season, as well as lower SSTs at the LGM, 
the abundance of coccolithophores and NPP decrease in the Southern Ocean from 5° north of the sim-
ulated LGM winter sea-ice edge to the Antarctic continent. This is also the case for diatoms and EP, but 
enhanced deep-ocean convection in our LGM simulation leads to a regional increase in these quantities in 
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Figure 6.  Last Glacial Maximum (LGM)-W to LGM-lamb anomalies of 
annual mean (a) sea surface temperatures (°C), (b) ocean ventilation depth 
(meters), (c) depth integrated coccolithophores (in g C m−2) and (d) depth 
integrated diatoms (in g C m−2). Please note that the intervals are non 
linear in subpanel (b).
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the seasonal sea-ice zone of the Atlantic and Indian sectors. Southern Ocean EP increases by 4.7% north of 
the LGM austral winter sea-ice, while it decreases by 7% south of the winter sea-ice edge compared to PI. 
This increase of EP north of winter sea-ice and decrease south of the sea-ice is somewhat consistent with 
previous modeling results (Menviel et al., 2012, 2017; Yamamoto et al., 2019).

The proxy compilation suggests a regional dipole in EP during the LGM, with an increase in EP north of 
the sea-ice edge and a decrease south of it (Kohfeld et al., 2005, 2013). Inaccuracies in the simulated sea-ice 
extent can therefore lead to potential errors in ecosystem response in climate models. While the increase in 
diatoms and EP in the LGM-clim simulation north of the winter sea-ice edge in the South Atlantic, and the 
decrease south of the winter sea-ice edge in the South Pacific and Indian sectors are fairly consistent with 
the proxy records, the increase in diatoms and EP due to increased ventilation south of the winter sea-ice 
edge in the South Atlantic is not (Kohfeld et al., 2013). However, additional records from that region are 
needed, as previous studies suggest that there could have been an increase in diatoms in that region, that 
remained undetected in sediment opal fluxes (Abelmann et al., 2006, 2015).

It has been previously hypothesized that enhanced aeolian iron input into HNLC regions during the LGM 
could have increased NPP and EP in these regions (Martin, 1990). However, there are significant uncer-
tainties associated with the regional magnitude of dust fluxes during the LGM, particularly in the Southern 
Ocean (Albani et al., 2014, 2016; Courtillat et al., 2020; Lambert et al., 2015; Lamy et al., 2014; Ohgaito 
et al., 2018; Mahowald et al., 2006; ). Comparing these different estimates with lithogenic fluxes from ma-
rine sediment cores suggests that the best agreement is obtained for the LGM-lamb dust mask (Lambert 
et al., 2015), due to the increase in dust deposition in the south Pacific region. It is interesting to note that, in 
agreement with previous results (Schmittner & Somes, 2016), the simulated global NPP is 16%–22% lower in 
our LGM simulations than in our PI run, regardless of the large range of changes in aeolian iron and silica 
fluxes included in our study.
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Figure 7.  Last Glacial Maximum (LGM)-W to pre-industrial (PI) anomalies in annual mean (a) depth-integrated 
diatoms (in g C m−2) with LGM-Holocene opal flux proxies, (b) depth-integrated coccolithophores (in g C m−2), (c) 
export production at 177.5 m (in g C m−2 yr−1) with LGM-Holocene export production index based on proxies, and (d) 
depth-integrated net primary productivity (NPP) (in g C m−2 yr−1). Please note that the intervals are non linear in (c); 
proxies are from Kohfeld et al. (2013) and represent significantly higher (dark orange triangles), slightly higher (light 
orange triangles), significantly lower (dark blue triangles) and slightly lower (light blue triangles) changes.
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Despite large differences in the patterns and magnitude of dust fluxes tested here, the pattern of the simulat-
ed ecosystem anomalies are similar in the Southern Ocean. Regional changes are mostly driven by changes 
in oceanic circulation, SST and sea-ice, while the magnitude (and sign) of the anomalies is modulated by 
the iron input (Figure 5). For example, the glacial iron input into the Southern Ocean in the LGM-lamb 
experiment intensifies the coccolithophore and diatom abundance by 43%–52% respectively, in some re-
gions (near Argentina, South Atlantic and Indian Ocean between 50°S:60°S) compared to PI. This further 
increases EP by 46% and NPP by 21% in these regions compared to the LGM experiment without additional 
iron input (LGM-clim). The additional iron input in the Pacific sector of the Southern Ocean in LGM-lamb 
leads to a 15% increase in EP compared to LGM-clim in this region. Therefore, the overall Southern Ocean 
EP increases in both LGM-lamb and LGM-glac, and even exceeds the Southern Ocean EP simulated in PI 
by 1.8%, while Muglia et al. (2017) and Yamamoto et al. (2019) show a decline of 2% and 18% compared to 
PI, respectively.

The fact that physical processes control the pattern of EP anomalies between LGM and PI, and that ad-
ditional iron input modulates the magnitude of the anomalies, is consistent with Menviel et  al.  (2012); 
Yamamoto et al. (2019), but does not seem to be the case in the study by Muglia et al. (2017), which shows 
a decline in EP with dust. It is also interesting to note that the location of the EP ”dipole” pattern due to the 
sea-ice edge varies in different studies, from an increase north of the annual mean sea-ice edge (Menviel 
et al., 2012), to an increase everywhere north of the summer sea-ice edge (Yamamoto et al., 2019). In addi-
tion, in order to simulate a significant increase in Southern Ocean EP (13%–24% compared to PI), previous 
studies had to force their model with a 10-fold increase in aeolian iron deposition (Muglia et al., 2017) or 
increase the solubility of iron to 3%–10% (Yamamoto et al., 2019).

δ15N records suggest a higher consumption of nitrate south of the polar front associated with reduced pri-
mary production, indicating an increase in stratification in the Antarctic zone during glacial times (Francois 
et al., 1997; Jaccard et al., 2013; Sigman et al., 2020). This is investigated in our LGM-W experiment where 
weakening the bottom water formation in the Weddell Sea in our LGM simulation significantly impacts the 
Southern Ocean circulation, SSTs, and sea-ice cover. As a result, the pattern of ecosystem changes is differ-
ent from the other experiments. Due to colder conditions and an associated shorter growing season, diatom 
abundance increases in the Indian ocean in the seasonal sea-ice zone, thus leading to an increase in EP in 
that region, and improving the model-data agreement to 61%. Southern Ocean EP increases by 4.4% in this 
experiment compared to PI.

The total EP to NPP efficiency in the Southern Ocean is higher in all our LGM experiments compared to 
PI, and highest in the simulation using the Lambert et al. (2015) iron dust flux with weaker Weddell Sea 
bottom water formation (LGM-W). This is due to the combined effect of an overall dominance of diatoms 
and lower SSTs.

As with any modeling study, there are limitations related to model performance, model structure and exper-
imental set up. In this study, we present results using the UVic ESCM which has a sophisticated ecosystem 
model and includes an ocean general circulation model, and a dynamic-thermodynamic sea-ice model. 
However, the atmospheric model is an energy moisture balance model. We therefore did not take changes in 
winds and wind stress into account in this study, and thus potential changes in upwelling strength. South-
ern Ocean aeolian silica input decreases in our set of experiments during the LGM compared to PI, and did 
not significantly impact ecosystems, we therefore leave the testing of the impact of large changes in aeolian 
Si supply on ecosystems for future research. Our results show that ecosystem response is highly dependent 
on light availability and nutrient availability during the short growth season in the Southern Ocean; better 
constraints on seasonal sea-ice cover, and oceanic circulation at the LGM are therefore needed. Additional 
paleo-proxy records are also needed to better constrain glacial changes in diatom abundance in the seasonal 
sea-ice zone.

5.  Conclusion
We investigate changes in ecosystems, marine primary production and carbon export in the Southern Ocean 
between the LGM and the PI using an Earth system model of intermediate complexity, which includes a 
newly developed ecosystem model. We find that south of 50°S, changes in diatoms and coccolithophores 
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are driven by changes in nutrients and SSTs, with diatoms having an advantage over coccolithophores in 
shorter growing seasons. Greater sea-ice cover and reduced SSTs lead to a decrease in NPP and EP near 
the Antarctic coast south of the winter sea-ice edge, while an increase in nutrient supply increases EP in 
some regions north of the LGM winter sea-ice edge. Our results suggest that the regional distribution of 
phytoplankton anomalies is determined by physical ocean changes such as SSTs, ventilation depth, and 
seasonal sea-ice extent, while the magnitude and sign of the changes in EP and NPP is modulated by chang-
es in iron input. Our simulations are forced with several published LGM dust flux reconstructions, which 
we re-evaluate based on a comparison with lithogenic dust flux anomalies. By forcing the model with the 
LGM aeolian iron fluxes based on Lambert et al. (2015), which show the best agreement with proxy data, 
and a stratified Weddell Sea, a 4.4% increase in Southern Ocean EP is simulated at the LGM compared to 
PI. This simulation, featuring enhanced aeolian iron input in the Pacific Ocean, weakened bottom water 
formation and enhanced stratification in the South Atlantic sector of the Southern Ocean, also shows the 
best agreement with proxy data of opal flux and EP anomalies. Interestingly, this simulation is also the most 
efficient in exporting carbon out of the mixed layer. While featuring the lowest global ocean NPP of all the 
LGM experiments, it also features the highest EP in the Southern Ocean. This is due to lower sea surface 
temperatures, higher nutrient availability, and a shift to higher diatom abundance.

Data Availability Statement
Results from the modeling simulations are accessible at UNSW ResData through https://doi.org/10.26190/5f-
2b69ff95d8f. Lithogenic dust flux data is available through Anderson et al. (2009, 2014); Chase et al. (2003); 
Dezileau et  al.  (2000); Durand et  al.  (2017); Francois et  al.  (1993); Frank et  al.  (1995,  2000); Jaccard 
et al. (2013); Kumar et al. (1995); Lamy et al. (2014); Labeyrie et al. (1996); Lippold et al. (2012); Martín-
ez-Garcia et  al.  (2009); Negre et  al.  (2010); Studer et  al.  (2015), and a compilation is available through 
https://doi.org/10.25959/6hsp-pt80. A part of this compilation is also provided in the Supporting Infor-
mation. The dust deposition data used for LGM and PI fluxes in Table 1 is available through Mahowald 
et al. (2006), for LGM-lamb through Lambert et al. (2015) and for LGM-glac is available through Ohgaito 
et al. (2018). The two dimensional field to calculate iron to dust and silica to dust ratio is available through 
Zhang et al. (2015).
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