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Remote assessment of the fate of phytoplankton in
the Southern Ocean sea-ice zone
Sébastien Moreau 1,2✉, Philip W. Boyd 2 & Peter G. Strutton 2,3

In the Southern Ocean, large-scale phytoplankton blooms occur in open water and the sea-ice

zone (SIZ). These blooms have a range of fates including physical advection, downward

carbon export, or grazing. Here, we determine the magnitude, timing and spatial trends of the

biogeochemical (export) and ecological (foodwebs) fates of phytoplankton, based on seven

BGC-Argo floats spanning three years across the SIZ. We calculate loss terms using the

production of chlorophyll—based on nitrate depletion—compared with measured chlorophyll.

Export losses are estimated using conspicuous chlorophyll pulses at depth. By subtracting

export losses, we calculate grazing-mediated losses. Herbivory accounts for ~90% of the

annually-averaged losses (169mg C m−2 d−1), and phytodetritus POC export comprises

~10%. Furthermore, export and grazing losses each exhibit distinctive seasonality captured by

all floats spanning 60°S to 69°S. These similar trends reveal widespread patterns in phy-

toplankton fate throughout the Southern Ocean SIZ.
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Phytoplankton in the Southern Ocean produce new particles,
driving the biological carbon pump that plays a dis-
proportionately important role in global climate on a range

of time scales1,2. Phytoplankton also supply energy to support
Antarctic krill, the most abundant animal on the planet by mass3,
and the link to apex predators. In the Southern Ocean, satellite
remote-sensing reveals that the sea-ice zone (SIZ) accounts for
~15% of the basin-scale primary production4. The productivity of
the SIZ also plays a strong role in setting the magnitude of the
downward particle flux, via the rapid sinking of sea-ice edge
blooms5, and sea ice is a critical habitat for overwintering krill6.
At decadal time scales, the fate of phytoplankton is changing in
the SIZ due to environmental forcing7,8. A climate-change related
reduction in sea-ice cover could have dramatic consequences for
biogeochemistry and ecology if the fate of phytoplankton is
altered9–11.

Biogeochemical (BGC) Argo floats are a relatively recent
technological development that provide vertical profiles of
chlorophyll (chl) and particles (both proxies for phytoplankton
biomass), along with temperature, salinity, pH, dissolved oxygen
and nitrate concentration12. These observations are particularly
valuable for polar oceans, where fewer in situ observations have
been made. Floats can also sense the water column during the
polar night and under the sea ice where satellites cannot view13,
providing unique time series of phytoplankton growth and par-
ticulate organic carbon (POC) export dynamics14. Chl con-
centration is routinely used to derive primary production
remotely from satellite15,16 but little effort has focused on the
logical next step—assessing the fate of phytoplankton blooms17.
Information on the fate of phytoplankton is valuable as it helps to
partition losses due to physical (advection), biogeochemical
(export) and ecological (grazing and mortality as part of pelagic
foodwebs) processes18. The objective of this study is to assess
patterns in the biogeochemical and ecological fates of primary
producers as revealed through careful analysis of BGC-Argo
multi-sensor datasets for seven widely distributed SOCCOM
(Southern Ocean Carbon and Climate Observations and Model-
ling) floats that drifted across the SIZ of the Weddell Sea and the
Indian Ocean sector of the Southern Ocean, between 60° S and
69° (see “Methods” and Fig. 1). Our findings on the distinctive
seasonality of the fate of phytoplankton represent a step forward
in our understanding of drivers of biogeochemistry and ecology at
high latitudes, where few continuous time series exist in open
water19 or in the dynamic SIZ20.

Results
Calculating chlorophyll production and losses. The develop-
ment of an approach to tease apart the fate of chl relies first on
calculating its potential production (i.e., de novo synthesis),
comparing this with measured chl, then assessing the cumulative
losses due to advection, vertical export, grazing and mortality18.
The first step relies on knowledge that phytoplankton photo-
synthesis produces chl via the consumption of NO3

− at known
rates. For phytoplankton and sea-ice algae the ratio of chl
synthesis to nitrate uptake (chl:N) varies between 0.34 and 2.47 µg
chl:µmol N as reported in field studies and laboratory cultures
across sites ranging from polar to tropical waters21–26 (a sensi-
tivity analysis of the method to the chl:N ratio is presented in the
“Methods”). A recent biogeochemical budget for the Amundsen
Sea Polynya23 provides a very detailed, multi-station time series
of nitrate depletion and concurrent accumulation of chl during a
rapidly evolving bloom (average ratio 1.75 ± 0.4 µg chl:µmol N)
from a polynya analogous to the SIZ we studied using BGC-Argo.
Thus, from nitrate drawdown and this reference value of chl:N=
1.75 µg chl:µmol N, we calculate potential chl synthesis without

any losses, so long as ocean physics enables a comparison of
consecutive nitrate profiles derived from BGC-Argo.

We were able to rule out advection as a loss term for chl and
nitrate, because changes in physical properties were at least an
order of magnitude smaller than published criteria for considera-
tion of contiguous profiles (see “Methods” and Ref. 27). Each
winter, nutrient inventories (here nitrate, NO3

−) are reset in the
upper ocean by deep vertical mixing. That is, the concentration
over the upper few hundred metres becomes almost uniform and
equivalent to the deep concentration. Using a chl:N ratio of 1.75
µg chl:µmol N for our reference value and the salinity-normalized
NO3

− drawdown relative to the closest winter NO3
− profile

(ΔNO3
−, Fig. 2a), we can calculate the concentration of chl (chl*)

that should be present in the absence of losses (Fig. 2b):

chl* ¼ 1:75´ΔNO�
3 : ð1Þ

Chl concentration is measured by a calibrated in vivo
fluorescence sensor on the BGC-Argo float, corrected for
nonphotochemical quenching28 and assumed to represent
biomass12 after losses:

chl ¼ chl* � total losses: ð2Þ
The difference between chl* and the observed chl (Fig. 2c)

represents a proxy for the total losses of phytoplankton biomass
(Fig. 2d):

total losses ¼ chl* � chl: ð3Þ
Total losses can be partitioned into local and distal losses,

where distal losses are downward export, because we eliminated
horizontal advection:

total losses ¼ local lossesþ export: ð4Þ
The downward export of chl as phytodetritus (i.e., phyto-

plankton aggregates and senescent cells29) is conspicuous in
BGC-Argo profiles below the export depth (i.e., the deeper of
either the surface mixed layer, ML, or the euphotic zone depth,
Zeu; see “Methods”) where it corresponds to higher (i.e., excess)
chl concentrations than that expected from the negligible
observed NO3

− drawdown at these depths (Fig. 2e). The export
of phytodetritus is first observed below the export depth in early
spring and is coincident with observations of POC export from
the BGC-Argo backscattering sensors (Fig. 2f). This early export
of phytodetritus and POC, following the stratification of the water
column, was consistently observed among all seven floats
(Supplementary Figs. 1 and 2), in agreement with previous
studies that showed that shallow transient stratification close to
spring led to more favourable conditions for primary production
and carbon export in the Southern Ocean14. Losses of chl due to
downward export were calculated using conspicuous excess chl
pulses at depth (between the export depth and 175 m, the deepest
winter mixed layer estimated from all seven floats, see
“Methods”).

After calculating phytodetritus downward export, local losses
were calculated as the difference between total losses (between the
surface and 175m) and downward export (between the export
depth and 175 m):

local losses ¼ total losses� export: ð5Þ
Local losses of chl can be due to physiological and ecological

processes: mortality and grazing, respectively (Fig. 2d). Mortality
(defined here as intrinsically driven mortality in response to
environmental stresses such as nutrient starvation30) was
calculated from published oceanic rates used in modelling31

and subtracted from local losses, leaving grazing. We have
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included viral lysis in the grazing term in these calculations, due
to the dearth of knowledge available to tease grazing and lysis
apart for the SIZ.

grazing ¼ local losses�mortality: ð6Þ
Finally, the phytoplankton biomass accumulation was calcu-

lated from positive changes in integrated observed chl15. Chl
losses and biomass accumulation were converted to carbon units
to assess the contribution of phytodetritus POC export to
downward POC export (see “Methods”). This approach is
described schematically in Fig. 3.

Following previous work that estimated POC export from
sensors mounted on lagrangian floats32,33, we estimate POC
export from the POC increment below the export depth and
down to 175m between consecutive profiles. The downward POC
export includes phytodetritus and particles transformed by the
foodweb such as faecal pellets34 (see “Methods”), and is calculated
over the same depth stratum as phytodetritus POC export.

Other studies (Dall’Olmo et al.33 and Briggs et al.35) measured
the sinking of small particles through the mesopelagic layer using
backscattering sensors mounted on BGC-Argo floats. Using this
approach, Briggs et al.35 highlighted that particulate fragmenta-
tion was responsible for 49 ± 22% of the observed flux loss
between 100 and 1000 m. Our method, using BGC-Argo sensors
to estimate carbon export, can not account for the bacterial
remineralization of particulates into dissolved organic carbon
(DOC). In addition, large backscattering spikes might be caused

by the presence of zooplankton as shown by Bishop and Wood36,
which would lead us to overestimate POC export.

Biogeochemical losses of chlorophyll. Phytodetritus POC export
takes place from October to April, and is at its highest from
December to March (Fig. 4a). The maximum measured export of
phytodetritus POC was 413 mg Cm−2 d−1 early in the produc-
tion season, on December 28, 2016, by float #9275 in the south of
the Weddell Sea (Supplementary Fig. 1). Maximum downward
POC export was 600 mg Cm−2 d−1 measured on February 2,
2016, by float #0506 (Fig. 4b), and was in the range of previous
maximum estimates from the open Southern Ocean to the SIZ
(1090 mg Cm−2 d−1; Ref. 37). Pooling the seven BGC-Argo float
datasets we studied, POC export follows phytodetritus POC
export through the phytoplankton production season, and is
highest from December to March (Fig. 4b). However, compared
with phytodetritus POC export, POC export starts a little later, in
November compared with October.

Our analysis provides seasonal trends in the contribution of
phytodetritus to downward POC export. Where POC and
phytodetritus POC export coincide, we find that the export of
phytodetritus accounts for 24% on average of the total export of
POC (Fig. 4c and Supplementary Fig. 3). However, the annually
averaged POC and phytodetritus POC export calculated for all
the BGC-Argo floats are 79 and 19 mg Cm−2 d−1, respectively,
which considers all seasons. Hence the contribution of
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phytodetritus over the annual cycle is ~19%. This contribution is
variable during the winter months (with few estimates from May
to October) but consistent throughout the productive season,
although slightly higher at the beginning of the production season
(November–December) than at the end (January–March, Fig. 4c).
At the onset of the production season, the contribution of grazers
to POC export via faecal pellets or vertical migration is expected
to be lower as grazers may still be overwintering at depth38.

Ecological fate of phytoplankton. After calculating the direct
export of chl as phytodetritus, grazing is determined by difference
since physical losses are negligible. Chl losses are mainly observed
between the surface and the export depth consistent with her-
bivory (Fig. 2d). However, to be consistent with our phytodetritus
POC export calculations, losses due to grazing were integrated
from the surface to 175 m depth. The maximum grazing rate was
965 mg Cm−2 d−1, measured on January 13, 2015 by float #7652
in the Weddell Sea (Fig. 4d). Previously, modelling studies39 have
calculated upper bound grazing rates of 400–700mg C d−1 for the
coastal and open Southern Ocean. Pooling all BGC-Argo floats
considered here, we find annually averaged grazing rates of
169 mg Cm−2 d−1 (Fig. 4d). This analysis is the first basin scale,
observational estimate of grazing throughout the SIZ of the
Southern Ocean. In comparison, we observe relatively little
accumulation of phytoplankton in the SIZ (Fig. 4f). The annually
averaged phytoplankton biomass accumulation calculated for all
the BGC-Argo floats was 40 mg Cm−2 d−1. The maximum
phytoplankton biomass accumulation was 543 mg Cm−2 d−1,
measured by float #9099 in the Weddell Sea on January 3, 2016.

Pooling all float datasets, we can also derive the seasonal
influence of grazing on chl. An increase in herbivory is observed
from October to December, while higher grazing pressure is fairly
constant throughout the second part of the growing season,
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January–June, 3 months after the main downward export events
(Fig. 4d). Grazing decreases during winter (July–October) but
does not fall to zero, consistent with observations that krill and
other zooplankton feed throughout winter for their survival40.

For all float datasets, where phytodetritus POC export events
and grazing rates are coincident, grazing contributes 83% of total
chl losses, on average. However, a comparison of the annually
averaged grazing rates (169 mg Cm−2 d−1) to the annually
averaged phytodetritus POC export (19 mg Cm−2 d−1) for all
float datasets takes the contribution of grazing to total chl losses
to ~90%. The remaining 10% is downward export of phytode-
tritus. This trend is consistent throughout the year for all floats,
except in November, at the beginning of the production season,
when the impact of grazing is slightly lower (Fig. 4e). This is
consistent with the higher contribution of phytodetritus to total
export at the beginning of the production season. Furthermore,
the dominance of grazing throughout most of the year confirms
the primary role of zooplankton in controlling the fate of
phytoplankton in the Southern Ocean41,42.

Sensitivity of the method to the chl:N ratio. To account for the
potential variability in the chl:N ratio, we ran a detailed sensitivity
analysis of our approach to the chl:N ratio (see Methods). The
results of the sensitivity analysis for all floats is given in Table 1.
We find that the average export of phytodetritus for all floats is
22 ± 3, 19 ± 3 and 18 ± 3 mg C d−1 for chl:N ratios of 1.25, 1.75
and 2.5 µg chl:µmol N, respectively. Similarly, average grazing for
all floats is 126 ± 7, 169 ± 10 and 233 ± 13 mg C d−1 for chl:N
ratios of 1.25, 1.75 and 2.5 µg chl:µmol N, respectively. Thus, the

contribution of grazing to total chl losses is 85, 90 and 93% for
varying chl:N ratios of 1.25, 1.75 and 2.5 µg chl:µmol N, con-
firming the prevalence of grazing on chl losses in the SIZ of the
Southern Ocean.

Discussion
The seven floats we studied span the Weddell Sea and the Indian
Ocean sector of the SIZ between 60 and 69° S (Fig. 1). Despite this
wide range of locales sampled, we find no statistically significant
differences in the magnitude of phytodetritus POC export, POC
downward export and grazing across the SIZ (Fig. 5). The only
departure from this prevalent trend is higher phytodetritus POC
export at 69° S (Fig. 5a). This event may be due to a combination
of higher rates of phytoplankton biomass accumulation compared
with the rest of the SIZ (Fig. 5f) but a grazing loss term that is
comparable to other latitudes (Fig. 5d). We also find no statisti-
cally significant differences in the magnitude of phytodetritus
POC export, POC export and grazing between sampling years
(2015–2017, Supplementary Fig. 4), between floats (Supplemen-
tary Fig. 5), and between the SIZ areas studied: the Weddell Sea
and Prydz Bay (Supplementary Fig. 6).

This evidence of widespread and consistent seasonality in the
phytodetritus and herbivory loss terms is striking but has a
number of plausible explanations. First, since this study is focused
in the Southern Ocean SIZ, the major phytoplankton grazers are
likely to be Antarctic krill, Euphausia superba43. The spatially
uniform nature of the fate of blooms is inconsistent with the
known patchy distribution of krill3. Hence, the uniformity sug-
gests that on longer time scales the krill patchiness may be
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Table 1 Results of the sensitivity analysis of the method to the chl:N ratio (µg chl:µmol N).

Chl:N= 1.25 Chl:N= 1.75 Chl:N= 2.5

Phytodetritus Grazing % grazed Phytodetritus Grazing % grazed Phytodetritus Grazing % grazed

Float 7652
Avg 11 165 94 10 224 96 10 315 97
Stdev 2 18 2 24 2 33

Float 9094
Avg 23 139 86 16 186 92 14 265 95
Stdev 9 22 6 31 4 45

Float 9099
Avg 33 119 78 24 170 88 23 227 91
Stdev 9 20 6 28 6 35

Float 9125
Avg 12 89 88 12 116 90 12 161 93
Stdev 3 11 3 14 3 20

Float 9275
Avg 45 121 73 38 157 81 36 223 86
Stdev 19 15 16 20 17 28

Float 0506
Avg 12 96 89 12 131 91 13 180 93
Stdev 3 22 3 24 3 32

Float 0507
Avg 24 123 83 25 156 86 24 204 89
Stdev 6 17 5 22 5 29

Phytodetritus POC export and grazing average (Avg) and standard deviation (stdev) are given in mg Cm−2 d−1. The contribution of grazing to the total fate of phytoplankton is given as % grazed.
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averaged out, by the lateral advection of krill patches44. Second,
this study focuses on BGC-Argo floats that had trajectories within
the latter two of the three major krill development areas which
are: the Scotia Sea and Antarctic Peninsula; the eastern Weddell
and Lazarev Seas; and the north of Prydz bay and the Kerguelen
Plateau45. The constancy of chl loss terms due to herbivory across
the SIZ could be linked to the ubiquitous grazing pressure of krill
in these areas, which dominates losses46. Analysis of floats from
outside of known krill development areas could confirm, or not,
the extent to which phytoplankton losses are uniform across the
SIZ. Third, our data may alternatively reflect that copepod her-
bivory dominates where krill herbivory is absent47,48. The early
season dominance of phytodetritus POC export as a major loss
term is probably due to the similarity in the drivers of primary
productivity across the SIZ, where sea-ice melt in spring typically
releases large amounts of dissolved and particulate iron to surface
waters49. This nutrient delivery, coupled with a shallow melt-
water- and temperature-driven mixed layer, fosters the sea-ice
edge blooms in which phytoplankton growth is decoupled from
grazing50.

The inaccessibility, over much of the annual cycle, of both the
open water regions and the SIZ of the Southern Ocean has
resulted in a limited vison of how the regional biogeochemistry
and ecology function, with little known about how they interact.
Satellite oceanography, using a range of sensors, has led to major
advances in understanding the seasonality of phytoplankton
blooms and how it can be linked to other remotely sensed
environmental drivers such as satellite-derived sea-ice extent and
upper ocean temperature51. However, satellite oceanography has
for some sensors been hindered by the cloudiness that char-
acterized much of the Southern Ocean. Our findings illustrate
how profiling BGC-Argo floats can complement other platforms
and potentially launch significant advances in our understanding
in the same way that satellite ocean colour has since the 1990s.
Given the complexity of assessing the status of this ecosystem and
the carbon cycle, our approach enables quantification of the fates
of phytoplankton in the SIZ on a short time scale (10 days)
throughout the annual cycle, and moreover to map their sea-
sonality across a range of diverse locales. In comparison, other
estimates of net community production based on export or
nitrate drawdown relative to winter27, are on a seasonal to annual
time scale. Some of the most recent BGC-Argo floats are equip-
ped with Underwater Vision Profilers (UVP6) which will allow
counting organisms from bacteria to zooplankton52. The ability
to discern the fate of SIZ phytoplankton is essential for under-
standing the current magnitude of, and future trends in the high-
latitude biological pump and ecosystems.

Methods
The sea-ice zone. We studied seven SOCCOM floats that drifted across the SIZ of
the Weddell Sea and the Indian Ocean sector of the Southern Ocean, between 60
and 69° S (Fig. 1a). The Weddell Sea is a large cyclonic gyre. Northeast of the
Weddell Gyre, the Southwest Indian Ridge was identified as a major topographic
feature where circumpolar deep water (CDW) travels southward through the
Antarctic Circumpolar Current (ACC)53. South of the ACC, CDW is upwelled to
the surface through wind-driven divergence and is modified on its path through the
Weddell Gyre (then called Warm Deep Water, WDW54). Five BGC-Argo floats
drifted across the open waters of the eastern Weddell Gyre (Fig. 1b), a region that
was identified as a major carbon sink due to strong primary production55. The
Kerguelen Plateau is a major obstacle on the eastward flow of the ACC. The bulk of
the ACC passes north of the Kerguelen Plateau, while the remainder passes
through the Fawn Trough (at ~56° S) or through the Princess Elizabeth Trough (at
~64° S), south of the Banzare Bank56 (Fig. 1c). Two BGC-Argo floats drifted in the
highly productive SIZ, south of the Banzare bank57. The temperature and salinity
sections of all seven floats are typical of ice-covered regions (Supplementary Figs. 7
and 8), with increases in mixed layer salinity under sea ice during winter and the
classic thermal signature of winter water colder than −1 °C at 100 m deep14. The
SOCCOM floats we studied park and drift at 1000 m, and descend to 2000 m before
returning to the surface every 10 days.

Criteria necessary to develop the algorithm. Changes in water mass properties
in the 10 days window between profiles can rule out the comparison of sequential
float profiles. Hence, we first assessed advection between consecutive profiles via a
careful analysis of physical properties. Horizontal loss terms can be regarded as not
significant if changes in physical properties are negligible. To successfully infer net
community production from BGC-Argo floats in the Southern Ocean, Johnson
et al.27 imposed three criteria: (1) that the salinity at 500 m did not change by more
than 0.05 between two consecutive profiles, (2) that the latitude did not change by
more than 5.5° and (3) that the longitude did not change by more than 8°. For all
the BGC-Argo floats studied here, we found average (maximum) changes of 0.0013
(0.017) for salinity at 500 m, 0.07° (0.45°) for latitude, and 0.22° (1.1°) for longitude
between two consecutive profiles. That is, the changes we observed were at least an
order of magnitude smaller than the Johnson et al. criteria. Water column prop-
erties in the SIZ are, therefore, highly stable between successive CTD profiles,
which makes it reasonable to compare the temporal evolution of biogeochemical
properties and ignore horizontal and vertical advection as influential loss terms for
chl. That is, we consider consecutive profiles as contiguous. Furthermore, we
suggest that this method can be generalized to other oceanic regions as long as the
changes in physical properties between consecutive profiles are minimal.

In addition, to estimate NO3
− drawdown, we used the salinity-normalized

NO3
− profile to correct for dilution and concentration effects linked to sea-ice melt

and formation in the SIZ.

Export depth and horizon. Following Dall’Olmo et al.33, the export depth is taken
as the deeper of either the surface mixed layer (ML, defined from Ref. 58 as the
depth at which density increased by 0.01 kg m−3 compared with density at the
surface) or the euphotic zone depth (Zeu, defined by Ref. 59 as the 2% light level
and derived from sea surface chl concentration in Antarctic waters) when solar
irradiance reaches the ocean surface (i.e., not during the polar night) as determined
by year day and latitude. We acknowledge that other open water studies have used
the critical depth rather than the euphotic zone depth as the upper limit below
which to calculate downward export14. However, near the ice edge where the
coverage of satellite-derived irradiance data is poor, we find that the euphotic zone
reflects more accurately the depth over which particles may be created. In contrast,
the critical depth may be a more powerful metric in open waters as previously
shown by Bishop and Wood14.

We chose 175 m (the deepest winter mixed layer estimated from all seven floats)
as the depth horizon to calculate export as recent studies demonstrate that the
depth of the mixed layer in winter constrains downward export60. For example, a
proportion of the organic matter that is exported below the export depth during the
stratified summer months can be ventilated by deep winter mixing.

Confirmation of deep excess chlorophyll as phytodetritus. A rationale is pre-
sented here for interpreting subsurface excess in chl as phytodetritus (such as
aggregated senescent cells) sinking below the export depth. A few studies showed
that diatoms may still be viable after ingestion and excretion by krill61, which could
cast uncertainty on our assumption of observations of phytodetritus below the
export depth. However, in the Indian sector of the Southern Ocean, in proximity to
Crozet Island and the Kerguelen plateau, widely observed backscattering and
fluorescence excess—that are conspicuous in the profiles below the export depth—
were attributed to either faecal pellets or phytodetritus29. The authors argued that
the senescence of phytoplankton does not alter the phytol chain of chl a, which
leaves the fluorescence of the prophyrin ring intact. In contrast, zooplankton
grazing removes the magnesium ions from chl a, which results in the accumulation
of phaeopigments in faecal pellets. Therefore, we are confident that the positive chl
anomalies we observed below the export depth were mainly composed of
phytodetritus.

Grazing rates estimates. Instantaneous grazing rates can be calculated from the
profile-to-profile increments in local losses of chl. First, local losses are calculated
as the difference between total chl losses and the export of phytodetritus below the
export depth, that is, phytodetritus POC export (Eq. (5)). Phytoplankton mortality
between the surface and the export depth31 is then subtracted from local losses to
leave grazing (Eq. (6)).

To constrain this calculation, we further impose three criteria: (1) we only
consider positive changes in local losses. Negative local losses would be caused by
the input of nitrate between the surface and the export depth and yield negative
grazing rates; (2) we only subtract positive changes in phytodetritus between the
export depth and 175 m, because negative changes would represent export below
175 m and artificially increase grazing rates, and (3) we only calculate grazing rates
when increments in local losses are higher than increments in phytodetritus below
the export depth, as the contrary would yield negative grazing rates. The above-
mentioned conditions reduce the number of grazing estimates, but they allow us to
constrain grazing rates as close to reality as possible. A reasonable number of
grazing estimates (N= 219) can be obtained via this method.

The production of faecal pellets by grazers is where carbon export and foodwebs
interact34. Grazing will result in the destruction of chl and the repackaging of
phytoplankton cells into aggregates or faecal pellets. To avoid double accounting of
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these chl losses, we made a simple distinction between the direct export of
phytodetritus and grazing.

Chlorophyll to carbon conversion. We used three conversion factors to convert
chl losses and biomass accumulation to carbon: (1) a lower bound of 20 µg C/µg
chl62 to constrain the minimum downward POC export associated with phyto-
detritus under saturating light and high nutrient supply, (2) a robust method to
derive phytoplankton carbon from chl63,64 (referred to hereafter as T17 for Tho-
malla et al.64); and (3) the average POC:chl ratio (in µg C/µg chl) measured in the
ML for each separate float (ML POC:chl ratios for all the BGC-Argo floats studied
are shown in Supplementary Fig. 9). We used approach 2 from T17 for our
reference value, since it was specifically derived from multiple Southern Ocean
glider transects64. This yielded POC:chl ratios consistent with other approaches
based on backscattering65, but it does not account for varying POC:chl ratios with
environmental conditions.

Sensitivity of the method to the chl:N ratio. We tested the sensitivity of the
calculated maximum chl concentration to chl:N ratios ranging from 0.5 to 2.5 µg
chl:µmol N (Supplementary Fig. 10). First, we found that a lower bound of 1.25 µg
chl:µmol N was appropriate for our calculations, since below this limit, the esti-
mated synthesized chl is consistently lower than the observed chl for 100 days at
the beginning of the production season (days 300–400 in Supplementary
Fig. 10a–c). This finding was consistent between all seven of the floats we studied.
Furthermore, we chose 2.5 µg chl:µmol N as a reasonable upper bound for our
sensitivity analysis given that it was among the highest reported chl:N values
reported in field studies and laboratory cultures across sites ranging from polar to
tropical waters21–25.

Next we selected an intermediate chl:N ratio of 1.75 µg chl:µmol N as our
reference value. This selection was supported since it is the average chl:N ratio
(1.75 ± 0.4 µg chl:µmol N) observed in the recent detailed Amundsen Sea Polynya
(spanning 72.5–74° S)23, across a primary production gradient of integrated
dissolved inorganic nitrogen drawdown (ΔDIN) of 27–740 mmol Nm−2 and
integrated chl from 74 to 828 mgm−2 (Supplementary Table 1). This detailed,
multi-station study is ideal since it presents a time series of nitrate depletion and
concurrent accumulation of chl during a rapidly evolving water column bloom, in
the virtual absence of grazers23. There is, however, no such situation when grazers
are completely absent, suggesting that our grazing estimates are possibly
underestimated. Furthermore, the Amundsen Sea polynya has the highest primary
production rates of all Antarctic polynyas66. Surrounding the Amundsen Sea
polynya, the Dotson and Getz Ice Shelves are among the fastest melting glaciers of
Antarctica67, and naturally fertilize the polynya68. Therefore, the source of
dissolved iron is likely different between the Amundsen Sea polynya and the SIZ of
the Southern Ocean, with possible effects on the chl:N ratio of phytoplankton. In
comparison, the chl:N ratio reported from the SOFEX-S iron-amended mesoscale
bloom in the SIZ (at 66 S) averaged 2.1 µg chl:µmol N, as reported by Coale et al.26

(their Table 1), and was therefore comparable to the chl:N ratio of 1.75 µg chl:µmol
N we chose as reference value. In addition, the in situ chl:N ratio is likely to vary
throughout the production season and among phytoplankton species69. A map of
the chl:N ratio (µg chl:µmol N) measured in the Amundsen Sea polynya supports
this variability (Supplementary Fig. 10d), with a decreasing ratio eastward, towards
a more developed bloom23.

The results of the sensitivity analysis of our approach to the chl:N ratio (from
1.25 to 2.5 µg chl:µmol N) are presented in Table 1 (see “Results”).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All SOCCOM data used in the present paper are available at https://soccom.princeton.
edu.
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