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The present study was performed to explore the underlying molecular mechanisms and
screen hub genes of osteoarthritis (OA) via bioinformatics analysis. In total, twenty-five OA
synovial tissue samples and 25 normal synovial tissue samples were derived from three
datasets, namely, GSE55457, GSE55235, and GSE1919, and were used to identify the
differentially expressed genes (DEGs) of OA by R language. The Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs were conducted
using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). A Venn
diagram was built to show the potential hub genes identified in all three datasets. The
STRING database was used for constructing the protein–protein interaction (PPI)
networks and submodules of DEGs. We identified 507 upregulated and 620
downregulated genes. Upregulated DEGs were significantly involved in immune
response, MHC class II receptor activity, and presented in the extracellular region,
while downregulated DEGs were mainly enriched in response to organic substances,
extracellular region parts, and cadmium ion binding. Results of KEGG analysis indicated
that the upregulated DEGs mainly existed in cell adhesion molecules (CAMs), while
downregulated DEGs were significantly involved in the MAPK signaling pathway. A
total of eighteen intersection genes were identified across the three datasets. These
include Nell-1, ATF3, RhoB, STC1, and VEGFA. In addition, 10 hub genes including
CXCL12, CXCL8, CCL20, and CCL4 were found in the PPI network and module
construction. Identification of DEGs and hub genes associated with OA may be helpful
for revealing the molecular mechanisms of OA and further promotes the development of
relevant biomarkers and drug targets.
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INTRODUCTION

OA, characterized by the destruction of articular cartilage and
bone tissue, is one of the chronic diseases that seriously affect the
elderly (Hutton, 1989; Zhou et al., 2018a). OA mainly affects the
hip joints and knee joints (Rousseau and Garnero, 2012; Miller
et al., 2014). Patients commonly experience pain and stiffness in
the affected joint. Symptoms often appear after exercise at the
beginning and become more frequent with the disease
progression over time (Zhou et al., 2018b). The symptoms
usually persist for many years that substantially impact the
patients’ morbidity and quality of life. According to the data
from epidemiological studies, OA affects approximately 237
million people (GBD, 2016), and about 10% of men and 18%
of women over the age of 60 are affected. Approximately 1.9
million people in Australia and up to 53 million people in the
United States are affected by OA (Cisternas et al., 2016).

Microarray technology is a tool commonly used in research in
the fields of genetics and oncology, with important value in
clinical applications, ranging from target therapy to molecular
classification and patient stratification to prediction of the
prognosis (Mi et al., 2018; Zhang et al., 2019). In recent years,
many studies exploring the gene expression in OA were carried
out using microarray technology, and some key genes and
biomarkers have been found (Lu et al., 2014; He et al., 2016a;
Lin et al., 2018). However, there are some drawbacks of
microarray technology. The comprehensive analysis with
respect to the identification of multiple factors that contribute
to the development of OA has proven to be a major challenge.
Analysis that incorporates expression profiling using
bioinformatics analysis may be helpful for solving this
problem. Approaches focusing on identifying the genes
changed in OA and biomarkers are also needed for early
diagnosis. Changes of gene expression may occur before the
clinical symptoms become evident as well as the
transformation of proteins or abnormalities in biomechanics.

In this study, we aimed to identify the signaling pathways and
biomarkers associated with OA using a bioinformatics analysis. We
downloaded the gene expression microarray data from the GEO
database to search for DEGs and the associated biological pathways
in OA by bioinformatics analyses. Analysis of the biological
functions and pathways unique to OA may provide some useful
insights into the mechanisms of the disease pathogenesis.

METHODS

Tissue Sample Collection and Grading
The synovial tissues were extracted from the same site (medial
space of the knee joint) of normal joints of patients suffering fatal
accidents including death due to car accident or amputation due
to trauma and OA (Kellgren–Lawrence grade Ⅲ to Ⅳ) patients
undergoing total knee arthroplasty among the three databases
enrolled in this study. All the samples were dissected immediately
after surgery. Then, the tissues were snap-frozen in liquid
nitrogen and stored at −80°C (Ungethuem et al., 2010;
Woetzel et al., 2014).

The samples were carefully prepared and microscopically
examined to remove the majority of the surrounding fat tissue.
All the synovial membranes were graded using the inflammation
score by Krenn to ensure consistency and comparability (Randen
et al., 1995; Krenn et al., 2002).

Inclusion and Exclusion Criteria
We used the following keywords: osteoarthritis, synovial tissue,
and no intervention of drug to conduct a system search in the
GEO dataset (https://www.ncbi.nlm.nih.gov/gds/). Our inclusion
and exclusion criteria were as follows.

Inclusion criteria: 1) use case–control research design; 2) get
the synovial tissue from the knee joint of the OA patient; and 3)
includes normal control synovial tissue and osteoarthritis
synovial tissue.

Exclusion criteria: 1) non-case–control research design; 2)
non-synovial tissue from Homo sapiens; and 3) no normal
control synovial tissue or osteoarthritis synovial tissue.

In total, two investigators (JZ and TL) independently checked
each dataset, and we obtained three gene profiles (GSE55457,
GSE55235, and GSE1919).

Gene Expression Microarray Data
A total of three gene profiles (GSE55457, GSE55235, and
GSE1919) comparing DEGs of synovial tissues between OA
patients and healthy controls were downloaded from the GEO
database. GSE55457 and GSE55235 contained 10 OA tissues and
10 normal tissues, and GSE1919 contained 5 OA tissues and 5
normal tissues. In the three datasets, 25 OA tissues were
compared with 25 normal tissues.

Normalization of Datasets
We used limma software of the Affy Bioconductor R package to
preprocess the raw data for gene expression (http://www.
bioconductor.org/packages/release/bioc/html/limma.html).
Then, we performed quantile normalization and correction of the
background of samples from each expression profile using RMA
(robust multi-array average) of the R software Affymetrix toolkit.
After we obtained the gene expression matrix, we used the
aggregation function to calculate the mean of the amount of
gene expression (Wu et al., 2013).

Data Preprocessing and Differentially
Expressed Gene Screening
We downloaded the sequence matrix files of three datasets and
converted the probe names of each sequence matrix into gene
symbols based on Affy probe annotation files. If multiple
probes correspond to the same gene symbol, the
aggregation function in R was used to average the
expression value of that particular gene. The original data
were preprocessed by the Affy package of R software 3.6.1,
which was described in our previous study (Zhou et al., 2019a).
Statistically significant DEGs were defined with the threshold
for significant differential expression set at p < 0.05 and
absolute log2-fold change (log2-FC) ≥1.
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Analysis of Hierarchical Clustering
We used the pheatmap package of R software 3.6.1 to conduct
bidirectional hierarchical clustering analysis. The DEGs with

similar expression patterns were clustered based on Euclidean
distances of expression values. The details of this process were
described in our previous study (Li et al., 2012; Zhou et al., 2019a).

FIGURE 1 | Normalization of samples. (A, C, E) Prior to normalization of total DEGs for GSE55457, GSE55235, and GSE1919; (B, D, F) following normalization of
total DEGs for GSE55457, GSE55235, and GSE1919.
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Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Analysis
The GO database is a large set of gene annotation terms that can
be used for annotating genes. The KEGG knowledge database is
commonly used for exploring and analyzing gene functions and
links between genomic information and higher-order functional
information. DAVID is an important online data synthesis tool
that provides the foundation for successful high-throughput gene
functional analysis. In this study, we used GO, KEGG, and
DAVID databases to analyze the GO functions and KEGG
pathways of DEGs, which were described in our previous
study (Zhou et al., 2019a).

Protein–Protein Interaction Network
Construction
STRING (https://string-db.org/), an online service, was utilized to
obtain the interactions between the proteins encoded by DEGs.
After that, we imported the data produced by the STRING online
database into Cytoscape software to obtain the PPI network.

MCODE Analysis
The MCODE serves to detect tightly connected regions in a PPI
network. In the present analysis, we chose the important modules
in the PPI network built by MCODE. The standard settings are as
follows: node score cutoff = 0.2, K-Core = 2, and degree cutoff = 2.
Then, we calculated the MCODE score.

RESULTS

Normalization of Three Datasets
Normalization of the three datasets was performed via RMA of
the R software Affymetrix toolkit. The results of normalization
are shown in a boxplot in Figure 1. The normalization results of
GSE55457 (Affymetrix Human Genome U133A Array),
GSE55235 (Affymetrix Human Genome U133A Array), and

GSE1919 (Affymetrix Human Genome U95A Array) are
presented in Figures 1A–F, respectively. The black lines in
Figures 1B,D,F are basically at the same level, presenting a
high consistency.

Differentially Expressed Genes in the Three
Datasets
Gene expression in the synovial membrane of OA patients was
compared with that in the synovial membrane of healthy controls.
We defined the statistically significant DEGs using the threshold as |
log2FC| ≥1 and p < 0.05. A total of 1,127 DEGs were observed.
Among them, 507 genes (GSE55457: 75, GSE55235: 425, and
GSE1919: 54, 47 overlap genes) were upregulated and 620 genes
(GSE55457: 249, GSE55235: 379, and GSE1919: 116, 124 overlap
genes) were downregulated in OA patients compared with healthy
controls. Expression volcano plots and heatmaps of all the
upregulated and downregulated DEGs are shown in Figure 2
and Figure 3 (Figures 2A, 3A: GSE55457, Figures 2B, 3B:
GSE55235, and Figures 2C, 3C: GSE1919).

Analysis of Gene Ontology Enrichment
The DAVID database was used to analyze enriched GO terms and
KEGGpathways of DEGs. All upregulated and downregulated genes
were uploaded to DAVID. The results of the GO analysis showed
that the upregulated genes were mainly enriched in immune
response in the biological process (BP), extracellular region in the
cell component (CC), and MHC class II receptor activity in the
molecular function (MF). Downregulated genes were mainly
involved in the response to organic substances in BP,
extracellular region part in CC, and cadmium ion binding in MF
(Table 1).

Analysis of the Kyoto Encyclopedia of
Genes and Genomes Pathway
As shown in Table 2, the top 10 enriched KEGG pathways of
upregulated DEGs were mainly involved in CAMs, viral

FIGURE 2 | Volcano plot showing DEGs. (A)GSE55457, (B)GSE55235, and (C)GSE1919. Red dots: upregulated genes, green dots: downregulated genes, and
gray dots: genes without change in expression.
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myocarditis, asthma, antigen processing and presentation,
intestinal immune network for IgA production, ECM–receptor
interaction, allograft rejection, graft-versus-host disease, type I
diabetes mellitus, and autoimmune thyroid disease. The top 10
enriched KEGG pathways of downregulated DEGs were mainly
enriched in the MAPK signaling pathway, circadian rhythm,
insulin signaling pathway, adipocytokine signaling pathway,
Jak-STAT signaling pathway, cytokine–cytokine receptor
interaction, toll-like receptor signaling pathway, neurotrophin
signaling pathway, p53 signaling pathway, and prion diseases.

Intersection Genes Among the Three
Datasets
Cross-validation containing the intersection DEGs among the
three datasets could help further examine hub genes of OA. A
Venn diagram was used to show the intersection DEGs among
the three datasets. According to the diagram, 18 potential hub
genes exist in all the three datasets (Figure 4A). Among them,

there were 3 upregulated DEGs (TRIL, NELL1, and SCRG1) and
15 downregulated DEGs (ATF3, SPRY1, RHOB, SLC2A3,
DUSP5, NFIL3, STC1, CDKN1A, VEGFA, INHBB, KLF9,
MAFF, TNFAIP3, SIK1, and GADD45B), which are shown in
Figures 4B,C, respectively.

Analysis of the Protein–Protein Interaction
and Module
The PPI network of DEGs was constructed via the STRING
(https://string-db.org/) database, and DEGs with a combined
score ≥0.9 were subsequently visualized by Cytoscape
(Figure 5). We set confidence score ≥0.4 as a cutoff value.
MCODE analysis was conducted to show modules of the PPI
network with a degree cutoff = 2, node score cutoff = 0.2, kcore =
2, and max depth = 100. A total of three significant modules were
indicated with the parameter of a MCODE score ≥6. Module A
(MCODE score = 7.25), Module B (MCODE score = 6.857), and
Module C (MCODE score = 6) are shown in Figures 6A–C,

FIGURE 3 | Heatmap showing DEGs. (A) GSE55457, (B) GSE55235, and (C) GSE1919. The expression values are log2 fold changes (>1 or < −1). Red color
represents upregulation, and blue color represents downregulation.
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TABLE 1 | Enriched GO terms of upregulated and downregulated expressed genes.

Ontology ID Description Count Adjusted p-value

Enriched GO terms of upregulated genes
BP GO:0006955 Immune response 56 1.50E-13
BP GO:0006952 Defense response 42 4.62E-08
BP GO:0002504 Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 10 1.27E-07
BP GO:0007155 Cell adhesion 43 5.73E-07
BP GO:0022610 Biological adhesion 43 5.93E-07
CC GO:0005576 Extracellular region 108 1.03E-12
CC GO:0044421 Extracellular region part 65 1.47E-11
CC GO:0005578 Proteinaceous extracellular matrix 31 3.62E-09
CC GO:0031012 Extracellular matrix 32 5.44E-09
CC GO:0005887 Integral to plasma membrane 66 3.41E-08
MF GO:0032395 MHC class II receptor activity 7 3.83E-06
MF GO:0042287 MHC protein binding 7 2.21E-05
MF GO:0030246 Carbohydrate binding 22 1.34E-04
MF GO:0005201 Extracellular matrix structural constituent 10 2.16E-04
MF GO:0001948 Glycoprotein binding 7 2.28E-04

Enriched GO terms of downregulated genes
BP GO:0010033 Response to organic substance 69 6.67E-19
BP GO:0009725 Response to hormone stimulus 38 2.05E-11
BP GO:0009719 Response to endogenous stimulus 39 9.20E-11
BP GO:0048545 Response to steroid hormone stimulus 24 5.73E-09
BP GO:0048511 Rhythmic process 19 2.19E-08
CC GO:0044421 Extracellular region part 48 3.23E-06
CC GO:0005615 Extracellular space 38 4.60E-06
CC GO:0031981 Nuclear lumen 56 5.62E-04
CC GO:0005667 Transcription factor complex 14 0.001961101
CC GO:0005576 Extracellular region 69 0.002594958
MF GO:0046870 Cadmium ion binding 7 9.50E-08
MF GO:0003700 Transcription factor activity 53 6.72E-06
MF GO:0043566 Structure-specific DNA binding 16 1.54E-05
MF GO:0003690 Double-stranded DNA binding 12 9.17E-05
MF GO:0005125 Cytokine activity 17 1.38E-04

TABLE 2 | Top 10 enriched KEGG pathways of upregulated and downregulated expressed genes.

Term Pathway name Count Adjusted p-value

Top 10 enriched KEGG pathways of upregulated genes
hsa04514 Cell adhesion molecules (CAMs) 20 4.73E-08
hsa05416 Viral myocarditis 13 2.86E-06
hsa05310 Asthma 9 2.98E-06
hsa04612 Antigen processing and presentation 13 1.53E-05
hsa04672 Intestinal immune network for IgA production 10 2.61E-05
hsa04512 ECM–receptor interaction 12 8.92E-05
hsa05330 Allograft rejection 8 1.46E-04
hsa05332 Graft-versus-host disease 8 2.48E-04
hsa04940 Type I diabetes mellitus 8 3.99E-04
hsa05320 Autoimmune thyroid disease 8 0.001332548

Top 10 enriched KEGG pathways of downregulated genes
hsa04010 MAPK signaling pathway 25 2.42E-05
hsa04710 Circadian rhythm 5 8.99E-04
hsa04910 Insulin signaling pathway 14 0.001034299
hsa04920 Adipocytokine signaling pathway 9 0.002556227
hsa04630 Jak-STAT signaling pathway 12 0.023202188
hsa04060 Cytokine–cytokine receptor interaction 17 0.025604501
hsa04620 Toll-like receptor signaling pathway 9 0.028221432
hsa04722 Neurotrophin signaling pathway 10 0.033792237
hsa04115 p53 signaling pathway 7 0.034604644
hsa05020 Prion diseases 5 0.035607885
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respectively. Module A had 9 nodes and 29 edges involving 9
upregulated genes (HLA-DQA1, HLA-DQB1, HLA-DRB1, HLA-
DRA, CD74, HLA-DPA1, HLA-DPB1, HLA-DMA, and HLA-
DMB); Module B with 8 nodes and 24 edges involving 6
downregulated genes (CCL20, CXCL2, CXCL8, CCL25,
CXCL3, and CCL4) and 2 upregulated genes (CCR5 and
CXCL12); and Module C with 6 nodes and 15 edges involving
6 upregulated genes (COL5A2, COL5A1, COL3A1, COL1A1,
COL1A2, and PCOLCE).

DISCUSSION

Osteoarthritis is a degenerative disease involving the entire joint
including articular cartilage, subchondral bone, ligaments, joint
capsule, and synovium (Zhou et al., 2019b; Hunter and Bierma-
Zeinstra, 2019). In the present analysis, a total of 25 OA tissues
were compared with 25 normal tissues in GSE55457, GSE55235,
and GSE1919 to explore DEGs. A total of 507 upregulated genes
and 620 downregulated genes were observed. However, the
sample collection process and patient cohort of these three
datasets may be largely different, which may contribute to
substantial heterogeneity. Therefore, we performed the
normalization with the same standard. Then, we plotted a
Venn diagram to explore the intersection genes among these
three datasets to identify the common DEGs. However, there is
still some heterogeneity between datasets that cannot be ruled out
and may affect the accuracy of the study findings. These include
but are not limited to the differences in age, gender, and race
between these three datasets.

The GO term analysis indicated that upregulated DEGs were
mainly enriched in immune response in BP, extracellular region
in CC, and MHC class II receptor activity in MF. Moreover,
downregulated DEGs were mainly involved in response to
organic substances in BP, extracellular region part in CC, and
cadmium ion binding in MF. OA was considered a non-
inflammatory disease in the past, but over recent years, it has
been reported that low-grade inflammation with mild synovitis
was linked to OA development (Berenbaum, 2013; Sokolove and

Lepus, 2013). Existing evidence revealed that an early innate
immune response plays an important role in the pathogenesis of
OA. This process will lead to catalyzed degenerative changes,
which ultimately result in an altered joint microenvironment
(Kandahari et al., 2015).

In addition, the enriched KEGG pathways of upregulated DEGs
were mainly involved in CAMs. Moreover, the enriched KEGG
pathways of downregulated DEGs were mainly involved in the
mitogen-activated protein kinase (MAPK) signaling pathway.
According to previous reports, MAPK was a key signaling
molecule in regulating cell proliferation and development. In
addition, MAPK participates in morphogenesis and tissue
patterning, which is important to chondrogenesis (Zhang et al., 2014).

To further identify important genes having a similar tendency
in expression in those three datasets, cross-validation was
conducted to explore DEGs using a Venn diagram. A total of
18 potential hub genes (3 upregulated and 15 downregulated)
were identified in the three datasets. The chondroprotective effect
of Nell-1 on OA has been evaluated by intra-articular injection.
Nell-1 may be a potential method for the treatment of OA (Xiao
et al., 2012). ATF3 is involved in the pathogenesis of OA by
regulation of inflammatory cytokine expression in chondrocytes
(Iezaki et al., 2016). RhoB was implicated in the activation of the
functional phenotype of chondrocytes in OA (Gebhard et al.,
2004). STC1 can suppress the proliferation of OA-FLS cells and
promote apoptosis of OA-FLS cells (Wu et al., 2019). VEGFA is
significant for chondrocyte survival (Zelzer et al., 2004). More
studies are needed to understand the function of these genes.

A PPI network and three submodules with DEGs were
constructed to explore the hub genes. CXCL12, CXCL2,
CXCL8, CCL20, CCL4, HLA-DPA1, CD74, HLA-DRB1, HLA-
DMA, and HLA-DRA were the top 10 hub genes. According to a
previous study, CXCL12 may serve as an effective biomarker for
the severity of OA (He et al., 2016b). CXCL8 may aggravate the
disease progression of OA (Yang et al., 2016). CCL4 and CCL20
were significantly associated with the severity of X-ray-defined
OA (Zhao et al., 2015; Lüderitz et al., 2018). HLA-DRB1
haplotypes were more frequently identified markers in OA
(Rovetta et al., 2006).

FIGURE 4 | Venn diagram indicating the intersection genes among three datasets. (A) All DEGs, (B) upregulated DEGs, and (C) downregulated DEGs.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8705907

Zhou et al. Hub Genes Involved in Osteoarthritis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Three modules (modules A, B, and C) were constructed to
show the modules of the PPI network we obtained. Module A
was important, and nine upregulated genes including HLA-
DQA1, HLA-DQB1, HLA-DRB1, HLA-DRA, CD74, HLA-
DPA1, HLA-DPB1, HLA-DMA, and HLA-DMB were
involved in Module A. Previous reports indicated a linkage
disequilibrium between HLA-DRB1 genes and genes included
in the pathogenesis of OA (Moos et al., 2002). It would be
interesting to explore the association between OA and other

members from Module A, which may be helpful for
understanding the pathogenesis of OA.

Module B was also significant. There were six downregulated
genes (CCL20, CXCL2, CXCL8, CCL25, CXCL3, and CCL4) and
two upregulated genes (CCR5 and CXCL12) enrolled in Module
B. According to previous studies, several genes from Module B
have been confirmed to be important for OA. The levels of CCL20
can reflect the OA severity (Guan et al., 2019). In addition,
CXCL8 might be a novel therapeutic target for OA (Yang

FIGURE 5 | PPI network construction of DEGs. Low value of the combined score to small circle, circle with bright colors, and line with small sizes.
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et al., 2016), and CCL25 may be a candidate for therapy
approaches of cartilage repair (Lüderitz et al., 2018).
Therefore, it is important to reveal the functional role of other
genes from Module B, which may be interesting for discovering
more therapeutic targets of OA.

Module C was also critical, and six upregulated genes
including COL5A2, COL5A1, COL3A1, COL1A1, COL1A2,
and PCOLCE were found in Module C. A previous study
indicated that COL5A1 was involved in the OA synovium
elevation of collagens and cross-linking enzymes (Tsezou,
2014). One previous study showed that COL3A1 may be a
potential diagnostic biomarker for OA (Li et al., 2021).
Another study demonstrated that the expression levels of
COL1A1 and COL5A1 were significantly upregulated in OA
(Zhu et al., 2020). COL1A2 was reported to be related to hip
OA in the Newfoundland population (Snelgrove et al., 2005).
These genes from Module C may serve as diagnostic or
therapeutic targets for OA, while more experimental research
is needed to confirm this observation.

A previous study has reported that PDGFRB, IFNG, EGR1,
FASLG, andH3F3B fromGSE48556may be the potential targets for
OA diagnosis and treatment (Feng and Lian, 2015). Huang et al.
(2018) used GSE82107 to find that several molecular mechanisms
were implicated in the development and progression of synovitis in
OA. Bioinformatics analysis has now beenwidely used for predicting
potential pathogenic genes and proteins, which provides new
perspectives for disease diagnosis, treatment, and exploration of
the underlying pathological mechanisms. It is convenient and
effective to analyze the pathogenesis of OA using the GEO
dataset. However, the number of samples in a single dataset was
small, and the finding from a single gene profile was limited.
Integrated analysis of multiple gene profiles was advantageous,
and the conclusions may be more representative. Therefore, we
performed integrated analysis using three gene profiles in this study.

There were several limitations in our study. First, the design
including patient matching, differences in ages, differences in
preparations, and difficulties of statistical considerations was not
well handled. Second, in the present study, we did not conduct
independent validation assays including qPCR, biochemical
assays, and histology. Therefore, further experimental studies

with validation analyses are needed to confirm our findings.
Third, we did not perform any validation analysis to test
whether the findings could be extrapolated to another dataset.
Four, no statistical analysis was performed to specifically relate
control to OA samples across studies. Five, we did not find the
information of included patients in the GEO database; hence, no
baseline data of included patients were given in this study.

CONCLUSION

In summary, our study provides a comprehensive bioinformatics
analysis of DEGs by comparing OA and normal synovial tissues,
while more research on improving diagnosis of OA by regulating
DEGs is still needed. The results in the present study provided a
new insight into the molecular mechanism of OA, which may be
helpful for future studies to identify new diagnostic biomarkers in
the treatment of OA.
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