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Abstract: New international regulations aimed at decarbonizing maritime transportation are posi-
tively contributing to attention being paid to the use of liquefied natural gas (LNG) as a ship fuel.
Scaling up LNG-fueled ships is highly dependent on safe bunkering operations, particularly during
simultaneous operations (SIMOPs); therefore, performing a quantitative risk assessment (QRA) is
either mandated or highly recommended, and a dynamic quantitative risk assessment (DQRA) has
been developed to make up for the deficiencies of the traditional QRA. The QRA and DQRA are
both data-driven processes, and so far, the data of occurrence rates (ORs) of basic events (BEs) in
LNG bunkering SIMOPs are unavailable. To fill this gap, this study identified a total of 41 BEs and
employed the online questionnaire method, the fuzzy set theory, and the Onisawa function to the
investigation of the fuzzy ORs for the identified BEs. Purposive sampling was applied when selecting
experts in the process of online data collection. The closed-ended structured questionnaire garnered
responses from 137 experts from the industry and academia. The questionnaire, the raw data and
obtained ORs, and the process of data analysis are presented in this data descriptor. The obtained
data can be used directly in QRAs and DQRAs. This dataset is first of its kind and could be expanded
further for research in the field of risk assessment of LNG bunkering.

Dataset: https://doi.org/10.5281/zenodo.6527869.
Dataset License: CC-BY.

Keywords: maritime; decarbonization; LNG bunkering; simultaneous operations (SIMOPs); quantitative
risk assessment (QRA); data

1. Introduction

Maritime shipping, which represents 80-90% of international trade, is less carbon
intensive than other forms of transport [1]; however, due to the large volumes of freight
and long distances travelled, maritime shipping is responsible for about 3% of total global
anthropogenic greenhouse gas (GHG) emissions on a carbon dioxide equivalent basis [2]. In
recent times, the maritime industry has increased its efforts against global GHG emissions.
The International Maritime Organization (IMO) has set the target to cut the carbon intensity
of all ships by at least 40% by 2030, and to reduce total GHG emissions from global shipping
by 50% (compared to 2008 levels) by 2050 [3]. Further stringent requirements are expected
from the climate change agenda of the IMO’s Marine Environment Protection Committee
(MEPC), upon release of the Intergovernmental Panel on Climate Change (IPCC) report
after the 26th UN Climate Change Conference (COP 26) in Glasgow [4]; therefore, the need
to switch to low-carbon or zero-carbon alternative fuels seems urgent for the maritime
industry [5,6]. Given that zero-emission fuels, with the relevant technologies, such as green
hydrogen, green ammonia, and green methanol, are premature and might be introduced
after 2028 [7,8], liquified natural gas (LNG) is considered to be a suitable practicable
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transition option to address GHG emission reduction because of its low-carbon nature,
availability, proven technology, and affordability [9-12]. Currently, the demand for using
LNG as a ship fuel is growing. According to the society for gas, as a marine fuel (SGMEF),
about 240 LNG-fueled ships were ordered in 2021, which is more than all the LNG-fueled
ships ordered in the past four years worldwide [13]. Moreover, at the time of writing, in
early 2022, this trend does not seem to be slowing down [14]; for example, data showed a
record 48% share of all shipbuilding orders in the first quarter of 2022 were LNG-fueled
(excluding LNG carriers) [15]. From a long-term perspective, some researchers concluded
that utilizing carbon-neutral liquefied biomethane (bio-LNG) and green hydrogen-based
LNG (synthetic LNG or e-LNG) as drop-in solutions will expand the use of LNG as a ship
fuel even after the aforementioned zero-emission fuels become available [14,16-21], this
ensures that LNG-fueled ships are future-proof assets.

The availability of LNG bunkering is key to the uptake of LNG as a marine fuel. LNG
bunkering modes could be ship-to-ship, truck-to-ship, or onshore station-to-ship. In recent
years, more LNG bunkering infrastructures are emerging worldwide, and specifically at
bunkering ports such as Singapore and Rotterdam [13]. As of February 2022, a total of
98 ports have had the ability to supply LNG bunker fuel, and there are 35 LNG bunkering
ships in operation, with a further 24 ships on order [13]. To minimize the port stay for
ships, it is recommended that LNG bunkering and the associated operations (such as cargo
operations, port activities, and ship maintenance) should be conducted simultaneously,
which is referred to as ‘simultaneous operations’ (SIMOPs) [22]. Scaling up the LNG-fueled
ships is highly dependent on safe bunkering operations, particularly during SIMOPs.

The interactions between LNG bunkering and SIMOPs pose additional risks because
the operations are dynamically interlocked. To ensure the safety of LNG bunkering, SIMOPs
carrying out quantitative risk assessments (QRA) are either mandated or highly recom-
mended for understanding and mitigating the potential risks highlighted in the existing
regulations, rules, standards, and guidelines [22]. Furthermore, a dynamic quantitative
risk assessments (DQRA) method has been developed to capture real-time risks associated
with LNG bunkering SIMOPs [23]. When performing a QRA or DQRA, occurrence rates
(ORs) (or failure rates) of basic events (BEs) are essential data for analysis [23]. BEs are
referred to as root causes of unwanted consequences, such as cryogenic damages, fires,
and explosions [24-26]; however, as the LNG bunkering industry is still in its early stages,
the ORs of the BEs cannot be found in existing databases [27-30]. Spouge, ] compared
the leak frequencies from LNG bunkering hoses which had been used in published LNG
bunkering QRAs-related documents [31]. Similarly, Gerbec, M and Aneziris, O discussed
the uncertainties in the available data on LNG bunkering arms and hoses [32]; however,
the ORs of BEs involved in LNG bunkering SIMOPs have yet to be investigated for future
studies. So far, only two LNG bunkering accidents have been documented by the IMO [33];
hence, it is impossible to estimate the ORs of BEs based on the available information. Given
this, the impetus for this work comes from the lack of necessary data which are needed for
QRAs of LNG bunkering SIMOPs.

In this study, the BEs are identified, and the invited experts” qualitative expressions
(in linguistic terms) over the possibilities of the BEs are collected. Then, based on the fuzzy
set theory [34], the experts’ linguistic terms are converted into the fuzzy numbers (FNs)
which are further converted into the fuzzy ORs using defuzzification techniques and the
Onisawa function [35,36].

The fuzzy set theory was first introduced by Zadeh to cope up with the data shortage
in the conventional probability theory [34]. A fuzzy number (FN) does not refer to one
single crisp value, but rather to a connected set of possible values. It is a convex fuzzy
set, characterized by a given interval of possible values (real numbers), and each possible
value has its own weight between 0 and 1. The weight is called the membership function.
In recent decades, discussion of the approximation of fuzzy numbers has gained much
importance; for example, crisp, interval, symmetric triangular, symmetric trapezoidal,
triangular and trapezoidal approximations have been proposed by scholars [37]. The most
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commonly used fuzzy numbers are triangular and trapezoidal fuzzy numbers [38]. In
the existing literature, studies have demonstrated that the applications of the fuzzy set
theory contribute to risk assessment methods and safety-related decision-makings in the
real-world [39-44].

The dataset provided in this data descriptor is aimed at filling the gap for the lack of
the ORs required for the BEs in the field of the risk assessment of LNG bunkering SIMOPs.

2. Methods

This section presents the design strategy and methods applied to data collection and
data analysis.

2.1. Identification of BEs

Based on the IMO’s report of LNG bunkering accidents and SGMF’s guidelines of
LNG bunkering SIMOPs [33,45], a total of 41 BEs are involved in main ship types, and the
possible LNG bunkering modes are identified (see Table 1). For the different ship types, BEs
are categorized into seven groups, namely, G1: common events that might occur during
LNG bunkering SIMOPs for all ship types (BE1-BE18), G2: events for container ships
(BE19-BE25), G3: events for bulk carriers (BE26-BE31), G4: events for general cargo ships
(BE32-BE33), G5: events for tankers (BE34-BE35), G6: events for cruise ships (BE36-BE38),
and G7: events for offshore service vessels (BE39-BE41).

Table 1. The identified BEs.

Group No. Basic Event
Excessive ship motion due to operation of ship stabilizing system during cargo
BE1 loading/unloading.
BE2 Failure of mooring lines.
BE3 Failure of LNG bunkering breakaway couplings.
BE4 Failure of LNG bunkering dry-disconnect/connect couplings.
BE5 Gasket failure of the flanges of the LNG bunkering manifolds.
BE 6 Failure of water curtain protection system in the bunkering manifold area.
BE7 Failure of LNG drip tray in the bunkering manifold area.
BE 8 Failure of water spray system.
BE9 Failure of high expansion foam system (if applicable).
G1: Common BE 10 Failure of LNG bunkering ESD (Emergency Shutdown) system.
BE 11 Failure of gas detectors.
BE 12 Sparks/heat (hot work) from maintenance and inspection.
BE 13 Sparks from lifeboat drill or test.
BE 14 Sparks from local generators on shore.
BE 15 Sparks from vehicle movements on shore.
BE 16 Sparks due to failure of onboard (LNG receiving vessel) electrical lighting.
BE 17 Sparks due to failure of onshore electrical lighting.
BE 18 Failure of the mooring lines caused by waves created by the passing vessel.
BE 19 Containers dropping during cargo operation.
BE 20 Sparks from dropping containers.
BE 21 Sparks from refrigerated containers (not be intrinsically safe).
G2: Container ships BE 22 Sparks from port cranes and stacker/tractor-trailer units (not intrinsically safe).
BE 23 Dropping objects during stores loading/waste removal.
BE 24 Sparks from dropping objects during stores loading/waste removal.
BE 25 Sparks/heat from using electric motors-driven rolling hatch covers.
BE 26 Sparks/heat from using electric motors-driven rolling hatch covers.
BE 27 Sparks from port cranes and stacker/tractor-trailer units (not intrinsically safe).
. BE 28 Sparks from using cargo conveyer belts.
G3: Bulk carriers BE 29 Dropging large itemsgof cagrgo durir}ig operation.
BE 30 Sparks from dropping large items of cargo during operation.

BE 31 Sparks from using mechanical equipment to redistribute cargo.
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Table 1. Cont.

Group No. Basic Event
. . BE 32 Sparks/heat from using electric motors-driven rolling hatch covers.
G4: General cargo ships BE 33 Sparks from cargo delivery vehicles movements.
G5: Tank BE 34 Failure of the cargo transfer hose (hoses).
- rankers BE 35 Ignition of the flammable cargo/cargoes.
BE 36 Sparks from passenger/crew embarkation/disembarkation.
G6: Cruise ships BE 37 Sparks from passenger/crew safety drill.
BE 38 Sparks from passenger’s vehicle movements on shore.
Sparks from loading/back loading the rear decks with containerized and
BE 39 noncontainerized cargo.
G7: Offshore service vessels Sparks from dangerous goods, refrigerated containers (not be intrinsically safe) on
BE 40 the back deck.
BE 41 Sparks from vehicles movements on shore.

2.2. Ethics Approval

The online questionnaire method used in this work involves human information,
and therefore, an ethics application was submitted to the University of Tasmania’s Social
Sciences Human Research Ethics Committee on 13 January 2021, and it was approved on
9 February 2021 (Project ID:23903).

The survey invitations were distributed in China, where the authors had an extended
network of maritime and LNG-related expertise. The participants” professional fields,
professional positions, service years, and education levels were sought in the process of data
collection. The participants are referred to by numeric pseudonyms for confidentiality and
anonymity purposes. In other words, personal information is de-identified before analysis
and replaced by a code. The participants’ information is kept in password-protected
computers, which are separated from other data. All participants are assured that their
private information is kept strictly confidential.

2.3. Online Questionnaire

A closed-ended structured questionnaire was developed and made available to poten-
tial participants through online access with the Microsoft Forms tool. The questionnaire
includes the following sections:

e  Section A: demographics including four variables (professional field, professional role,
service years, education level).

e  Section B: Likert scale single-choice questions about possibilities of BEs that might
occur during LNG bunkering SIMOPs. The questions were classified into seven
subsections, in accordance with Table 1.

For the closed-ended questions, a seven-point Likert type scale was employed and
anchored with a range from “very low” to” very high”. The main reason for using seven
descriptors is that humans’ unidimensional judgment span is usually seven plus or minus
two (i.e., five to nine) [46]. The questionnaire is designed to have mandatory and optional
questions. The questions in G1 were set to be mandatory; the questions in G2-G7 were set
to be optional, considering that different experts have different levels of familiarity with
different ship types. See Document S1 available online.

2.4. Participants

Purposive sampling (also referred to as a judgmental or expert sample) was applied in
this study to gain representative samples [47]. This sampling strategy enables the authors
to utilize the participant’s expertise and familiarity in this research field. The criterion for
the selection of experts was that LNG bunkering-related knowledge or experience was
necessary. All participants had expertise in LNG bunkering-related fields from shipping
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companies, energy companies, maritime safety administrations, port authorities, classifica-
tion societies, ship design companies, shipyards, equipment manufacturers, and academia.

2.5. Sample Size

LNG bunkering is an emerging industry, and at the time of data collection, a conser-
vative estimate stipulates that there are about 500 qualified experts in China. A sample
size of 82 is recommended using the formula for the sample size in the literature [48]. In
this calculation, the population size is taken as 500, the margin of error is taken as 5%,
the confidence level is taken as 90% as a result of using the purposive sampling, and the
sample proportion is taken as 90%.

2.6. Data Collection

A total of 152 invitations were distributed via emails and social media messaging
apps including WeChat and WhatsApp. A total of 137 responses were received, as shown
in Figure 1, where there is a reasonable distribution of experts from different sectors.
The responses appeared to have higher percentage from energy companies, and a lower
percentage from maritime safety administrations and port authorities. This is because
experts from energy companies had accumulated more experience in LNG bunkering
practices, whereas maritime safety administrations and port authorities focused more on
safety management and had limited experience in the details of risk assessment. The
respondents were 78% Chinese companies or institutes and 22% international companies
or institutes based in China. It is believed that acquired data from the diversity of these
affiliations ensured a better reflection of the actual situation of the LNG bunkering industry.
The minimum number of responses to the individual questions for the optional part in the
questionnaire was 97, which meets the sample size criterion described in Section 2.5.

Others

Shipping companies
] 4% .
Academia 10%
8%

Equipment
manufacturers
10%

Energy companies
2400
Shipyards
6%

Ship design companies
15% Maritime safety
administrations

4“0

Classification societies
15%

Figure 1. The distribution of the participants.

2.7. Data Analysis

This subsection presents the process of data analysis.
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2.7.1. Experts’ Qualitative Expressions

A Likert scale is a psychometric scale that is used to represent people’s opinions and
attitudes on a topic or subject matter. When designing a Likert scale, the number of points
on the scale must be specified. In this study, a seven-point Likert scale is used to represent
the likelihood of a certain BE with 1 = “very low”, 2 = “low”, 3 = “fairly low”, 4 = “medium”,
5 = “fairly high”, 6 = “high”, 7 = “very high”. An expert’s expression of a certain question
represents the occurrence possibility of the BE per bunkering operation (a whole bunkering
process from start to finish).

There are two main reasons for using seven-point Likert scale in this study:

(1) Miller concluded that humans’ unidimensional judgment span is usually seven plus-
minus two, which means the suitable number of comparisons for a human to judge at
a time is between five and nine [46], and seven is the median.

(2) TheIMO has introduced a seven by four risk matrix for formal safety assessment (FSA)
for use in the maritime industry, it reflects seven potential variations for frequencies
and four potential variations for consequences; therefore, using seven linguistic terms
is in line with the habit of the experts in the maritime industry [49].

2.7.2. Converting the Experts” Qualitative Expressions into Quantitative Fuzzy
Corresponding Numbers

The trapezoidal fuzzy number is used in this study whose membership functions are
defined as Equation (1) [38], and is plotted in Figure 2.
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Figure 2. Trapezoidal fuzzy membership function [38].

A numerical approximation system is proposed to systematically convert linguistic
terms into corresponding fuzzy numbers. Chen and Hwang proposed eight conversion
scales (Scale one to Scale eight) which were based on previous extensive empirical studies
on the use of linguistic terms [50]. In the present study, the Scale six scale, which includes
seven linguistic terms, are adopted for estimating the occurrence possibilities of BEs as
shown in Figure 3 [50]. The effectiveness of the Scale six scale has been proven in the
literature [51-53].
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This scale translates an expert’s qualitative expression to a fuzzy number. For example,
if an expert’s qualitative expression on the occurrence possibility of a BE is “low”, then the
fuzzy number is (0.1, 0.2, 0.2, 0.3) according to Figure 3.

1.25+
very low fairly low medium fairly high high very high

1.00-
2
=
o
8 o075-
S
[
£
y—
© 0.50-
0}
o
=)
5}
0 0.25- / \

0.00-

0.0
X

Figure 3. The seven linguistic terms conversion scale.

2.7.3. Converting the Fuzzy Numbers about a Certain Question into an Aggregated
Fuzzy Number

The geometric mean and the linear opinion pool method could be employed to aggre-
gate experts’ opinions. The linear opinion pool is adopted in this study due to its advantage
of taking experts” weights into account [54]. The occurrence possibility of a certain BE is
affected by various factors, for example, the reliability of equipment, the environmental
conditions, safety culture of the industry, psychological factors of the operators, etc. In this
paper, experts’ engineering judgments are used to assess the possibility of occurrence by
considering these factors; however, an expert’s background and engineering experience
determine his/her judgment, therefore, the weight of each expert must be considered.

Based on the linear opinion pool method [55], the aggregated fuzzy number P; can be
expressed by Equation (2).

n
=Y (WixPj), j=123...,m 2)
i=1

where W; is the weight given to the expert i, and I ; w; = 1; P;; is a fuzzy number obtained
from the expression of the expert i about BE j, n is the total number of experts, whereas m
is the total number of BEs. For example, the 1st expert’s linguistic expression on the 1st
BE (BE1) is “very low” (see Figure 3), then Pjq is (0.0, 0.0, 0.1, 0.2), and the weight of the
1st expert to BE1 is 0.00657462, therefore, P; is (0.0, 0.0, 0.007, 0.0013). See Table S2 for the
detailed calculation in the Supplemental Material available online.

The weight given to the expert i is calculated using Equation (3) [56]. Table 2 presents
the weighting criterion of experts. The criteria and similar criteria can be found in the
literature [56-62]. WS

1

iz WSi ®

where WS; is the weight score of the expert i, WS; = PPS; 4+ STS; + ELS;, PPS;, STS;, and

ELS; represent the professional position score (PPS), the service time score (STS), and the
education level score (ELS) of the expert i, respectively.

Wi
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Table 2. Weighting criteria of experts.
PPS STS ELS
Category Score Category Score Category Score

Senior Manager (SM) 5 >30 years 5 PhD 5

Junior Manager (JM) 4 20-29 years 4 Masters 4

Engineer (E) 3 10-19 years 3 Bachelors 3

.. Vocational
Technician (T) 2 6-9 years 2 education 2
Worker (W) 1 <5 years 1 High school 1

2.7.4. Defuzzification

By defuzzification, the fuzzy occurrence possibilities of the BEs per operation can be
obtained so that it is easy to handle the fuzzy ORs. The defuzzification of a trapezoidal
fuzzy number (a, b, ¢, d) is given by Equation (4) based on the center of area method [63].

cd —ab

FOP = XCoA = % X
where FOP is the fuzzy occurrence possibility of the Bes per operation, and xcp4 is the
abscissa of the center of area of the trapezoid as shown in Figure 2. Thereafter, the function
developed by Onisawa is used for converting FOPs into fuzzy ORs per operation [36], in
which the fuzzy OR can be expressed by Equations (5)—(7).

1

R=—
OR = o= ®)
1
1 (1-FOP\?3
C=x* ( FOP ) ©)
1
K= — @)
10g10<ﬁ>

where K is a constant value, Pgc is taken as 5 x 1073 which implies a safety criterion [35].

3. Data Description

The data were collected over three months, from 21 February 2021 to 21 May 2021.

The raw data comprises four main parts, where details of the data are demonstrated
in a sampled table for further explanation in the following sub-sections.

The questionnaire form, the raw data and obtained fuzzy ORs, and the calculation
sheet for data analysis are published online at https://doi.org/10.5281/zenodo, accessed
on 4 April 2022.

3.1. Demographic Information of the Experts

In the first part of the raw data, experts” demographic information is presented. Table 3
shows the demographic information and their data types. The first row shows the attributes’
names, and the second row is the descriptions of the corresponding data, where expert E1
is taken as an example.

Table 3. The demographic information.

Expert ID PP PPS ST STS EL ELS
E1l M 4 10~19 3 Bachelor 3
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3.2. Expressions of the Experts to the Occurrence Possibilities of the BEs

In the second part of the raw data, the experts’ expressions are presented. Table 4
shows the data types, where expert E1 is taken as an example.

Table 4. The experts’ expressions to the occurrence possibilities of the BEs.

No. of BE
Expert ID
BE1 BE2 BE3 . BE41
El 1 1 1 ... NR!

1 NIR: No response.

3.3. Weight of Each Expert to Each BE

In the third part of the raw data, the weight of each expert to each BE (WBE) is
presented in Table 5, where expert E1 is taken as an example.

Table 5. The weight of each expert to each BE.

No. of WBE
Expert ID
WBE1 WBE2 WBE3 ... WBE41
E1l 0.006574622 0.006574622 0.006574622 ... 0

3.4. Fuzzy Occurrence Rates of BEs

In the fourth part of the dataset, the fuzzy ORs per operation of the BEs are presented
in Table 6.

Table 6. The fuzzy occurrence rates per operation of the BEs.

No. of BE
BE1 BE2 BE3 .. BE41
Occurrence rate 0.003999593 0.001529272 0.001229116 e 0.002692004

Figure 4 presents the fuzzy ORs of the BEs per operation. These values could be
directly used as input data when performing quantitative risk assessments of LNG bunker-

ing SIMOPs.
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Figure 4. The fuzzy occurrence rates per operation of the BEs.
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4. User Notes

The existing numerical risk criteria in performing quantitative risk assessment uses
“per year” as a unit. This is given in Table 7, which presents the IMO’s individual risk
criteria [49,64]; therefore, the duration of each LNG bunkering operation in hours, and
the number of LNG bunkering operations in a year for a specific LNG bunkering project,
should be estimated prior to converting ORs per operation into occurrence probabilities per
year. Thereafter, with the exponential distributions expressed by Equation (8), the annual
occurrence probability for a BE can be calculated.

OP =1 — (=D 8

where OP is the annual occurrence probability of a BE, A is the occurrence rate per hour
of a BE, t is the operational hours in a year. For example, for BE 3 (Failure of LNG
bunkering breakaway couplings), the OR per operation is 0.00123, if the duration of each
LNG bunkering operation is 5 h, then A = O'O%i = 0.000246, if the operational hours
in a year t = 124, then OP = 0.03, which means the annual failure probability of LNG
bunkering breakaway couplings is 0.03.

Table 7. The IMO’s individual risk criteria [49,64].

Description Criterion (Per Year)
Maximum tolerable risk for crew members 1x1073
Maximum tolerable risk for passengers 1x 1074
Maximum tolerable risk for public ashore 1x 1074
Negligible risk 1x107°

5. Limitation

Firstly, in this investigation there is a limited source for data collection, and the reader
should bear in mind that the study is based on experts from companies established in
China. In spite of its limitations, the study adds to our understanding in terms of the
quality required for generating a dataset of a dynamic risk assessment of an LNG SIMPOS
operation. A natural progression of this work would be to add more data to this dataset
obtained from experts in different region of the world.

Secondly, there are limitations to the purposive sampling method in this study. On one
hand, to some extent, the investigators are making subjective judgements when choosing
participants. On the other hand, it is hard to evaluate the reliability of the experts; this means
it is difficult to determine if there is a sampling error in the information that investigators
present. To minimize these limitations, the inclusion criteria for experts are defined for
screening the eligibilities of experts.

Thirdly, the weighting criteria of experts adopted in this study have limitations. There
are inhomogeneities of gaps between metrics, for example, the difference between a PhD
and Masters might be larger than that between vocational education and high school. Thus,
it deserves further study on quantifying the difference between metrics.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/data7050060/s1, Document S1: The questionnaire form; Table S1:
The raw data and obtained ORs; Table S2: The calculation sheet for data analysis.
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Abbreviations

BE Basic event

DQRA Dynamic quantitative risk assessment

ELS Education level score

ESD Emergency shutdown

GHG Greenhouse gas

IMO The International Maritime Organization
IPCC The Intergovernmental Panel on Climate Change
LNG Liquified natural gas

MEPC Marine Environment Protection Committee
OR Occurrence rate

PPS Professional position score

QRA Quantitative risk assessment

SGMF The society for gas as a marine fuel

SIMOPs  Simultaneous operations

STS Service time score

Symbols

A Fuzzy set

ELS; Education level score of the ith expert

FOP Fuzzy occurrence possibility of a certain BE
K Constant value

oP Annual occurrence probability of a certain BE
b Fuzzy number obtained from the expression of the expert i about BE j
p; Aggregated fuzzy number

PPS; Professional position score of the ith expert
Psc Safety criterion value

STS; Service time score of the ith expert

t Operational hours in a year

W; Weight given to the expert i

WS; Weight score of the expert i

XCOA Abscissa of the center of area of the trapezoid
A Occurrence rate of a BE per hour

ri(x) Membership function of the fuzzy set A
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