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ABSTRACT

Due to the nonlinearity and environmental uncertainties, the design of the ship's steering controller is a
long-term challenge. The purpose of this study is to design an intelligent autopilot based on Extended
Kalman Filter (EKF) trained Radial Basis Function Neural Network (RBFNN) control algorithm. The newly
developed free running model scaled surface vessel was employed to execute the motion control ex-
periments. After describing the design of the EKF trained RBFNN autopilot, the performances of the
proposed control system were investigated by conducting experiments using the physical model on lake
and simulations using the corresponding mathematical model. The results demonstrate that the
developed control system is feasible to be used for the ship's motion control in the presences of envi-
ronmental disturbances. Moreover, in comparison with the Back-Propagation (BP) neural networks and
Proportional-Derivative (PD) based control methods, the EKF RBFNN based control method shows better
performance regarding course keeping and trajectory tracking.

© 2020 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For the seagoing vessels, autopilots are widely utilised in various
aspects and circumstances. The adoption of autopilot is of vital
importance in reducing operating costs and human risks as it is
helpful to liberate the productive forces of deck-officers. In addi-
tion, the feasible autopilot would enhance the vehicle's motion
control reliability, especially for ships sailing in constrained waters
like straits, coastal waters, and area of traffic separation scheme. It
is also essential for the ship to accomplish special operations like
placing cables and replenishment at sea. Moreover, the develop-
ment of intelligent autopilot will speed up the applications of the
unmanned surface vessels to perform survey, monitoring and data
collection tasks.

Actually, the control of surface vessels remains a challenge
because of the nonlinear hydrodynamic characteristics and under-
actuation. Considering the reliability and simplification, the
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conventional proportional-integrative-derivative (PID) controller
has been extensively employed in designing autopilot. However,
when the ship encounters complicated external disturbances and
uncertainties, the control performance of the PID autopilot will be
significantly affected even using the gain scheduling method
(Tannuri et al., 2010). This is the reason why manual steering is
required when the ship is sailing on severe seas. In recent decades,
due to the development of the modern control theory, various
control strategies including genetic algorithm (Naeem et al., 2005),
back-stepping control (Dong et al., 2015), sliding mode control
(Wang et al., 2017a, 2018a), finite-time uncertainty observer based
control (Wang et al., 2018b) and fuzzy logic control (Rigatos and
Tzafestas, 2006) have been investigated to enhance the capability
of ship's autopilot. Although the benefits of the above-mentioned
control strategies are attractive, some limitations need to be
addressed, such as the time consumption of generation propaga-
tion, the unexpected tracking error generated from the previous
error conditions, and the difficulties in formulating the fuzzy con-
trol rules (Sun et al., 2014).

Prompted by the booming of computing technology, the neural
network based control became applicable in engineering practice.
Owing to the competent capability in approximating, neural
network control algorithms have been employed to design the
autopilot (Dai et al., 2012; Wang and Er, 2015; Wu et al., 2012; Wang
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et al., 2018c). In comparison with another multilayer feed-forward
neural networks, the Radial Basis Function Neural Network
(RBENN) is feasible to approximate unknown functions without
completing prior information (Park and Sandberg, 1991). Also, the
RBFNN has simple architecture and good generalisation capability,
which is beneficial to avoid unnecessary and lengthy calculation
(Liu, 2013). Thus, RBFNN is employed in this study.

It is known that the training algorithm is essential to the design
of the neural network controller. Besides the extensively utilised BP
training algorithm, other training methods including supervised
gradient descent and back-stepping have been investigated (Yahui
et al., 2004). Although these algorithms have been proved to be
effective in some applications, the relevant limitations cannot be
discarded: firstly, the calculation of dynamic derivatives regarding
the relative weights is computationally expensive (Sum et al,
1999); secondly, the training with gradient descent methods
tends to be slow and poor in approaching satisfactory results
(Trebatick, 2005). The attention to address these flaws became the
motivation for investigating more efficient network training
algorithm.

From another point of view, the process of neural networks
training can be considered as a parameter estimation problem. The
Kalman Filter (KF) or its variant are alternatives with the capability
of providing online approaches to optimise the weights of the
networks (Sanchez et al., 2008). Among them, the Extended Kal-
man Filter (EKF) algorithm can provide a mechanism in which the
weights can be updated immediately (Purushothaman, 2010). The
obvious difference between widely adopted BP and EKF training
method is that the former method only updates the weights,
whereas the EKF algorithm updates weights as well as approxi-
mation error covariance. In addition, contrary to some higher-order
training methods, the EKF based training algorithm for networks do
not require batch processing, making it less computationally
expensive in recursive usage. It is indicated that the converge speed
is improved and the number of design parameters is decreased
when the EKF training algorithm is applied to train neural networks
(Yang et al., 2007).

Based on the above-mentioned motivations, the EKF is adopted
as the training method of RBFNN based controller for ships sailing
with the environmental disturbances and observer uncertainties.
The main objectives of this study are: 1) to propose the EKF RBFNN
based control system to control the motion of surface vessel; 2) to
introduce the configurations of the newly developed free running
model scaled ship (FRMSS), which is constructed by the mecha-
tronic hardware and low-cost sensors; 3) to experimentally and
numerically conduct the validations of the proposed autopilot; 4) to
analyse the control performance of the developed autopilot
through the comparison with that of BP RBFNN and PD based
systems.

The paper is organised as follows: Section 2 introduces the
mechatronic elements of the employed FRMSS and the relevant
motion equations. The design of EKF RBFNN based autopilot is
presented in the following section with regard to the ship's tra-
jectory tracking. After that, numerical and experimental validations
are presented to verify the capability of the proposed controller.
The corresponding conclusions are drawn in the last section.

2. The free running model scaled ship and dynamic model of
motions

To investigate the proposed control system in a realistic engi-
neering environment, the FRMSS was employed to conduct the
numerical study and closed-loop experiments taking on the Tre-
vallyn Lake in Launceston (Tasmania, Australia). The physical model
is a 1:100 scaled replica of the ‘M/V Nedlloyd: Hoorn’ (the main

characteristics are outlined in Table 1), whose hydrodynamic
design and loading condition follow the properties of the full scale
ship. The geometric, kinetic and dynamic similarity principles were
preserved to guarantee that experiments results can be further
referred to real objects (Morawski and Pomirski, 1998). In this
section, the configurations of the ship and the four Degree of
Freedom (DOF) motion equations are presented.

2.1. Mechatronic of the free running model scaled ship

The mechanical and electronic elements of the ship were
installed in the Control Lab of Australian Maritime College. The
configurations of the physical model are shown in Fig. 1 with the
following five sub-systems:

1). Power supply system: 6 lead acid batteries are carried on the
ship to provide electricity to the electronic devices and actuators.
2). Actuators system: Twin propellers are driven by two indepen-
dent Brushless Direct Current (BLDC) motors controlled by two sets
of Escon 50/5 amplifiers; the deflection of the rudder is determined
by a medium speed servo motor driven by the pulse signal. 3).
Embedded computer platform: The device myRIO, produced by
National Instrument, is utilised as the embedded computer and
Real-Time I/O platform. It features a 667 MHz dual-core program-
mable processor and a customizable Xilinx FPGA, incorporating
with onboard memory and built-in WIFI module, to allow the users
to deploy and run LabVIEW program remotely. Various data
acquisition card ports are used to support the connections of SPI,
PWM and I°C. 4). Measurement system: The measurements are
accomplished by using the sensors, including digital compass, gy-
roscope and accelerometer. The measured data are processed and
logged in myRIO for further analysis. 5) Host computer: Host
computer installed the LabVIEW is used to deploy the program and
control the FRMSS remotely.

2.2. Motion equations of the surface ship

The motions of the ship contain three components: the position
and orientation vector n defined in eartg-fixed coordinate, the
linear and angular velocity vector v as well as the force and moment
vector 7 defined in body-fixed coordinate. The relevant items to
describe Hoorn's motion are illustrated in Fig. 2.

Normally, the three DOF mathematical model is sufficient to
describe the surface vessel's motion. However, the experimental
reading of the yaw rate transformed from the body-fixed coordi-
nate to earth-fixed coordinate is influenced by huge roll motion.
Thus, the ship's four DOF dynamic model is employed (Fossen,
1994) as Eq. (1):

(m+myti — (m+my)r =X

(m+my)i+ (m+ mour + myayr —myl,p =Y
(I + Jx)p — mylyv — mylyur + WHg = K

(I +J)r + myayv =N

where the involved items are outlined in Table 2.

Table 1
Main characteristics of the full scaled and model scaled ‘Hoorn'.

Items Values

Full Scale Vessel ~ Model Scaled Vessel

Length between perpendiculars (L) 247 m 2470 mm
Breadth (B) 32m 320 mm
Draft (D) 12 m 120 mm
Mass (m) 64,000 T 63.4 kg
Metacentric height (H) 0.875 m 8.75 mm
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Fig. 1. The configurations of the free running model scaled ‘Hoorn'.

The forces and moments in four DOF can be represented as Eq.

(2) (Xe Ye Kg Ng]l=ml[ay a; Laz Las]S
X
K| = Xt (1= 6) T+ Xegr + X + Xt 4+ Xpp? + (1 — te)Fy sin 0
N
You + Yo + Your© + Yourt?r + Yorvr? 4 Yoev?¢ + (1 4 ay)Fy cos 6 ;
Kov + Ke1 + Kpp + Kyt + Kyrt?T + Kyrvr? + Kyygt? ¢ + Kirg 2 b
+(1 +ay)zgFy cos 6 ;
Ny + Nyr + Iipp + Num/2V3 + Ny ;r Nywrt?T + Nyprvr? + Nwdﬂfzd’ 2)
+Nyppvdp” + NprgT* ¢ + NrggT ™ + (Xg + agxy)Fy €OS 6;
where Tp is the propeller thrust force and Fy is the rudder force, S 25weS + WﬁS — 2EWebWe 3)

which were identified by the captive test; ¢ is the rudder angle; X.,
Y., K. and N. with subscripts are the corresponding hydrodynamic
coefficients identified from the experimental method (Wang et al.,
2017b); ay, tp and tg are the parameters for describing the inter-
ference extents between the hydrodynamic forces and moments
acting on hull, propeller and rudder; xg, x4 and zi are the dimen-
sion parameters related to the ship's centre of gravity.

To describe the environmental disturbance acting on the ship,
the modified Pierson-Moskowitz (PM) wave spectrum model rec-
ommended by ITTC and outlined in Fang and Lee (2016) were uti-
lised and inserted into the right hands of the motion equations by
using Eq. (3)

RS S M L P

rcos¢
p

[X 4+ Xg + (m +my)vr] /my;
—[m33mgqa(Y + Yg — (M + my)ur) + msymaqa(K + Kg + mylur — WHe) + myyms3(N + Ng)]/mq
[m42m33(Y + Yg — (m + my)ur) + myymay (K + Kg + mylyur — WHe) + <m22m33 - m%z) (N + NE)] /ma

{ — Mamag(Y + Ye — (M + myur) + <m22m44 - m§2) (K + Kg + mylyur — WHg) + m3amap (N + NE)] / Mg

where o are the forces and moments of the waves, four a with
subscripts represent the environmental impact parameters in every
DOF, which were obtained by the experimental method in model
test basin, L is the length of the ship, S is the wave model in time

domain (Sgobbo and Parsons, 1999), we = wy, — ""TWZUmsﬁW is the

encounter wave frequency with speed at U and encounter angle 3,,,
wy is the wave frequency, g is the gravity coefficient, ¢ is the
damping coefficient, d,, is the wave intensity, and wg is a zero-
mean Gaussian white noise process used for generating the trans-
fer function.

Combining the forces and moments of environmental distur-
bances, the equations of ship's motion can be written into the form
of the ordinary differential equation (ODE) as Eq. (4)

(4)
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Fig. 2. The motion items of the surface vessel in Body-fixed Coordinate and Earth-fixed
Coordinate.

with myq = (m+my), my = (M+my), may = — myly, Mgy = —
myay, M3z = (Ix +Jx), Mag = (I +Jz), Mg = MyM33Mag — M3yMay —
mﬁzm33. When the ODE solver is selected, the dynamic changes of

the ship's attitude (i.e. [uvrpy d)}T) can be represented and
described. More details about the specified values of manoeuvring
and hydrodynamic parameters in four degrees of freedom (DOF)
motion equations can be seen in Appendix.

3. EKF trained RBFNN autopilot design

In this section, the RBFNN based autopilot is proposed for the
surface vessel. The main advantage of using RBFNN for controller
design is that it is not necessary to know the accurate model of the
ship in practical applications, even in the presence of unknown
uncertainties. Although the BP methods work well in training
neural networks, the convergence capability still needs to be risen
because the gradient is calculated for the error surface defined by
instant states but not the ensemble sates. In Ruck (1990), the BP
training method was explained as the degenerate form of EKF
training method mathematically. In this study, the utilisation of EKF
training algorithm, which can be interpreted as the application of
using EKF for parameters estimation, enables the RBFNN based
controller to address the vessel's dynamics with external
disturbances.

In this study, the RBFNN with three layers (namely, input layer,
hidden layer and output layer) was employed. Particularly, the
control law 1. estimated by the EKF RBFNN for the system can be
expressed by the following equations as Eq. (5)

. Je+é .
Z:[Xa Xa/.{€+€ Ae*Xd}
€
lz— |
h(z); = exP<2bz'

Uc(z) = % ii;@fh(z)i = %[Vv h(z)1 + W2h<z)2 + ...+ Wh (z)

Table 2
The items to describe the ship's four DOF motions.
Items Meaning
H Metacentric heights
Iy, I, Inertia moments about x-axis and z-axis
Jxo Iz Added inertia moments about x-axis and z-axis
Iy, Iy Centres of my and my about z- axis
m, W Mass and weights of the ship
my, my Added masses about x-axis and z-axis
T X, Y Forces in terms of surge and sway
K,N Moments in terms of yaw and roll
v DT Roll and yaw rate
u, v Surge and sway velocity
n X,y Position of the ship
oY Roll and yaw angle
ay Centre of my about x -axis

where z is the input matrix of the RBFNN based controller, y, is the
actual state of the plant being controlled, x, is the desired state, e =
Xd — Xq iS the deviation between the actual and desired state, A and
e are the design parameters to balance the converge speed and
approximation accuracy within the range [0 1], more details about
the construction of the input matrix as well as the parameters can
be seen in Ge et al. (2013); in this study, the states being controlled
are the yaw angle in vector 7 and the velocity in vector v which are
described in section 2.2; h(z); is the Radial Basis Function which
works as the activation function of each neuron, c is the centre of
the activation function and b is the width of the activation function,
6 is the limitation item of control law to constrain the action of
actuators within practical value which is normally determined
empirically, j is the total number of neuron nodes in the hidden
layer, w is the estimated weights updated by EKF algorithm in this
study, which can be executed in the following steps.

e Step Initialization

Initialize with (shown as Eqgs. (6) and (7)):
Initial weights wg = E[w) (6)

Initial covariance Py =E|(wq — Wq)(Wg — Wg)© (7)

Process noises covariance. Q
Observation noises covariance. R

e Step 1: Prediction transformation (shown as Egs. (8) and (9)):

Predicted weights: Wy_; =wj_; (8)

(5)
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Predicted covariance: Pyj_1 =Py_4 (9)

e Step 2: Observation transformation (shown as Eqs. (10)—(12)):

U D R |
OWy_q Wi 2b2?

Jacobin aatrix: Hy, =

Measurement covariance 1: P, = HyPy_{H}, (11)

Measurement covariance 2: Py = Py_{H}, (12)

e Step 3: Weights calculation and update (shown as Egs.
(13)—(15)):

Kalman gain K :P,Z‘/ (P,'( +R> (13)
Weights ﬁ,k = Wk\kfl —+ I(kS (14)

Approximate error covariance Py 1 =Py_1 — K HLP, +Q
(15)

where K is Kalman gain matrix for weights training in the k-th
iteration, Py, is the approximate error covariance matrix, wy, is the
estimated weights, Hy, is the Jacobian matrix which is derived from
the partial derivatives of the output of the system in relation to the
weights and equals to the matrix of neural activation functions, s =
e+ é is the augmented error item containing the deviation and
derivative of deviation between the desired and actual state, R and
Q are the observation noise and artificial process noise covariance
which is beneficial to avoid numerical divergence.

The architecture of the EKF RBFNN based autopilot can be ach-
ieved by using the above-mentioned control algorithm. The ve-
locity of the ship is controlled by changing the shaft speed of the
propellers to maintain the ship sailing with desired velocity. The
yaw motion of the ship is controlled by the fluctuations of the

Guidance System

Control System

rudder, whose control law is calculated by using the desired angle
¥4 and the actual yaw angle y as the elements of the RBFNN input
matrix. Specifically, the function of route tracking is fulfilled by
getting the dynamic desired yaw angle calculated by the Enclosure-
Based-Steering Line-of-Sight (EBS LOS) guidance method incorpo-

rated with actual position and pre-set waypoints, while the func-
tion of controlling yaw angle is fulfilled by controlling the actual
yaw angle to converge the desired yaw angle. As a result, the ac-
tuators will ensure the ship tracking the desired position and ve-
locity reference signal (see in Fig. 3).

The dynamic desired course angle y; to track the route can be
calculated as Eq. (16):

[Xjos — Xc| = 0, Yios —Yc>0

X105 — Xc| = 0, Yjos — ¥c <0

Vq=

Mg v

tan—! (7)/’“ — yc) others

Xjos — Xc
(16)

where (xc,yc) is the current position, (x5 , Yjos) is the position of
EBS LOS point, which is calculated by using the previous pre-set
waypoint, the following pre-set waypoint and orientation of the
pre-determined trajectory, more details can be seen in Fossen
(2011).

In order to evaluate the capability of the control system, the cost
functions of yaw error Cy and rudder deflection Cz were employed
in this study as follows (Burns, 1995) in Eq. (17):

Cy = (dyp* =0} (17)
i=0

i=0

where n is the total amount of the iterations, 4y; and J; represent
the yaw angle error and rudder deflection of the i -th iteration
respectively.

Plant

Disturbance
RBFNN based
Controller

( Signal Conditioning

| and Processing
Navigation System

Fig. 3. Illustration of the EKF RBFNN based control system for the ship with external disturbance.
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4. Numerical results and discussion

To validate the capabilities of the proposed EKF RBFNN based
autopilot and promote parameters tunning process, the numerical
studies are conducted by using the four DOF mathematical model
of ‘Hoorn’ shown in Tables 5 and 6 (Wang et al., 2017b). The inputs
of the mathematical model contain the rudder angle, shaft speed of
the propellers and the external disturbances. The maximum rudder
deflection was limited within +15 degrees, while the shaft speed
was constrained within +1000 rpm to avoid unreasonable acceler-
ation and deceleration. The external disturbance generated from
random waves was adopted in the ship's motion equations, and the
water depth was assumed to be infinite to disregard shallow water
effects and band effects. The Bogacki-Shampine method was used
to solve the ODE of the ship's motion responses in time series,
including the velocity of surge, sway, yaw and roll, the angle of yaw

and roll, the ship's position and the rudder angle. The parameters of
the RBFNN based controller were set at ¢ = 0.5 and A = 4, while the
parameters involved the EKF training algorithm were R = I; and
Q =0.1 xIy. The environmental impact parameter vector is
adopted as @ = [0.62 6.53 0.137 0.165]7 with equivalent sea state
4. In order to verify the performance of the proposed control sys-
tem, the BP RBFNN based controller and PD based controller
developed in Wang et al. (2015) were employed for comparison.
In the first scenario, the trajectory was planned from the initial
waypoint at (0, 0) to the following waypoint (—200, —200) before
heading to (—360, —800). The reference velocity was required to
increase from the initial value at 0.5 m/s to the desired value at
1.38 m/s. In order to avoid the mis-controlling, the preliminary
simulation was conducted by using the weights in Ge et al. (2013) to
train the controller to handle the ship's motion control and get
suitable initial weights matrix. In the following iterations, the

‘Desired trajecto
—P ascd contro
=== BP RBFNN based control
EKF RBFNN based control
0 T T T T T T T T T ‘
195 ’
50+ -
100 -
Es0
X
200 |
-250 =1
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-300 1 1 1 1 | 1 1 1 1
-500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0
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Fig. 4. Trajectory tracking of ship controlled by EKF RBFNN, BP RBFNN and PID based controller.
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Fig. 5. The ship responses under the control of EKF RBFNN, BP RBFNN and PID controller based on the designed trajectory.
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Fig. 6. Trajectory tracking of ship controlled by EKF RBFNN, BP RBFNN and PID based
controller.

weights were trained online to make the plant converge to the
desired state. The “convergent weights” were obtained in the stable
stage with the weights varied within small range, which means the
weights have adapted to the ship's inherent characteristics (Fang

Y. Wang et al. / International Journal of Naval Architecture and Ocean Engineering 12 (2020) 314—324

et al,, 2010). Then, the “convergent weights” were selected as the
initial base in the simulation validations. The following results
show that, by using this strategy, the ship converges to the desired
state with fast speed and small deviation even in the initial phase.
The trajectories and the motion responses of the ship advancing
according to the pre-set waypoints are shown in Fig. 4 and Fig. 5. It
can be seen that, on the first track segment with waves on the head
sea, the EKF RBFNN, BP RBFNN and PD based control system are
well tuned and capable of maintaining the sailing position of the
ship. When the third waypoint was selected for the guidance, the
orientation of the pre-set track changed to 255° with waves on the
bow sea, which led to the increase of the environmental distur-
bance acting on the ship. In order to counteract the changed
disturbance, the PD based control system performed large rudder
actions with high frequency. The EKF RBFNN based controller is
superior to other two controllers in counteracting the increased
external forces and moments using smooth rudder actions. It is
noticeable that the settling speed of using EKF RBFNN based
controller is also quicker than that of the BP RBFNN based
controller. This can be attributed to the converging speed of the
proposed training algorithm.

The same conclusion also can be drawn from the second sce-
nario, in which the reference sinusoidal trajectory with amplitude
at 20 m was adopted. The reference velocity was required to in-
crease from the initial value at 1.0 m/s to the desired value at
1.38 m/s. Overall, Fig. 6 and Fig. 7 illustrate that the EKF RBFNN
based control system is competent in trajectory tracking through
reasonable actions of actuators. Based on the above-mentioned
scenarios, the robustness of the proposed EKF RBFNN control sys-
tem has been verified. In comparison with the BP trained RBFNN
control system and PD based control system, the priorities of the
EKF RBFNN based autopilot consists of the effective rudder actions
and short settling time in coping with dynamical changes.
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Fig. 7. The ship responses under the control of EKF RBFNN, BP RBFNN and PID controller based on the designed trajectory.
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5. Experiment results and discussion

In order to mitigate the model-reality mismatch, the proposed
control algorithm was applied to the realistic process experimen-
tally. Normally, before the execution of control experiments, the
raw measurements collected from low-cost sensors cannot be
utilised directly because these measurements are easily affected by
the distortion, declination, uncertain bias and coloured noises.
Therefore, the signal conditioning and data filtering are required. In
the experimental study, the signal conditioning and Kalman filters
for yaw angle estimation were used and deployed in the experi-
ment programme in LabVIEW. Based on the current observation
and prediction states from the IMU readings, the most likely cur-
rent heading angle of the vessel can be optimised (Wang et al.,
2017c).

During the experiments, the approximate direction of the wind
generated waves was approximately at 45 degrees, the speed of the
south-west wind did not exceed 4 m/s, but the occasional wind was
strong around the Trevallyn Lake. The experiment programs (see
Fig. 8) were developed in LabVIEW, in which the data processing
algorithms and the EKF RBFNN based controller were written in M-
language using the Mathscript Node Module. In the controller, the
initial weights wg=[-160 -15 19 -30 -3 28 -22
22210 ] validated in the simulations were utilised in case of mis-

File Eft View Projoct Opewme Tech Wiedew Help ) —
(D[ @] tAmindenron -+ [fa o | @ T Y -TE:H?_‘
EKF Trained RBF Neural Network Based Autopilot for M/V 'Hoorn'
VININDY  Amc bl L, L M. N 08
Twin Propellers| % (@ s=» | *05' '@ s ||Data Saving|| Manual Steering|
" = 2 & FRmS s T e Rudse [deg]
= = cafie | . Tl
. Tegie name
st s s J
t USB Nash diwve wdo
¥ = a1 Y f
¥ 12 L I u|| = & ©
B 3 fokier rames
i : " | o) freabl P channl duty cycke %)
'——‘.i = 1 ree— 2o | =[5 |j§crenn B 6
ED ) - (Elom) - -
P sIA || e ¥R
_] 2234 |
|
= i
ange i 255,
R a0 | Fuwhage gy |
T S ¢ A |
LAl T Ld %
i -~ |
1-:;::-“
-,
(o Vow Ree! 01 ® Rollhngle 3¢

Fig. 8. The control panel of the host computer for remotely operating and monitoring
‘Hoorn'.

controlling, since using the random initial weights may lead to
the uncontrollable and mis-converge in the initial phase. The
FRMSS was fully loaded with propellers shaft at 900 rpm. The
control law for rudder alternation was constrained within
+15 degrees and the maximum slew rate was limited within
+10 degree/s. Once the control program was deployed into the
myRIO, the signal conditioning worked with the sampling rate at
10 Hz and the control algorithm also worked recursively with in-
terval time at 0.1 s. Because of the insufficient accuracy of the low-
cost GPS data and speed observation, the course keeping experi-
mental tests were only reported in this study.

The adopted courses are straight lines to guide the ship sailing
forward, so the direction of the ship will stabilise on the corre-
sponding yaw angle. To validate the control performance of the
proposed autopilot, two experiment scenarios with courses at 225°
and 255° were implemented (see Fig. 9). The parameters in the EKF
training algorithms and RBENN architectures consisted with that in
the simulations. As the communication range of the WIFI router is
about 100 m, experiment results in 100 s are reported.

The first set of experiments were conducted nearby the jetty
with the desired course at 225°. The performances of the proposed
control systems are illustrated in Fig. 10; while the cost values of
yaw error and rudder actions as well as the corresponding
maximum deviations are outlined in Table 3. The results indicate
that the EKF RBFNN based controller has successfully made the
FRMSS converge on the desired course smoothly. Although the BP
RBFNN based controller and PD based controller also maintain the
ship sailing on the preferred course, the maximum deviations are
larger than that of EKF RBFNN based controller. Meanwhile, the EKF
RBFNN based controller has lower rudder action costs in compar-
ison with the BP RBFNN and PD based control system.

The second set of experiments were conducted nearby a cape
with the desired course angle at 255°. The disturbances of waves
are larger than that of the previous experiment site. The experi-
ments results in Fig. 11 and Table 4 indicate that the EKF RBFNN
based controller has the highest precision in course keeping among
the three types of control systems. Although the increased external
disturbance leads to the large rudder actions in compensating the
environmental effects, the rudder actions of using EKF RBFNN
autopilot are still more effective in comparison with that of the BP
RBFNN and PD autopilot.

According to the above-mentioned experimental scenarios, the
EKF RBFNN based controller has been verified to be capable of
getting higher control accuracy and coping with the environmental
disturbances with efficient rudder actions. The comparisons also
demonstrated the superiority of the EKF based training method to
the BP based training method in fast converging speed.

Fig. 9. Experiment under the control of EKF RBFNN based autopilot.
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Fig. 10. Yaw angle and rudder action under the EKF RBFNN and BP RBFNN based control with desired course at 225°.

Table 3
The cost values and maximum values of yaw error and rudder action with yaw angle at 225°.
Controller Yaw Error Cost Maximum Yaw Error Rudder Action Cost Maximum Rudder Angle
PD 164.64 0.97 6923.75 7.9
BP RBFNN 107.54 0.71 3883.35 8.0
EKF RBFNN 21.21 0.53 1317.71 2.7
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Fig. 11. Yaw angle and rudder action under the EKF RBFNN and BP RBFNN based control with desired course at 255°.

Table 4
The cost values and maximum values of yaw error and rudder action with yaw angle at 255°.
Controller Yaw Error Cost Maximum Yaw Error Rudder Action Cost Maximum Rudder Angle
PD 47743 1.36 15,621.65 8.1
BP RBFNN 97.31 0.85 6806.92 7.5
EKF RBENN 34.50 0.43 3379.35 5.7
6. Conclusion algorithm has been proposed to improve the converge speed and
avoid computationally expensive. The newly developed free
In this study, the RBFNN based control system has been inves- running model scaled ship and the relevant mathematical model

tigated to achieve the trajectory tracking of the ship with sailing were adopted to verify the control performance of the proposed
uncertainties and unknown dynamics. The EKF based training controller. The robustness of the developed autopilot has been
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verified through analysing the motion responses of the ship
advancing with random environmental disturbances and complex
reference trajectory. In order to demonstrate the advantages of
proposed EKF RBFNN based control system, the performance of the
widely employed BP trained RBFNN control and conventional PD
based control for the same tasks have been adopted for comparison.
The experimental and numerical results have indicated that the EKF
RBFNN based autopilot is feasible to accomplish the tasks of ship's
motion control with small overshoot and short settling time.
Simultaneously, the actions of rudder using EKF RBFNN based
controller are smaller and smoother than that of the BP RBFNN
based controller. In conclusion, the main advantages of the EKF
RBFNN based control method consist in the rapid respond to the
sailing uncertainties and complex underactuation, as well as the
reasonable control actions.

From the view of commercial utilisation, the results indicate
that low-cost intelligent autopilot can be achieved based on the
control scheme executed on the current computing platform for
marine vessels. In future studies, further investigation will concern
the installation of the accurate positioning sensor to achieve tra-
jectory tracking and other complicated manoeuvres experimen-
tally. Also, remote communication technique with longer range will
be adopted to extend the experiment time to further investigate the
reliability of the control system. The study about the control of
automatic berthing and underthing by using the rudder as well as
the shaft speed difference of propellers will be investigated.
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Appendix. :Non-Dimensional Main Hydrodynamic and
Manoeuvring Characteristics of the Ship “Hoorn”
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Table 5
Main Hydrodynamic Coefficients of The Free Running Model in the Degree of Surge, Sway, Yaw and Roll.
Category Value Category Value
Sway Y, = — 0.0549 Surge Xu' = — 0.0024
Y, = — 0.00129 X' = — 0.0024
Y,,, = 0.02394 Xy = 0.0149
Y, = — 0.242 X' =0.0207
Y, = — 0.1299 Xy4' = 0.0166
Y, = — 00148
Roll K‘,’ = 0.00089 I(,”: 0.00013 Kp’/: 0.00006 N/,, = —0.0095 Nr = —0.0046 Np = —0.00008 )
K, = —0.0264 K, = —0.008 K|, = 0.0096 N, = 0.0034 N, = 0.0017 N,,,, = —0.0216 N,,,, = 0.0011

vIT

K,,, = —0.0103 K;;,, = — 0.00159

vIr

N,y = —0.0191 N,,, = ~0.0058 N,,,, = ~0.0033 N,,,,, = 0.0024

Table 6
Main Manoeuvring Characteristics of The Free Running Model Hoorn

Category Value

Category Value

Mass and Added Mass
Moment of Inertial
Interference Parameters

my’ = 0.0084 my = 0.000315 m," = 0.0075

tr =0.3825 ay = 0.237

I, =0.0000773 J,' = 0.0000154 I," = 0.002 J," = 0.002

Dimension Parameters ly, —=0.03 ay' =0.05

I, =0.031 H = 0.00354 zg' = 0.033
Xg = —05xy = — 045



http://refhub.elsevier.com/S2092-6782(18)30081-5/sref1
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref1
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref1
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref2
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref2
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref2
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref3
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref3
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref3
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref3
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref4
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref4
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref4
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref4
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref5
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref5
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref5
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref5
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref6
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref6
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref7
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref7
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref8
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref8
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref8
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref9
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref9
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref10
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref10
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref10
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref11
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref11
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref11
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref11
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref11
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref12
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref12
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref12
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref13
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref13
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref13
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref13
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref14
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref14
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref14
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref15
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref15
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref15
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref16
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref16
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref16
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref17
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref17
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref18
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref18
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref18
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref18
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref19
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref19
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref19
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref19
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref20
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref20
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref20
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref20
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref21

324 Y. Wang et al. / International Journal of Naval Architecture and Ocean Engineering 12 (2020) 314—324

filter. In: IIT. SRC 2005: Student Research Conference, vol. 57.

Wang, N., Er, M., 2015. Self-constructing adaptive robust fuzzy neural tracking
control of surface vehicles with uncertainties and unknown disturbances. IEEE
Trans. Contr. Syst. Technol. 23, 991-1002.

Wang, N., Lv, S., Zhang, W.,, Liu, Z., Er, M.J., 2017a. Finite-time observer based ac-
curate tracking control of a marine vehicle with complex unknowns. Ocean Eng.
145, 406—415.

Wang, N., Su, S.-F,, Han, M., Chen, W.-H., 2018a. Backpropagating constraints-based
trajectory tracking control of a quadrotor with constrained actuator dynamics
and complex unknowns. IEEE Trans. Systems, Man, and Cybernetics: Syst. 1-16.

Wang, N., Su, S.-F, Pan, X,, Yu, X, Xie, G., 2018. Yaw-guided trajectory tracking
control of an asymmetric underactuated surface vehicle. IEEE Trans. Ind. Inform.
15 (6), 3502—3513.

Wang, N., Sun, J.-C,, Han, M., Zheng, Z., Er, MJ., 2018c. Adaptive approximation-
based regulation control for a class of uncertain nonlinear systems without
feedback linearizability. IEEE Trans. Neural Netw. Learn. Syst. 29, 3747—3760.

Wang, Y., Chai, S., Nguyen, H.D., 2017b. Modelling of a surface vessel from free

running test using low cost sensors. In: Control, Automation and Robotics
(ICCAR), 2017 3rd International Conference on. IEEE, pp. 299—-303.

Wang, Y., Nguyen, H.D., Chai, S., Khan, F,, 2015. Radial basis function neural network
based rudder roll stabilization for ship sailing in waves. In: Control Conference
(AUCC), 2015 5th Australian. IEEE, pp. 158—163.

Wang, Y., Shuhong, C., Nguyen, H.D., 2017c. Modelling of a surface vessel from free
running test using low cost sensors. In: 2017 3rd International Conference on
Control, Automation and Robotics (ICCAR), 24-26 April 2017, pp. 299—303.

Wu, |, Peng, H., Ohtsu, K., Kitagawa, G., Itoh, T,, 2012. Ship's tracking control based
on nonlinear time series model. Appl. Ocean Res. 36, 1-11.

Yahui, L., Sheng, Q., Xianyi, Z., Okyay, K., 2004. Robust and adaptive backstepping
control for nonlinear systems using RBF neural networks. IEEE Trans. Neural
Network. 15, 693—701.

Yang, H., Li, J., Ding, F, 2007. A neural network learning algorithm of chemical
process modeling based on the extended Kalman filter. Neurocomputing 70,
625—-632.


http://refhub.elsevier.com/S2092-6782(18)30081-5/sref21
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref22
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref22
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref22
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref22
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref23
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref23
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref23
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref23
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref24
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref24
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref24
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref24
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref25
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref25
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref25
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref25
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref26
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref26
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref26
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref26
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref27
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref27
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref27
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref27
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref28
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref28
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref28
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref28
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref29
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref29
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref29
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref29
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref30
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref30
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref30
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref31
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref31
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref31
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref31
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref32
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref32
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref32
http://refhub.elsevier.com/S2092-6782(18)30081-5/sref32

	Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels
	1. Introduction
	2. The free running model scaled ship and dynamic model of motions
	2.1. Mechatronic of the free running model scaled ship
	2.2. Motion equations of the surface ship

	3. EKF trained RBFNN autopilot design
	4. Numerical results and discussion
	5. Experiment results and discussion
	6. Conclusion
	Acknowledgements
	Appendix. :Non-Dimensional Main Hydrodynamic and Manoeuvring Characteristics of the Ship “Hoorn”
	References


