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The contributions of species to ecosystem functions or services depend not only on 
their presence but also on their local abundance. Progress in predictive spatial model-
ling has largely focused on species occurrence rather than abundance. As such, limited 
guidance exists on the most reliable methods to explain and predict spatial variation in 
abundance. We analysed the performance of 68 abundance-based species distribution 
models fitted to 800 000 standardised abundance records for more than 800 terrestrial 
bird and reef fish species. We found a large amount of variation in the performance 
of abundance-based models. While many models performed poorly, a subset of mod-
els consistently reconstructed range-wide abundance patterns. The best predictions 
were obtained using random forests for frequently encountered and abundant spe-
cies and for predictions within the same environmental domain as model calibration. 
Extending predictions of species abundance outside of the environmental conditions 
used in model training generated poor predictions. Thus, interpolation of abundances 
between observations can help improve understanding of spatial abundance patterns, 
but our results indicate extrapolated predictions of abundance under changing climate 
have a much greater uncertainty. Our synthesis provides a road map for modelling 
abundance patterns, a key property of species distributions that underpins theoretical 
and applied questions in ecology and conservation.

Keywords: abundance-based species distribution model, biodiversity modelling, 
population density, random forest, species abundance model, species distribution 
model, systematic conservation planning

Introduction

Environmental change alters the occurrence and local abundance patterns of species 
(Antão et al. 2020b, Hastings et al. 2020, Lenoir et al. 2020, Román-Palacios and Wiens 
2020). Modelling species occurrence has helped predict the distribution and erosion 
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of biodiversity under unprecedented rates of environmental 
change (Pereira  et  al. 2013, Kissling  et  al. 2018, Jetz  et  al. 
2019). Species occurrence models, however, provide limited 
opportunities to understand local abundance changes that 
accompany species distribution shifts (Lenoir and Svenning 
2013, Bates et al. 2015, Hastings et al. 2020). Species present 
in high numbers at only a few sites can make large contribu-
tions to ecological processes, but a focus on occurrence would 
overlook these species (Table 1; Stuart-Smith  et  al. 2013, 
Williams  et  al. 2014, Johnston  et  al. 2015, Winfree  et  al. 
2015, Genung et al. 2020). Abundance trends can also act as 
an early warning signal of population collapse (Clements et al. 
2017, Ceballos et al. 2020), but occurrence patterns may not 
change until after local population depletion (Hastings et al. 
2020). To better inform spatial conservation planning, we 
must better monitor and predict species abundance (Margules 
and Pressey 2000, Pauly and Froese 2010, Mi  et  al. 2017). 
However, abundance-based species distribution models 
remain underdeveloped relative to occurrence-based models.

As in occurrence-based models, modelling abundance 
according to abiotic environmental conditions depends on 
assumptions of niche theory (Maguire 1973, Holt 2009). 
Critically, environmental conditions are assumed to affect 
demographic processes which in turn drive population dynam-
ics (Maguire 1973, Brown  et  al. 1995, Holt 2009, Pearce-
Higgins  et  al. 2015, Betts  et  al. 2019). For a given species, 
spatial abundance variation is a consequence of these links 
coupled with natural environmental gradients (Holt 2009). 
If this theory is accurate, predictions of local abundance from 
environmental factors should be possible (Maguire 1973, 
Martínez-Meyer et al. 2013, Waldock et al. 2019).

Yet, abundance does not appear to always be strongly 
constrained by theoretical niche properties in empirical 
data (Yañez-Arenas et al. 2014, Dallas et al. 2017, Osorio-
Olvera  et  al. 2019, Santini  et  al. 2019, Dallas and Santini 
2020, Holt 2020, Sporbert et al. 2020). For example, Allee 
effects, non-equilibrium population states, demographic sto-
chasticity and environmental variability act to weaken the 
link between environmental conditions and local abundance 
(Osorio-Olvera  et  al. 2019, Dallas and Santini 2020, Holt 
2020). If these factors dominate over macro-environmental 
constraints on abundance, then abundance will be poorly 
predicted using a species distribution modelling approach. 
Additionally, it is not clear whether there is always a strong 
linear link between predicted habitat suitability, or occurrence 
probability, and species local abundance (Vanderwal  et  al. 
2009, Dallas and Hastings 2018). If indirectly predict-
ing abundance from habitat suitability is ineffective, this 
demands us to explore more directly predicting abundance 
using species distribution models. At present, the expected 
predictive power when modelling abundance in relation 
to environmental conditions is poorly understood and not 
quantitatively reviewed over large datasets and a varied set of 
modelling frameworks.

Recent decades of statistical algorithm development pro-
vide an opportunity to evaluate the performance of abun-
dance-based species distribution models. Current abundance 

model evaluations examine only a limited set of statistical 
frameworks, and the best options may be overlooked (Pearce 
and Ferrier 2001, Potts and Elith 2006, Oppel et al. 2012, 
Bahn and McGill 2013). For example, if abundance is deter-
mined by nonlinear and complex interactions of environ-
mental factors, then machine-learning algorithms may be 
most appropriate (Merow et al. 2014, Zurell et al. 2016). In 
contrast, simpler models may be favoured if species environ-
mental responses closely follow simple unimodal functions 
(Austin 2002, Ready  et  al. 2010, Boucher-Lalonde  et  al. 
2012, Waldock et al. 2019). Simpler models are also expected 
to perform better when extrapolated to new environmental 
conditions (Merow et al. 2014, Brun et al. 2020).

Species distribution model performance is often associated 
with species and data characteristics. Establishing how and 
why model performance varies for different species is critical 
for conservation and management applications, particularly 
with respect to commonness and rarity. Common species, 
in terms of local and regional abundance, often contribute 
most to ecosystem functioning (Genung  et  al. 2020). Low 
abundance and range-restricted species may be prioritised 
for conservation, having higher extinction risk (Purvis et al. 
2000, Ceballos et al. 2020) and potentially playing unique 
roles in ecosystems (Violle et al. 2017). Species distribution 
models generally perform better for species with smaller 
ranges, lower endemicity and non-migratory behaviour; in 
addition, the number of observations positively affects per-
formance (McPherson and Jetz 2007, Newbold et al. 2009, 
Chefaoui et al. 2011, Thuiller et al. 2019).

The influence of species characteristics on abundance 
model performance is less well established. For certain spe-
cies, such as those with large and well-occupied ranges, it 
could be challenging to model abundance accurately because 
theory predicts for these species environmental niches play a 
smaller role in controlling abundance (Chisholm and Muller-
Landau 2011, Peterson et al. 2011, Yañez-Arenas et al. 2014, 
Chu  et  al. 2016, Bowler  et  al. 2017, Yenni  et  al. 2017, 
Hallett et al. 2018). In contrast, rare (low mean abundance) 
species that have narrow niches often exhibit more stable pop-
ulations and therefore abundance could be more predictable 
(Yenni  et  al. 2017). Additionally, data characteristics could 
affect the success of species distribution model performance. 
More samples generally improve species distribution model 
performance by being less geographically and environmen-
tally biased (Wisz et al. 2008) and should similarly improve 
abundance model performance (Yañez-Arenas  et  al. 2014). 
Yet, these effects have not been tested.

Here, we aim to provide practical guidance on apply-
ing statistical approaches to predict species abundance and 
identify factors most affecting predictive performance. We 
compare 68 abundance-based species distribution mod-
els fitted for two standardised abundance datasets contain-
ing more than 800 marine and terrestrial vertebrate species 
and over 800 000 abundance observations. We test model 
interpolative (within-sample) and extrapolative (out-of-
sample) performance. We ask how statistical framework and 
model complexity, and species and data characteristics, affect 
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Table 1. Role of species abundance information in applied ecology and conservation.

Research topic Benefit of abundance information Application

Monitoring 
biodiversity 
change

Population and patch extinction risk are better 
predicted by patch abundance rather than 
occupancy alone.

Schulz et al. (2020) show abundance in the previous year to be a 
strong predictor of glanville fritillary Melitaea cinxia butterfly 
patch occupancy, such that local abundance rather than average 
abundance determines local extinction risks.

If using a fixed focal area for surveys, species 
environmental response curves are better 
quantified using abundance, which provides 
more information than presence–absence.

Becker et al. (2019) modelled the influx of cetacean individuals to 
the California current system, using generalised additive models, 
during a heatwave event of 2014.

Quantitative changes in abundance within a 
species range are more informative than 
occurrence shifts (i.e. intermediate stages in 
range shifts, no change in range extent).

Fei et al. (2017) found that shifts in the spatial distribution of 
species abundance for tree species in the United States, from 
1980s to 2010s, were mostly due to subpopulations increasing 
in density from low initial abundance.

Abundance is more sensitive at detecting 
impacts on species distributions than 
occurrence.

Maxwell et al. (2019) synthesised 698 studied responses to 
extreme weather events and showed that abundance declines 
occurred in 100 cases, but local extinction occurred in only 31 
cases. Ricart et al. (2018) show that habitat-forming Codium 
vermilara algae in the north-west Mediterranean has declined by 
95% in terms of abundance, but only by 45% in terms of site 
occupancy.

Trends in abundance and species richness can 
be disconnected. 

Antão et al. (2020a) found contrasting patterns in assemblage 
abundance and species richness in Finnish moth assemblages 
over 19 years, with abundance declining despite species 
richness increasing.

Ecosystem function 
and services

Individuals contribute to ecosystem services 
rather than species. 

Winfree et al. (2015) found that, in real-world ecosystems, crop 
pollination was driven by abundance fluctuations of dominant 
bee species, whereas species richness was driven by rare species 
that contributed little to ecosystem function. 

Interaction strengths depend on the abundance 
of interacting species.

Matías et al. (2019) document how pathogen abundance 
determines cork oak Quercus suber mortality rates across the 
species distribution. More generally, Vázquez et al. (2007) show 
that asymmetry in interaction strength between hosts and 
consumers is correlated with abundance, so that rarer species 
are more negatively affected by abundant partners, but pairs of 
interacting abundant species exhibit reciprocally strong effects.

Geographic differences in patterns in evenness 
in abundance exist, such that the 
contributions of individuals and species to 
assemblage functional diversity vary at a 
macroecological scale.

Stuart-Smith et al. (2013) show that community evenness is higher 
in temperate reef fish assemblages, compared to tropical 
assemblages. This difference in assemblage evenness suggests 
that each fish species contribution to reef ecosystem functioning 
is higher in temperate than tropical regions. 

Productivity depends on number of individuals 
in an area, which can map differently to the 
area suitable for occupancy.

Kallasvuo et al. (2017) demonstrate that the most productive areas, 
with most individuals, only occupy a small area of the total 
suitable region for fish stocks in the Baltic Sea.

Management of 
biodiversity

Management goals are often to maintain 
abundance (biomass) of individuals rather 
than just presence.

Hutchings and Reynolds (2004) show breeding population sizes of 
economically valuable fishes have declined by 83%, 
undermining profitable fisheries, even though small populations 
still persist.

Extinction risk is often established based on 
population abundance change, which can 
be spatially variable.

Sherley et al. (2020) use 40 years of count data of African penguin 
Spheniscus demersus and model spatially dependent abundance 
change through time to identify regions in the geographic range 
at high risk of extinction. The overall decline in abundance was 
65% since 1989, indicating that the threshold for the IUCN 
‘Endangered’ Red List category had been crossed.

Spatial mapping of abundance for prioritization 
of area of conservation.

Flores et al. (2018) show how valley areas are important for 
maintaining high populations of Guanaco Lama guanicao in 
central Tierra del Fuego and spatial heterogeneity of abundance 
is greater in the breeding than in the non-breeding season.

Invader impact curves suggest impacts are 
threshold-dependent.

Simulations in the study by Yokomizo et al. (2009) indicate that 
impacts of invasive species depend on density, and that 
density–impact curve must be correctly identified to prevent 
overinvestment in management with little reduction in impact, 
particularly for species whose impact is only realised at high 
densities.
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metrics of model accuracy, discrimination and precision. We 
show that abundance-based species distribution models have 
great potential – additional to occurrence-based models – to 
generate insights in spatial ecology and biogeography and to 
improve systematic conservation planning outcomes.

Material and methods

Spatial abundance data

We obtained standardised estimates of species abundance 
across large regions for birds and shallow-water reef fishes from 
the Breeding Bird Survey of the USA (BBS) and Reef Life 
Survey (RLS), respectively (for detailed sampling schemes, 
see Pardieck et al. 2019 for birds and Edgar and Stuart-Smith 
2014 for fishes). For birds, abundance data comprise of 3-min 
counts of individuals sighted and heard within a 400-m stop 
radius along a transect of 50 stops. We summed bird species 
abundance across 50 stops within a sampled year and mean-
averaged abundances for a given species in a repeated site 
across the years 2014–2018. We aggregated abundances across 
years to better generalise our results to the structure of most 
abundance datasets, whereby yearly values across broad geo-
graphic regions are unlikely to be available (see the Supporting 
information for exploration of this assumption). We filtered 
out all samples that did not meet BBS-established weather, 
date, time, route completion, randomised sampling and sam-
pling protocol criteria (i.e. using BBS data with a run type of 
1). For fishes, abundance data are counts of individuals sighted 
along 50-m-long underwater transects (summed across 2 × 
5-m-wide blocks on either side of the transect line). We mean-
averaged RLS abundance estimates across multiple transects 
within sites, with sites defined as sets of transects <200 m apart 
(Edgar and Stuart-Smith 2014, Cresswell et al. 2017). As such, 
where sites are surveyed in multiple years, abundances were 
mean-averaged. We filtered sites geographically between 3°S 
to 50°S and 110°E to 165°E to select for Australian and Indo-
Pacific survey locations where sampling effort was most inten-
sive and comprehensive in the RLS dataset. For both BBS and 
RLS datasets, we removed species without full scientific names 
and fewer than 50 abundance records. We required species 
absences for two-stage models and abundance–absence mod-
els. We generated absences for each species by taking observa-
tions where species were present and finding all observations 
within a 1000-km buffer where species were not present. A 
lack of observed presence is not necessarily a ‘true absence’ but 
instead suggests species were undetectable with a reasonable 
sampling effort (Guillera-Arroita 2017). We analysed a total 
of 264 474 observations of 385 species in 3890 sites for birds 
in the BBS dataset and 567 669 observations of 495 species in 
2137 sites for reef fishes in the RLS dataset.

Covariates

We matched site locations to gridded environmental vari-
ables representing climate, biogeochemistry, land-use, depth, 
habitat area and human populations, retaining only variables 

with expected a priori relationships with abundance (see the 
Supporting information for details). Because of the high 
number of similar climate-related variables, and to avoid 
multicollinearity in these, we first applied robust principal 
component analysis (PCA) using package pcaMethods (ver. 
1.76.0; Stacklies  et  al. 2007) which is shown to be a good 
approach to reduce multicollinearity in species distribution 
models (SDM) (Cruz-Cárdenas et al. 2014, De Marco and 
Nóbrega 2018, Osorio-Olvera  et  al. 2020). Furthermore, 
we focused on predictive power to ensure our results were 
more robust to potential multicollinearity. We ran a separate 
robust PCA on 19 variables characterising climates across 
the bird survey locations (bio1–bio19) and on 15 variables 
characterising climatic and biogeochemical properties across 
the fish survey locations (mean, minimum and maximum of 
pH, salinity, chl-a, net primary productivity, degree heating 
weeks; indicated in the Supporting information). For each 
dataset, we retained three principal components, explain-
ing 87.8% and 77.8% variation, respectively, and used these 
principal component scores as predictor variables to sum-
marise the dominant climate and biogeochemical regimes of 
the data in each set of models (three PCA variables for birds 
and three PCA variables for fishes; Supporting information). 
In addition to the climatological variables, we also included 
additional environmental variables as predictors in our model 
that we expected to act independently. All non-PCA vari-
ables were mean-centred, normalised to a variance of 1 and 
transformed according to the Supporting information before 
modelling.

Analytical design

We analysed a large diversity of species abundance models 
that spanned a gradient in model complexity and different 
formulations of abundance data. Further, we assessed model 
performance for interpolation and extrapolation of cross-
validation scenarios (Fig. 1). Given that data requirements 
are a major challenge in fitting species abundance models, we 
chose species-level statistical models that were suitable for our 
goal of comparing predictive performance (i.e. not mecha-
nistic, hierarchical or multispecies/joint/multivariate SDMs). 
In total, we fitted and evaluated 68 types of species abun-
dance model (24 model frameworks by 3 response variable 
(abundance) formulations, less 4 models of zero-inflation 
that are not valid for abundance-only models = 68 models; 
see Supporting information for full model list). Combining 
models and cross-validations for 1547 species led to 59 840 
models to evaluate.

Our full species abundance model set comprises differ-
ent statistical algorithms, response transformations, error 
distributions and formulations of abundance data. We used 
24 model variants from common statistical distributions 
and transformations for abundance data that were avail-
able within statistical software packages in R (e.g. Poisson, 
negative binomial, zero-inflated, Tweedie, multi-nominal, 
log10-Gaussian, log-Gaussian; Supporting information). 
We chose statistical treatments of abundance data that are 
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Figure 1. Overview of analysis from data sources to model performance evaluations. Model evaluation metrics for accuracy, discrimination 
and precision are presented.
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common in the literature and valid to the error distribution 
of abundance. We fitted these 24 model variants using four 
statistical model fitting procedures: generalised linear models 
(GLMs), generalised additive models (GAMs; Wood 2011), 
gradient boosting machine (GBM; Friedman 2001) and 
random forests (RF; Breiman 2001). This model set varied 
in complexity of the relationship between abundance and 
environmental variables (linear to highly complex) and the 
behaviour of interactions within the models (none to many; 
Merow et al. 2014). For GLMs and GAMs, we used a range of 
error distributions rather than determining a priori the most 
appropriate error distribution for each species. This follows 
previous species abundance model comparisons (Potts and 
Elith 2006), which assumed that incorrect model specifica-
tion leads to poor predictive ability, and we focused our com-
parison of model performance on predictive ability (which 
also provided standardised assessment criteria across statisti-
cal algorithms). For all models, we included the same initial 
set of predictor variables, although each model framework 
had a different underlying variable selection procedure that 
identified independent sets of final predictors. The full model 
fitting procedure, algorithm parameters and justification for 
each modelling approach and software used are provided in 
the Supporting information.

In addition to model variants, we used three formulations 
of response data: abundance-when-present (for 20 model 
variants, less 4 zero-inflated models), abundance–absence 
(for 24 model variants) and an indirect two-stage modelling 
approach (for 24 model variants). For abundance-when-pres-
ent models, we removed all absences. Abundance–absence 
models were analogous to classic presence–absence data in 
species distribution models but using abundance estimates 
instead of presences. In abundance–absence models, we 
standardised prevalence (the number of absences compared 
to presences) across species, which can influence the estima-
tion of response curves from data characteristics alone when 
there are many more absences than presences (Meynard et al. 
2019). To do so, we bootstrap-subsampled the number of 
absences to be twice the number of presences, repeating this 
procedure 10 times and averaging abundance predictions 
across bootstraps. Finally, our indirect two-stage modelling 
approach first modelled habitat suitability as a traditional 
SDM by converting abundance–absences into presence–
absences. Next, we used the habitat suitability predictions 
from this model as a single covariate to predict abundance. 
Note, this is not a hurdle approach but instead tests the 
assumption that habitat suitability correlates to, and predicts, 
local abundance (Vanderwal et al. 2009). Details for fitting 
SDMs to produce occupancy predictions are provided in the 
Supporting information.

Model evaluation: accuracy, discrimination and 
precision

We evaluated the consistency between predicted and observed 
abundance using metrics of: 1) accuracy; 2) discrimination 
and 3) precision (see Fig. 1 for equations; Norberg  et  al. 

2019). Accuracy is the degree of proximity to a known truth, 
measured here using mean absolute error between observed 
and predicted abundance, expressed as a proportional error 
by dividing the mean absolute error by the mean observed 
abundance for a species (Amae). Discrimination measures how 
well model predictions discern low values from high values 
of observed abundance, e.g. in the correct overall ordering 
of abundances. This is a continuous analogue of occurrence 
SDMs discerning between present and absent. We mea-
sured discrimination using both Spearman’s rank correlation 
(DSpearman) and Pearson’s correlation (DPearson) between pre-
dicted and observed abundance. In addition, we estimated 
the slope and intercept of a linear model between predicted 
and observed abundance (Dslope, Dintercept). Precision measures 
the information content in the predictions as the variation in 
predicted abundance relative to the variation in the observed 
abundances. Precision differs from accuracy because esti-
mates can be precise with high information content even if 
overall predictions were biased. Here, we measured precision 
as the SD of the predicted abundances (Norberg et al. 2019). 
However, we compared this value to a reasonable expecta-
tion of precision because each species has a different range 
of abundance values. Therefore, we estimated the SD of pre-
dicted abundance and divided this by the SD of observed 
abundance and call this property Pdispersion.

Accuracy, discrimination and precision capture differ-
ent facets of model performance and so could be considered 
together or separately depending on the purposes of the 
modelling exercise. For example, a model can predict mean 
abundance of a species well (high accuracy) but poorly dis-
criminate between high and low abundances (low discrimi-
nation). We focused our results mostly on discrimination 
because identifying changes in spatial and temporal variation 
in abundance, a goal of conservation and wildlife manage-
ment, depends on good discrimination of abundance values 
between sites or time periods. Further, accuracy and preci-
sion may depend on the quality of sampling, but inaccurate 
sampling may still provide reasonable estimates of spatial and 
temporal differences in abundance. We identified an ‘optimal 
model’ based on the most discriminatory model for each spe-
cies. To do so, we rescaled the four discrimination metrics 
between 0 and 1, averaged the score across the scaled metrics 
and identified the model with the highest average score per 
species – we report this as the ‘optimal model’ throughout.

Note that we avoid confounding performance in pre-
dicting presence–absences from performance in predicting 
abundance by only evaluating predictions for species abun-
dances when present (i.e. we exclude any abundance values 
predicted in sites where species are absent in the observed 
data). Although many reviews exist identifying the best occu-
pancy-based frameworks for predicting presence or absences 
(Norberg et al. 2019), our novel contribution focuses on pre-
dicting species abundance. In practice, to obtain abundance 
estimates, both occupancy and abundance predictions should 
be combined (Denes et al. 2015).

We assessed whether a rescaling correction could improve 
the biases in abundance predictions between predicted and 
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observed abundance. This bias appears systematically in 
quantitative ecological predictions (Pearce and Ferrier 2001, 
Fukaya et al. 2020, Ploton et al. 2020). We rescaled predicted 
values to take the range of observed values using the follow-

ing formula 
predicted min observed

max observed min observed
-
-

( )
( ) ( )

 and assessed 

how this procedure affected model performance indicated by 
our evaluation metric set.

Model cross-validations and transferability to novel 
climates

We evaluated model performance using two cross-validation 
strategies. We evaluated how well models predict abundance 
when 1) interpolating within environments (within-sample) 
and 2) extrapolating into novel climate conditions (out-of-
sample). The first scenario applies when models are inter-
polated to fill geographic gaps in sampling within a species 
range. The second scenario applies, for example, when mod-
elling species abundance under climate change. When test-
ing interpolation within sample environments, we randomly 
held out 20% of the abundance data and fitted models to the 
remaining 80%. This within-sample model evaluation used a 
random subset of sites within the full covariate space.

Our second cross-validation strategy tested model trans-
ferability in novel conditions. Transferability measures if 
models can be projected beyond environments found within 
bounds of the covariate data. Given the rate of anthropogenic 
environmental change, models will be best applied when they 
are also accurate in novel conditions with no past analogues 
(Evans 2012, Sequeira  et  al. 2018a). Model transferability 
can be low if models are overfitted, exhibit non-stationarity 
or are missing important covariates (Yates et al. 2018). We 
built separate models following the above protocol to test 
model transferability. To do so, we non-randomly sampled 
20% data from above the 80th quantile of sea-surface tem-
perature in reef fishes and above the 80th quantile of the cli-
matological PCA-1 in birds and fitted our abundance models 
to the remaining 80%. We estimated all evaluation metrics 
within the out-of-sample cross-validation sets as above. In 
both scenarios, we assumed that cross-validation frames were 
independent of the training data frames (Randin et al. 2006, 
Roberts et al. 2017).

We did not perform k-fold cross-validation for the full span 
of covariate space because we wanted to gain an understand-
ing of abundance estimates from directional environmental 
novelty due to climate change (e.g. predicting abundance in 
warmer temperatures than that fishes currently experience in 
the oceans). As a hypothetical example, if we split a tempera-
ture gradient from 20 to 30°C into 20–22, 22–24, 24–26, 
26–28 and 28–30°C bins and examined performance on each 
bin, spatial autocorrelation would lead to an underestimate 
of model performance in novel future climates when evaluat-
ing the middle bins. Under temperature warming, we there-
fore only used the highest 20% bin threshold for exploring 
extrapolation (i.e. transferability to novel climates). To ensure 

cross-validation scenarios of interpolation and extrapolation 
were comparable, we used only one 20% subsample for the 
interpolation (random) subset also. Although this procedure 
is not encouraged in general for SDM fitting and evalua-
tion, for good reason (Roberts et al. 2017), it suits our spe-
cific cross-validation goals (Sequeira et al. 2018a, Yates et al. 
2018). We expected our findings to be robust to any small 
biases introduced by only performing one-fold cross-valida-
tions because of the high number of species included in the 
exercise. We did, however, perform 10-fold cross-validations 
when sub-sampling species absences to ensure findings were 
robust to variation in the locations of species absences.

Species and data characteristics

We tested how characteristics of species abundance, fre-
quency and data availability affected model performance. To 
explain variation in model performance among species, we 
calculated 1) the mean abundance of species when present; 
2) the proportion of presence compared to absence records 
(within 1000 km of presence records) in the observational 
data (% occupied sites) and 3) the total number of presence 
records per species (overall observation number). Although 
the frequency of occurrence and the total number of pres-
ences are collinear in bird and fish datasets (rho = 0.87, 
rho = 0.67, respectively), we included both because unbiased 
estimates of coefficients are achieved through multiple regres-
sion (Morrissey and Ruxton 2018). We log10 transformed 
and standardised predictor variables to have unit variance 
and removed outliers (points > 2 SD from the mean) from 
the response variables. Next, we fitted multiple regressions 
that explained how the model evaluation metrics depended 
on our three measures of species characteristics. For simplic-
ity, we present these results using DSpearman due to the high 
number of comparisons and the importance of model dis-
crimination highlighted above. We first fitted a full model, 
including three two-way interactions between pairs of pre-
dictors. We performed backwards stepwise model selection 
and selected the model with the lowest Akakike information 
criterion (AIC) score using the R package MuMIn (Burnham 
and Anderson 2002, Barton 2017). We plotted marginal 
effects by predicting model effects for a given variable across 
the mean value of all other model covariates. We fitted these 
models using phylogenetic generalised least squares using 
the R package caper using maximum likelihood to estimate 
Pagel’s λ (Blomberg and Symonds 2014, Orme et al. 2018). 
We used published bird (Jetz  et  al. 2012, 2014; <https://
birdtree.org/downloads/>) and fish (Rabosky  et  al. 2018; 
<https://fishtreeoflife.org/downloads/>) phylogenetic trees.

Results

Overview of model performance

We first assessed performance by applying all frameworks 
to all species and evaluating interpolative prediction of 



8

within-sample observations. Doing so, model performance 
was highly variable and generally low (Supporting informa-
tion). For example, across all models and species, DSpearman 
had a median of 0.29 (5th percentile = −0.17, 95th per-
centile = 0.64), median Dslope was 0.06 (−0.07 to 0.47) and 
median Amae was 0.74 (0.48–1.52). As such, of the complete 
model set (n = 68), only 51% of species had at least one 
model with a DSpearman above 0.5; 53% of species had at least 
one model with a Dslope between 0.5 and 1.5, and 29% of spe-
cies had at least one model with Amae predicting mean abun-
dances within 50% of observed mean abundances. Overall,  
13% of species had models fitting all the above criteria.

We next investigated the best-fitting algorithm for each 
species independently, keeping only the single best model 
for each species (i.e. our ‘optimal model’). Random forests 
were most often selected as the optimal models for dis-
crimination (precision, accuracy) being best for 51% (55%, 
44%) of the species, gradient boosting machines for 22% 
(26%, 21%) and generalised linear models and generalised 
additive models for 16% (9%, 23%) and 12% (10%, 13%) 
of species, respectively (Fig. 2). Building models using 
abundance–absence data led to the best discrimination 
(precision, accuracy) performance for 68% (30%, 36%) 

of species, 19% (24%, 51%) using only species abundance 
and 14% (46%, 14%) using a two-step indirect approach 
relating abundance to occurrence probability (Supporting 
information).

When selecting an optimal model for each species, model 
performance was good for most metrics (Fig. 3, Table 2). For 
example, there were positive correlations for most species 
between observed and predicted abundances, and the error of 
average abundance estimation was relatively low. Specifically, 
median DSpearman was 0.48 (0.14–0.72) and 0.43 (0.17–0.72) 
for bird and fish surveys, respectively, and median Amae was 
0.62 (0.43–0.97) and 0.69 (0.46–1.34), respectively. Some 
measures of model performance were poor, leading to a biased 
relationship between observed and predicted abundances and 
a poor estimation of abundance variation. Specifically, Dslope 
was 0.25 (0.02–0.68) and 0.20 (0.01–0.99) for bird and fish 
surveys, and Pdispersion was 0.51 (0.12–1.27) and 0.44 (0.05–
1.67), respectively.

Predictions of abundance from optimal models had a 
high correspondence with observed abundances, on average 
across all species, in both fish and birds (Fig. 4). However, 
as indicated by the evaluation metrics, the overall relation-
ship was biased to be shallower than a 1:1 correspondence 

Figure 2. Counts of the model framework (top row) and abundance response treatment (bottom row) to which the most discriminatory 
model for each species belongs. Breeding Bird Survey is shown in the left panels, and Reef Life Survey in the right panels. Colour shading 
indicates whether model predictions were from the within-sample model runs (dark) or out-of-sample model runs (light). See the Supporting 
information for counts using most accurate and most precise models, as well as combining all metric groups.
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between observed and predicted abundance by models con-
sistently overestimating low abundance and underestimating 
high abundances (Fig. 4; see the Supporting information for 
breakdown across individual optimal models). Applying a 
rescaling correction (rescaling-predicted abundances to the 
observed abundance range) for each species helped to correct 

this systematic bias. Model performance improved as indi-
cated by  Dslope (before correction = 0.20–0.25 to after correc-
tion = 0.50–0.56) and Pdispersion (0.44–0.51 to 1.10); however, 
performance decreased when indicated by Dintercept (1.7–2.2 to 
5.6–5.9) and Amae (0.64–0.69 to 0.88–0.94; see full results in 
the Supporting information).

Figure 3. Box plots of model performance of most discriminatory model for each species across all six metrics. Colours indicate Breeding 
Bird Survey and Reef Life Survey, whereas shading indicates within-sample and out-of-sample cross-validations. Dashed lines indicate target 
values for each metric. Note that the type of model is not necessarily the same for a given species in the within-sample and out-of-sample 
comparisons, as indicated in Fig. 2. Central lines correspond to median values, hinges correspond to 25th and 75th quantiles and whiskers 
correspond to 1.5× the hinges. Outliers are excluded from visualisations. See the Supporting information for performance of most accurate 
and most precise models, as well as combining all metric groups.

Table 2. Summary of evaluation metrics of model performance for most discriminatory models comparing within- and out-of-sample cross-
validations, median and interquartile range (IQR) for all species within datasets are presented. Amae is the proportional error of estimated 
mean abundance compared to observed mean abundance having a target value of 0. DPearson and DSpearman are correlation coefficients having 
a target value of 1. Dintercept is the number of individuals predicted from a linear regression between observed and predicted at 0 observed 
individuals. Dslope is the slope of this regression having a target value of 1. Pdispersion is a dimensionless ratio of the SD of predicted abundance 
over the SD of observed abundance having a target value of 1.

Metric
Within-sample Out-of-sample

Q0.05 Q0.25 Median Q0.75 Q0.95 Q0.05 Q0.25 Median Q0.75 Q0.95

Breeding 
Bird 
Survey

Amae 0.43 0.54 0.62 0.70 0.97 0.47 0.65 0.78 0.92 1.88
Dintercept 0.68 1.44 2.23 3.40 9.95 0.00 0.40 1.57 4.42 19.38
Dslope 0.02 0.15 0.25 0.36 0.68 0.00 0.05 0.10 0.19 0.45

DPearson 0.15 0.37 0.49 0.61 0.74 0.09 0.23 0.34 0.46 0.65
DSpearman 0.14 0.36 0.48 0.61 0.72 0.10 0.24 0.34 0.46 0.62
Pdispersion 0.12 0.34 0.51 0.68 1.27 0.04 0.18 0.32 0.55 1.25

Reef Life 
Survey

Amae 0.46 0.59 0.69 0.84 1.34 0.45 0.66 0.83 0.97 1.43
Dintercept 0.25 0.90 1.68 5.75 93.70 −0.01 0.42 1.50 4.68 62.63
Dslope 0.01 0.10 0.20 0.38 0.99 0.00 0.02 0.06 0.16 0.49

DPearson 0.15 0.33 0.48 0.63 0.84 0.05 0.21 0.36 0.50 0.74
DSpearman 0.17 0.31 0.43 0.56 0.72 0.04 0.22 0.34 0.47 0.67
Pdispersion 0.05 0.25 0.44 0.72 1.67 0.00 0.07 0.20 0.41 1.25
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Model transferability to novel conditions  
(i.e. out-of-sample)

Transferring models to novel conditions, the best-performing 
algorithm for each species in terms of discrimination (preci-
sion, accuracy) shifted to GLMs being the best for 33% spe-
cies (27%, 39%), RF for 29% (40%, 20%), GAMs for 19% 
(19%, 17%) and GBM for 19% (15%, 24%) of the species 
(Fig. 2, Supporting information). Building models using abun-
dance–absence data remained the best-performing treatment of 
response data in terms of discrimination (precision, accuracy) 
for 60% (33%, 35%) of species, with 21% (41%, 38%) of spe-
cies having best models when using only species abundances 
and 20% (26%, 27%) using a two-step approach (Fig. 2).

Transferring models to novel conditions reduced model 
performance for most metrics across both birds and fishes 

(Table 2, Fig. 3). The general discrimination of high and low 
abundances remained (median DSpearman was 0.34 for birds 
and 0.34 for fishes). Dslope declined by more than half com-
pared to within-sample cross-validations (median Dslope was 
0.10 for birds and 0.06 for fishes). Accuracy also decreased 
compared to within-sample cross-validations, with a median 
of 0.78 and 0.83 in birds and fishes, respectively.

Predicted abundance still corresponded with observed 
abundances on average across all species, in both fishes 
and birds (Fig. 4), despite the poorer model performance. 
However, similar issues with a biased intercept and slope 
exist in the out-of-sample cross-validations as for the within-
sample cross-validations and were similarly corrected for by 
the rescaling procedure (Fig. 4; see the Supporting informa-
tion for breakdown across individual optimal models and for 
comparisons with rescaling).

Figure 4. Contour plots of observed abundance versus model-predicted abundance across Breeding Bird Survey and Real Life Survey data-
sets. Upper panels show within-sample interpolation and lower panels show out-of-sample extrapolation of predicted values . Dashed line 
indicates 1:1 correspondence. Colour intensity indicates the number of records within contour. Both axes are log10+1 transformed and 
rescaled between 0 and 1 to show ability of models to discriminate abundance values. To avoid species with more data-dominating patterns, 
for each species, we binned observations into 30 bins and estimated the mean predicted abundance for each observed abundance bin. Note 
that, due to the 0–1 transformation, a value of 0 is the minimum observed or predicted abundance value.
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Species and data characteristics

The variation in model performance explained by species and 
data characteristics varied among performance metrics and 
was higher in general for within-sample (R2 = 0.04–0.44) 
compared to out-of-sample cross-validations (R2 = 0.01–
0.33; Supporting information). All six evaluation metrics 
were affected by species or data characteristics in both birds 
and fishes (Supporting information). Pintercept had the most 
variation explained by species and data characteristics in both 
birds and fishes (R2 of 0.42–0.44).

We present the example metric DSpearman, which had an R2 
between 0.16 and 0.33. The effects of species and data charac-
teristics on DSpearman were highly consistent across within- and 
out-of-sample predictions and across both datasets (Fig. 5, 
Supporting information). More observations decreased the 
DSpearman. Higher frequency of occurrence increased DSpearman 
but only if species also had high number of observations. 
Species with higher abundance had higher DSpearman only if spe-
cies had high frequency too. This last effect was not evident 

for fish species in out-of-sample predictions. Phylogenetic sig-
nal (Pagel’s λ) in the residuals was very weak ranging from  
0 to 0.17.

Discussion

We demonstrate the capacity to predict spatial patterns in 
abundance for many species if an appropriate model frame-
work is chosen. The predictability of abundance using only the 
environmental response shapes of species has probably been 
under-appreciated somewhat, in part due to many options for 
statistical models and only a few providing acceptable predic-
tions. For example, using GAMs and GLMs, Johnston et al. 
(2013) found a low rank correlation of 0.19 for predicted and 
observed seabird densities and therefore focused on coarser 
spatial scales for predictive analyses (see also Illan et al. 2014). 
Our results support that correlative abundance models could 
have an important role in quantifying the changing spatial 
patterns of species abundance due to environmental change, 

Please sFigure 5. Effect of species and data characteristics on DSpearman for Breeding Bird Survey (a–c) and Reef Life Survey (d–f ). Plots dis-
play marginal effects from multiple regressions fitted using phylogenetic generalised least squares for within-sample cross-validations. Lines 
represent mean predicted values. Shaded areas show uncertainty as mean ± (SE × 1.96) of coefficient values. All effects are significant at an 
alpha of 0.05, and interaction terms are only shown when significant. Full statistical results across all metrics, datasets and cross-validations 
are displayed in the Supporting information. See the Supporting information for effect of species and data characteristics on DSpearman in 
out-of-sample predictions.
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although many challenges remain. Here, we discuss our rela-
tive success and challenges in modelling abundance to better 
guide future applications.

Successful aspects of species abundance models

A small number of good approaches for predicting species 
abundance emerged after exploring a large set of models. 
Correlation values from our optimal models were higher than 
~0.3 for more than 75% of species and higher than ~0.6 for 
25% of species (Table 2). Our finding that RF perform well 
at within-sample prediction provides solid evidence that spe-
cific case studies reporting similar results, such as in Balearic 
shearwaters Puffinus mauretanicus (Oppel et al. 2012), apply 
more generally, at least across the 800 species of bird and fish 
tested here. The high discrimination, precision and accu-
racy of RF would improve confidence in assigning regions as 
important abundance-priority areas for conservation.

A focus on linear functions relating environments to local 
abundances may have previously reduced predictive perfor-
mance. More flexible response curves of machine-learning 
approaches allow for what may often be highly nonlinear 
abundance niche shapes (Pearce and Ferrier 2001, Potts 
and Elith 2006, Renwick  et  al. 2012, Betts  et  al. 2019). 
Further optimised algorithms and deep learning approaches 
may better integrate abundance into biodiversity indicator 
frameworks, given the much better performance of machine-
learning approaches here (Jetz et al. 2019). If abundance has 
been perceived to be poorly explained by climate or other 
variables in the past, it could be falsely concluded that broad-
scale variables only weakly affect abundance and that abun-
dance niches are more strongly constrained by factors other 
than species fundamental niches (but see Illan  et  al. 2014, 
Dallas and Santini 2020).

Accurate prediction of local abundances with abiotic vari-
ables supports the theoretical prediction that fitness optima 
along abiotic niche axes filters down to determine ecologically 
successful locations of high population growth rates (Maguire 
1973). The prediction of abundance from abiotic niche axes 
has been questioned by recent empirical studies (Dallas and 
Hastings 2018, Santini  et  al. 2019, Sporbert  et  al. 2020). 
These studies determine environmental effects on abundance 
indirectly from habitat suitability or environmental cen-
troids. Here, we directly relate abundance to environmental 
conditions which provides a more direct quantification of 
species abundance niche with fewer assumptions (Osorio-
Olvera et al. 2020).

Modelling abundance directly was better than an indirect 
approach (i.e. comparing our abundance–absence models to 
two-stage models) for more than 80% of species. This find-
ing indicates that spatial abundance and occurrence patterns 
are somewhat mismatched or at least not always congruent 
(although it is challenging to completely disentangle abun-
dance from occurrence, and vice versa). Mismatches arise 
from different ecological controls of abundance and occur-
rence, such as different demographic rates controlling each 
to different extents (McGill 2012, Johnston  et  al. 2015, 

Acevedo  et  al. 2017, Bohner and Diez 2020, Dallas and 
Santini 2020, Schulz  et  al. 2020, Yancovitch Shalom et  al. 
2020). Understanding such mismatches offers an important 
avenue for better understanding range and abundance shifts 
under climate change (Geppert et al. 2020) and potentially 
guiding spatial management and conservation. For example, 
a focus on occurrence can miss critical patches of high abun-
dance driven by a few isolated factors (Johnston et al. 2015, 
Suggitt et al. 2018). Such ‘strongholds’ for species could be a 
common feature of ecological communities. Moving species 
distribution models beyond modelling occurrences, to help 
identify such areas, will require improving knowledge of spe-
cies responses to environmental gradients using multiple per-
formance metrics (i.e. occurrence, abundance, demographic 
rates) (Ehrlén and Morris 2015, Ashcroft et al. 2017, Bohner 
and Diez 2020).

Current limitations and challenges in species 
abundance models

We identify two important challenges in abundance models 
here. First, we systematically over-predict low observed abun-
dances and under-predict high observed abundances (Pearce 
and Ferrier 2001, Fukaya  et  al. 2020, Ploton  et  al. 2020). 
Second, having more observations led to lower discrimina-
tion between high abundance sites and low abundance sites. 
These issues may jointly arise as we undoubtedly miss key 
biotic (e.g. ecological interactions) and microclimatic vari-
ables from our models (Lembrechts et al. 2019), leading to 
unexplained extreme local abundances.

Missing inter- and intraspecific interactions has been 
a well-recognised problem in predictive occurrence-based 
species distribution modelling (Guisan and Thuiller 2005, 
Wisz et al. 2013, Mouquet et al. 2015, Pollock et al. 2020). 
For abundance-based models, species interactions can drive 
population feedbacks that may be important for explaining 
extreme abundances, but are missing from models in general, 
leading to poor predictive performance. Recent theoretical 
work highlights how interaction feedbacks can modify abun-
dance along environmental gradients, even if the fundamen-
tal niche shape is unimodal (Kéfi et al. 2016, Liautaud et al. 
2019). In addition, behavioural aggregations from seasonal 
migrations or resource booms can lead to extreme abun-
dances, challenging the identification of appropriate statisti-
cal response distributions (Lindén and Mäntyniemi 2011). 
These points emphasise the need to better understand how 
local environments, individual behaviour and species inter-
actions together shape macroecological abundance pat-
terns. Novel joint species distribution modelling approaches 
(Ovaskainen et al. 2017), or direct estimation of interaction 
strengths (Wootton and Emmerson 2005) are promising 
tools to help address such questions.

Abundance-based species distribution models could be 
further improved by considering fine-scale microclimatic 
data, a concept gaining traction for occurrence-based species 
distribution models (Potter et al. 2013, Bennie et al. 2014, 
Lembrechts et al. 2019) and critical for better conservation 
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planning in the face of climate change (Roslin et al. 2009, 
Isaak  et  al. 2017). Microclimate variation within grid cells 
can arise from variations in topography, aspect (Bennie et al. 
2008, Graae et al. 2018) and land-use features (Chen et al. 
1999, 2006, Zhao et  al. 2014, Senior  et  al. 2017) that fil-
ter species locally, and affect abundances, depending on spe-
cies physiological and climatic niches (Ashcroft et al. 2014, 
Nowakowski  et  al. 2018, Waldock  et  al. 2020). Including 
fine-scale temporal variability of environmental predictors 
may also improve model performances by better representing 
the duration and timing of key life-history events that influ-
ence population dynamics (Supporting information; Andrew 
and Fox 2020, Perez-Navarro et al. 2021).

Incorporating environmental variation at the appropri-
ate spatiotemporal scale for a given species is a critical area 
for model improvements (Roslin et al. 2009, Ashcroft et al. 
2014, Rebaudo  et  al. 2016), especially for projections of 
future climate effects on species occurrence and abundance 
(Gillingham et al. 2012, Hannah et al. 2014, Maclean et al. 
2015, Woods et al. 2015). Our sensitivity analysis indicates 
improved model fit with improved data resolution for some 
species, but not all, when using just one year of BBS data linked 
to a finer temporal resolution of climate data (Supporting 
information). This finding indicates species-specific behav-
iour (migratory versus non-migratory), mobility (sedentary 
or mobile, home-range size), life-cycle (hibernators versus 
year-round activity) and environmental niche characteristics 
(breadth, plasticity) could contribute to the resolution and 
windows of microclimatic data required to accurately esti-
mate local abundances and occurrence (Bennie et al. 2014, 
Lembrechts et al. 2019).

An additional problem, not present in occurrence-based 
models, is that the probability of sampling a system in an 
extreme abundance state is higher with more samples, lead-
ing to outlier points (i.e. bright spots or dark spots). Perhaps 
these outliers could be an avenue to unveil important predic-
tors of locations of hyper-abundance or bright spots which 
in turn can comprise important targets for conservation 
(Cinner  et  al. 2016, Frei  et  al. 2018). Biased predictions 
and unexplained outliers have important consequences. For 
example, the shallower slope of predicted versus observed 
abundance will underestimate change in abundance when 
the environment changes. In contrast, the likelihood of per-
sistence will be overestimated because abundance losses in the 
last stages of population decline are poorly captured by models 
such as ours (Bates et al. 2014). As such, separate models for 
occurrence and abundance patterns will need to be calibrated 
and outputs combined. For occurrence-based models, more 
data generally leads to better models (Chefaoui et al. 2011), 
and we identify the opposite here with the consequence that 
for abundance-based models, data-poor species perhaps gen-
erate overconfident models, a caveat worth exploring further.

We identify that the transferability of species abundance 
models to novel environmental conditions is presently lim-
ited. This shortcoming also applies to occurrence-based spe-
cies distribution models (Sequeira  et  al. 2018a, Yates  et  al. 
2018) and models of family-level abundances (Sequeira et al. 

2018b) but may be exacerbated when considering species 
abundance. Models with perfect discrimination of presence–
absence can still have poor predictive power of abundance 
values because more mechanisms underlie abundance varia-
tion, and errors in capturing each mechanism using statistical 
response functions will accumulate (Bahn and McGill 2013, 
Johnston et al. 2015). We demonstrate model performance 
also declines when predicting outside the bounds of even 
a single covariate (rather than a spatial block (Ploton et al. 
2020)), with strong consequences for future climatic 
predictions.

Novel climatic conditions are fast emerging (Williams 
and Jackson 2007) and hence solutions that improve model 
transferability are urgently needed (Radeloff  et  al. 2015, 
Harris  et  al. 2018). Whilst mechanistic models offer accu-
rate predictions at coarse spatial scales (Fernandes et al. 2013, 
2020), further integration with correlative frameworks may 
enable prediction at fine scales and in novel environments 
(Cheung  et  al. 2008, Fernandes  et  al. 2020, Gamliel  et  al. 
2020).

Which species to target for abundance-based 
species distribution modelling?

Our consideration of strengths and limitations of species 
abundance models can help guide their application for pre-
dicting the spatial distribution of species abundance for sys-
tematic conservation planning (Margules and Pressey 2000, 
Pinsky et  al. 2020, Pollock et  al. 2020). Importantly, from 
a conservation perspective, we outline how model perfor-
mance relates to rarity and thus extinction risk. Our results 
suggest that species with low frequency of occurrence and 
low mean abundance will be more challenging to predict. 
Perhaps such species are only weakly constrained by physi-
ological niche limits and more strongly constrained by meta-
population dispersal, microclimate effects and availability of 
resources, hosts or prey items (Selig et al. 2014, Venter et al. 
2014, Mouillot et al. 2016, Suggitt et al. 2018). In contrast, 
common and abundant species that mostly contribute to eco-
system functions and services may be good targets for species 
abundance modelling (Winfree  et  al. 2015, Mouillot  et  al. 
2016). We also highlight how the treatment of abundance 
data can modify how well models perform in accuracy, dis-
crimination and precision, which could have important 
consequences depending on the target application. Here, 
consideration of species abundances as well as changes in 
occurrence should greatly assist understanding how biodiver-
sity change affects ecosystem functioning and human well-
being (Johnston et al. 2015, Kissling et al. 2018, Pinsky et al. 
2020).

Conclusions

Species abundances in localised field surveys can be predicted 
for a large number of species on the basis of broad-scale envi-
ronmental and human factors, such as climate, land cover and 
habitat area. Species abundance models showed surprisingly 
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similar performance for species from two very different taxo-
nomic groups and ecological contexts. Transferring models 
to novel conditions was very challenging, however. Models 
fitted better for more frequently encountered and abundant 
species, highlighting that abundance models may be most 
applicable to questions relating to ecosystem function and 
service provision rather than in modelling rare or endemic 
species under extinction threats. When common species 
are to be prioritised (Pinsky et al. 2020), species abundance 
models could be used in many ways, providing spatial maps 
of species abundance, landscape scale estimates of ecologi-
cal processes and services (Gilby et  al. 2020) or helping to 
identify regions with large, stable, viable populations that can 
act as sources and facilitate reserve spillover and ecosystem 
stability (Halpern et al. 2010, Rondinini and Chiozza 2010, 
Timus  et  al. 2017, Cabral  et  al. 2020; Table 1). We argue 
that spatial abundance models can provide critical biodiver-
sity information with the potential to improve the ecologi-
cal relevance and species conservation applications of species 
distribution models.

Acknowledgements – We thank the many Reef Life Survey (RLS) 
divers who participated in data collection and provided ongoing 
expertise and commitment to the program. We thank the North 
American Breeding Bird Survey Dataset for providing access to the 
data and the thousands of participants who annually perform and 
coordinate the survey. CW was supported by the BiodivERsA grant 
Reef-Futures (SNF_184118). JT acknowledges Research Council 
of Norway-funded project BiodivERsA (Reef-Futures, no. 295340). 
WWLC acknowledges funding support from the Natural Sciences 
and Engineering Research Council of Canada for the BiodivERsA 
project Reef-Futures. Reef Life Survey uses the NCRIS-enabled 
Integrated Marine Observing System (IMOS) infrastructure for 
database support and storage, with support from Antonia Cooper 
and Elizabeth Oh. Thanks for IT and server support from Dominic 
Michel, Hussain Abbas and Benjamin Flück. Thanks to ‘Reef-
Futures’ workshop attendees who provided constructive feedback 
on this work in addition to Jonathan Chase and Valentin Verdon 
who provided valuable feedback on previous manuscript drafts.
Funding – CW and JT supported by BiodivERsA Reef-Futures no. 
295340.

Author contributions

Conor Waldock: Conceptualization (lead); Data cura-
tion (lead); Formal analysis (lead); Investigation (lead); 
Methodology (lead); Software (lead); Validation (lead); 
Visualization (lead); Writing – original draft (lead); Writing – 
review and editing (lead). Rick D. Stuart-Smith: Data cura-
tion (equal); Writing – review and editing (equal). Camille 
Albouy: Funding acquisition (equal); Writing – review and 
editing (equal). William W. L. Cheung: Writing – review 
and editing (equal). Graham J. Edgar: Data curation (equal); 
Writing – review and editing (equal). David Mouillot: 
Funding acquisition (equal); Writing – review and edit-
ing (equal). Jerry Tjiputra: Data curation (equal); Writing 
– review and editing (equal). Loic Pellissier: Funding 

acquisition (equal); Supervision (equal); Writing – review 
and editing (equal).

Transparent Peer Review

The peer review history for this article is available at <https://
publons.com/publon/10.1111/ecog.05694>.

Data availability statement

Data are available from Figshare: <https://doi.org/10.6084/
m9.figshare.16930180.v1>  (Waldock et al. 2021).

Supporting information

The supporting information associated with this article is 
available from the online version.

References

Acevedo, P. et al. 2017. Population dynamics affect the capacity of 
species distribution models to predict species abundance on a 
local scale. – Divers. Distrib. 23: 1008–1017.

Andrew, M. E. and Fox, E. 2020. Modelling species distributions 
in dynamic landscapes: the importance of the temporal dimen-
sion. – J. Biogeogr. 47: 1510–1529.

Antão, L. H. et al. 2020a. Contrasting latitudinal patterns in diver-
sity and stability in a high-latitude species-rich moth commu-
nity. – Global Ecol. Biogeogr. 29: 896–907.

Antão, L. H. et al. 2020b. Temperature-related biodiversity change 
across temperate marine and terrestrial systems. – Nat. Ecol. 
Evol. 4: 927–933.

Ashcroft, M. B. et al. 2014. Testing the ability of topoclimatic grids 
of extreme temperatures to explain the distribution of the 
endangered brush-tailed rock-wallaby Petrogale penicillata. – J. 
Biogeogr. 41: 1402–1413.

Ashcroft, M. B. et al. 2017. Moving beyond presence and absence 
when examining changes in species distributions. – Global 
Change Biol. 23: 2929–2940.

Austin, M. P. 2002. Spatial prediction of species distribution: an 
interface between ecological theory and statistical modelling. 
– Ecol. Model. 157: 101–118.

Bahn, V. and McGill, B. J. 2013. Testing the predictive perfor-
mance of distribution models. – Oikos 122: 321–331.

Barton, K. 2017. MuMIn: multimodel inference. – R package ver. 
1.40.0. <https://cran.r-project.org/web/packages/MuMIn/
index.html>.

Bates, A. E. et al. 2014. Defining and observing stages of climate-
mediated range shifts in marine systems. – Global Environ. 
Change 26: 27–38.

Bates, A. E. et al. 2015. Distinguishing geographical range shifts 
from artefacts of detectability and sampling effort. – Divers. 
Distrib. 21: 13–22.

Becker, E. A. et al. 2019. Predicting cetacean abundance and dis-
tribution in a changing climate. – Divers. Distrib. 25: 
626–643.

Bennie, J. et al. 2008. Slope, aspect and climate: spatially explicit 
and implicit models of topographic microclimate in chalk grass-
land. – Ecol. Model. 216: 47–59.



15

Bennie, J. et al. 2014. Seeing the woods for the trees – when is 
microclimate important in species distribution models? – 
Global Change Biol. 20: 2699–2700.

Betts, M. G. et al. 2019. Synergistic effects of climate and land-cover 
change on long-term bird population trends of the western USA: 
a test of modeled predictions. – Front. Ecol. Evol. 7: 186.

Blomberg, S. P. and Symonds, M. R. E. 2014. Modern phyloge-
netic comparative methods and their application in evolution-
ary biology. – Springer.

Bohner, T. and Diez, J. 2020. Extensive mismatches between spe-
cies distributions and performance and their relationship to 
functional traits – Ecol. Lett. 23: 33–44.

Boucher-Lalonde, V. et al. 2012. How are tree species distributed 
in climatic space? A simple and general pattern. – Global Ecol. 
Biogeogr. 21: 1157–1166.

Bowler, D. E. et al. 2017. Cross-taxa generalities in the relationship 
between population abundance and ambient temperatures. – 
Proc. R. Soc. B 284: 20170870.

Breiman, L. 2001. Random forests. – Mach. Learn. 45: 5–32.
Brown, J. et al. 1995. Spatial variation in abundance. – Ecology 

76: 2028–2043.
Brun, P. et al. 2020. Model complexity affects species distribu-

tion projections under climate change. – J. Biogeogr. 47: 
130–142.

Burnham, K. P. and Anderson, D. R. 2002. Model selection and 
multimodel inference: a practical information–theoretic 
approach. – Springer.

Cabral, R. B. et al. 2020. A global network of marine protected 
areas for food. – Proc. Natl Acad. Sci. USA 117: 28134–28139.

Ceballos, G. et al. 2020. Vertebrates on the brink as indicators of 
biological annihilation and the sixth mass extinction. – Proc. 
Natl Acad. Sci. USA 117: 13596–13602.

Chefaoui, R. M. et al. 2011. Effects of species’ traits and data char-
acteristics on distribution models of threatened invertebrates. 
– Anim. Biodivers. Conserv. 34: 229–247.

Chen, J. et al. 1999. Microclimate in forest ecosystem and land-
scape ecology: variations in local climate can be used to moni-
tor and compare the effects of different management regimes. 
– Bioscience 49: 288–297.

Chen, X. et al. 2006. Remote sensing image-based analysis of the 
relationship between urban heat island and land use/cover 
changes. – Remove Sens. Environ. 104: 133–146.

Cheung, W. W. L. et al. 2008. Modelling present and climate-
shifted distributions of marine fishes and invertebrates. – Fish. 
Cent. Res. Rep. 16: 72.

Chisholm, R. A. and Muller-Landau, H. C. 2011. A theoretical 
model linking interspecific variation in density dependence to 
species abundances. – Theor. Ecol. 4: 241–253.

Chu, C. et al. 2016. Direct effects dominate responses to climate 
perturbations in grassland plant communities. – Nat. Com-
mun. 7: 1–10.

Cinner, J. et al. 2016. Bright spots among the world’s coral reefs. 
– Nature 535: 416–419.

Clements, C. F. et al. 2017. Body size shifts and early warning 
signals precede the historic collapse of whale stocks. – Nat. Ecol. 
Evol. 1: 1–6.

Cresswell, A. K. et al. 2017. Translating local benthic community 
structure to national biogenic reef habitat types. – Global Ecol. 
Biogeogr. 26: 1112–1125.

Cruz-Cárdenas, G. et al. 2014. Potential species distribution mod-
eling and the use of principal component analysis as predictor 
variables. – Rev. Mex. Biodivers. 85: 189–199.

Dallas, T. A. and Hastings, A. 2018. Habitat suitability estimated 
by niche models is largely unrelated to species abundance. – 
Global Ecol. Biogeogr. 27: 1448–1456.

Dallas, T. A. and Santini, L. 2020. The influence of stochasticity, 
landscape structure and species traits on abundant–centre rela-
tionships. – Ecography 43: 1341–1351.

Dallas, T. et al. 2017. Species are not most abundant in the centre 
of their geographic range or climatic niche. – Ecol. Lett. 20: 
1526–1533.

De Marco, P. and Nóbrega, C. C. 2018. Evaluating collinearity 
effects on species distribution models: an approach based on 
virtual species simulation. – PLoS One 13: e0202403.

Denes, F. V et al. 2015. Estimating abundance of unmarked animal 
populations: accounting for imperfect detection and other 
sources of zero inflation. – Methods Ecol. Evol. 6: 543–556.

Edgar, G. J. and Stuart-Smith, R. D. 2014. Systematic global assess-
ment of reef fish communities by the Reef Life Survey program. 
– Sci. Data 1: 140007.

Ehrlén, J. and Morris, W. F. 2015. Predicting changes in the distri-
bution and abundance of species under environmental change. 
– Ecol. Lett. 18: 303–314.

Evans, M. R. 2012. Modelling ecological systems in a changing 
world. – Phil. Trans. R. Soc. B 367: 181–190.

Fei, S. et al. 2017. Divergence of species responses to climate 
change. – Sci. Adv. 3: e1603055.

Fernandes, J. A. et al. 2013. Modelling the effects of climate change 
on the distribution and production of marine fishes: accounting 
for trophic interactions in a dynamic bioclimate envelope 
model. – Global Change Biol. 19: 2596–2607.

Fernandes, J. A. et al. 2020. Can we project changes in fish abun-
dance and distribution in response to climate? – Global Change 
Biol. 26: 3891–3905.

Flores, C. E. et al. 2018. Spatial abundance models and seasonal 
distribution for guanaco Lama guanicoe in central Tierra del 
Fuego, Argentina. – PLoS One 13(5): e0197814.

Frei, B. et al. 2018. Bright spots in agricultural landscapes: identi-
fying areas exceeding expectations for multifunctionality and 
biodiversity. – J. Appl. Ecol. 55: 2731–2743.

Friedman, J. H. 2001. Greedy function approximation: a gradient 
boosting machine. – Ann. Stat. 29: 1189–1232.

Fukaya, K. et al. 2020. Integrating multiple sources of ecological 
data to unveil macroscale species abundance. – Nat. Commun. 
11: 1695.

Gamliel, I. et al. 2020. Incorporating physiology into species dis-
tribution models moderates the projected impact of warming 
on selected Mediterranean marine species. – Ecography 43: 
1090–1106.

Genung, M. A. et al. 2020. Species loss drives ecosystem function 
in experiments, but in nature the importance of species loss 
depends on dominance. – Global Ecol. Biogeogr. 29: 
1531–1541.

Geppert, C. et al. 2020. Consistent population declines but idio-
syncratic range shifts in Alpine orchids under global change. 
– Nat. Commun. 11: 5835.

Gilby, B. L. et al. 2020. Identifying restoration hotspots that deliver 
multiple ecological benefits. – Restor. Ecol. 28: 222–232.

Gillingham, P. K. et al. 2012. The effect of spatial resolution on 
projected responses to climate warming. – Divers. Distrib. 18: 
990–1000.

Graae, B. J. et al. 2018. Stay or go – how topographic complexity 
influences alpine plant population and community responses to 
climate change. – Perspect. Plant Ecol. Evol. Syst. 30: 41–50.



16

Guillera-Arroita, G. 2017. Modelling of species distributions, range 
dynamics and communities under imperfect detection: 
advances, challenges and opportunities. – Ecography 40: 
281–295.

Guisan, A. and Thuiller, W. 2005. Predicting species distribution: 
offering more than simple habitat models. – Ecol. Lett. 8: 
993–1009.

Hallett, L. M. et al. 2018. Tradeoffs in demographic mechanisms 
underlie differences in species abundance and stability. – Nat. 
Commun. 9: 1–6.

Halpern, B. S. et al. 2010. Spillover from marine reserves and the 
replenishment of fished stocks. – Environ. Conserv. 36: 268–276.

Hannah, L. et al. 2014. Fine-grain modeling of species’ response to 
climate change: holdouts, stepping-stones and microrefugia. – 
Trends Ecol. Evol. 29: 390–397.

Harris, R. M. B. et al. 2018. Biological responses to the press and 
pulse of climate trends and extreme events. – Nat. Clim. 
Change 8: 579–587.

Hastings, R. A. et al. 2020. Climate change drives poleward 
increases and equatorward declines in marine species. – Curr. 
Biol. 30: 1572.e2–1577.e2.

Holt, R. D. 2009. Bringing the Hutchinsonian niche into the 21st 
century: ecological and evolutionary perspectives. – Proc. Natl 
Acad. Sci. USA 106: 19659–19665.

Holt, R. D. 2020. Reflections on niches and numbers. – Ecography 
43: 387–390.

Hutchings, J. A. and Reynolds, J. D. 2004. Marine fish population 
collapses: consequences for recovery and extinction risk. – Bio-
science 54: 297.

Illan, J. G. et al. 2014. Precipitation and winter temperature predict 
long-term range-scale abundance changes in western North 
American birds. – Global Change Biol. 20: 3351–3364.

Isaak, D. J. et al. 2017. Big biology meets microclimatology: defin-
ing thermal niches of ectotherms at landscape scales for conser-
vation planning. – Ecol. Appl. 27: 977–990.

Jetz, W. et al. 2012. The global diversity of birds in space and time. 
– Nature 491: 444–448.

Jetz, W. et al. 2014. Global distribution and conservation of evo-
lutionary distinctness in birds. – Curr. Biol. 24: 919–930.

Jetz, W. et al. 2019. Essential biodiversity variables for mapping and 
monitoring species populations. – Nat. Ecol. Evol. 3: 539–551.

Johnston, A. et al. 2013. Observed and predicted effects of climate 
change on species abundance in protected areas. – Nat. Clim. 
Change 3: 1055–1061.

Johnston, A. et al. 2015. Abundance models improve spatial and 
temporal prioritization of conservation resources. – Ecol. Appl. 
25: 1749–1756.

Kallasvuo, M. et al. 2017. Modeling the spatial distribution of lar-
val fish abundance provides essential information for manage-
ment. – Can. J. Fish. Aquat. Sci. 74: 636–649.

Kéfi, S. et al. 2016. When can positive interactions cause alternative 
stable states in ecosystems? – Funct. Ecol. 30: 88–97.

Kissling, W. D. et al. 2018. Building essential biodiversity variables 
(EBVs) of species distribution and abundance at a global scale. 
– Biol. Rev. 93: 600–625.

Lembrechts, J. J. et al. 2019. Incorporating microclimate into spe-
cies distribution models. – Ecography 42: 1267–1279.

Lenoir, J. and Svenning, J.-C. 2013. Latitudinal and elevational 
range shifts under contemporary climate change. – Encycl. Bio-
divers. 4: 599–611.

Lenoir, J. et al. 2020. Species better track climate warming in the 
oceans than on land. – Nat. Ecol. Evol. 4: 1044–1059.

Liautaud, K. et al. 2019. Superorganisms or loose collections of 
species? A unifying theory of community patterns along envi-
ronmental gradients. – Ecol. Lett. 22: ele.13289.

Lindén, A. and Mäntyniemi, S. 2011. Using the negative binomial 
distribution to model overdispersion in ecological count data. 
– Ecology 92: 1414–1421.

Maclean, I. M. D. et al. 2015. Microclimates buffer the responses 
of plant communities to climate change. – Global Ecol. Bioge-
ogr. 24: 1340–1350.

Maguire, B. 1973. Niche response structure and the analytical poten-
tials of its relationship to the habitat. – Am. Nat. 107: 213–246.

Margules, C. R. and Pressey, R. L. 2000. Systematic conservation 
planning. – Nature 405: 243–253.

Martínez-Meyer, E. et al. 2013. Ecological niche structure and 
rangewide abundance patterns of species. – Biol. Lett. 9: 20120637.

Matías, L. et al. 2019. Disentangling the climatic and biotic factors 
driving changes in the dynamics of Quercus suber populations 
across the species’ latitudinal range. – Divers. Distrib. 25: 524–535.

Maxwell, S. L. et al. 2019. Conservation implications of ecological 
responses to extreme weather and climate events. – Divers. Dis-
trib. 25: 613–625.

McGill, B. J. 2012. Trees are rarely most abundant where they grow 
best. – J. Plant Ecol. 5: 46–51.

McPherson, J. and Jetz, W. 2007. Effects of species? Ecology on the 
accuracy of distribution models. – Ecography 30: 135–151.

Merow, C. et al. 2014. What do we gain from simplicity versus 
complexity in species distribution models? – Ecography 37: 
1267–1281.

Meynard, C. N. et al. 2019. Testing methods in species distribution 
modelling using virtual species: what have we learnt and what 
are we missing? – Ecography 42: 2021–2036.

Mi, C. et al. 2017. Combining occurrence and abundance distribu-
tion models for the conservation of the great bustard. – PeerJ 
5: e4160.

Morrissey, M. B. and Ruxton, G. D. 2018. Multiple regression is not 
multiple regressions: the meaning of multiple regression and the 
non-problem of collinearity. – Phil. Theory Pract. Biol. 10: 2–24.

Mouillot, D.  et  al. 2016. Global marine protected areas do not 
secure the evolutionary history of tropical corals and fishes. – 
Nat. Commun. 7: 10359.

Mouquet, N. et al. 2015. Predictive ecology in a changing world. 
– J. Appl. Ecol. 52: 1293–1310.

Newbold, T. et al. 2009. Effect of characteristics of butterfly species 
on the accuracy of distribution models in an arid environment. 
– Biodivers. Conserv. 18: 3629–3641.

Norberg, A. et al. 2019. A comprehensive evaluation of predictive 
performance of 33 species distribution models at species and 
community levels. – Ecol. Monogr. 89: e01370.

Nowakowski, A. J. et al. 2018. Thermal biology mediates responses 
of amphibians and reptiles to habitat modification. – Ecol. Lett. 
21: 345–355.

Oppel, S. et al. 2012. Comparison of five modelling techniques to 
predict the spatial distribution and abundance of seabirds. – 
Biol. Conserv. 156: 94–104.

Orme, D. et al. 2018. caper: comparative analyses of phylogenetics 
and evolution in R. – R package ver. 1.0.1. <https://cran.r-
project.org/web/packages/caper/index.html>.

Osorio-Olvera, L. et al. 2019. On population abundance and niche 
structure. – Ecography 42: 1415–1425.

Osorio-Olvera, L. et al. 2020. Relationships between population 
densities and niche-centroid distances in North American birds. 
– Ecol. Lett. 23: 555–564.



17

Ovaskainen, O. et al. 2017. How to make more out of community 
data? A conceptual framework and its implementation as mod-
els and software. – Ecol. Lett. 20: 561–576.

Pardieck, K. L. et al. 2019. North American Breeding Bird Survey 
Dataset 1966–2018, ver. 2018.0. – U.S. Geological Survey, 
Patuxent Wildlife Research Center.

Pauly, D. and Froese, R. 2010. A count in the dark. – Nat. Geosci. 
3: 662–663.

Pearce, J. and Ferrier, S. 2001. The practical value of modelling 
relative abundance of species for regional conservation plan-
ning: a case study. – Biol. Conserv. 98: 33–43.

Pearce-Higgins, J. W. et al. 2015. Geographical variation in species’ 
population responses to changes in temperature and precipita-
tion. – Proc. R. Soc. B 282: 20151561.

Pereira, H. M. et al. 2013. Essential biodiversity variables. – Science 
339: 277–278.

Perez-Navarro, M. A. et al. 2021. Temporal variability is  
key to modelling the climatic niche. – Divers. Distrib. 27: 
473–484.

Peterson, A. T. et al. 2011. Ecology niches and geographic distribu-
tions. – Princeton Univ. Press.

Pinsky, M. L. et al. 2020. Ocean planning for species on the move 
provides substantial benefits and requires few tradeoffs. – Sci. 
Adv. 6: eabb8428.

Ploton, P. et al. 2020. Spatial validation reveals poor predictive 
performance of large-scale ecological mapping models. – Nat. 
Commun. 11: 4540.

Pollock, L. J. et al. 2020. Protecting biodiversity (in all its complex-
ity): new models and methods. – Trends Ecol. Evol. 35: 
1119–1128.

Potter, K. A. et al. 2013. Microclimatic challenges in global change 
biology. – Global Change Biol. 19: 2932–2939.

Potts, J. M. and Elith, J. 2006. Comparing species abundance mod-
els. – Ecol. Model. 199: 153–163.

Purvis, A. et al. 2000. Predicting extinction risk in declining species. 
– Proc. R. Soc. B 267: 1947–1952.

Rabosky, D. L. et al. 2018. An inverse latitudinal gradient in spe-
ciation rate for marine fishes. – Nature 559: 392–395.

Radeloff, V. C. et al. 2015. The rise of novelty in ecosystems. – Ecol. 
Appl. 25: 2051–2068.

Randin, C. F. et al. 2006. Are niche-based species distribution mod-
els transferable in space? – J. Biogeogr. 33: 1689–1703.

Ready, J. et al. 2010. Predicting the distributions of marine organ-
isms at the global scale. – Ecol. Model. 221: 467–478.

Rebaudo, F. et al. 2016. Microclimate data improve predictions of 
insect abundance models based on calibrated spatiotemporal 
temperatures. – Front. Physiol. 7: 139.

Renwick, A. R. et al. 2012. Modelling changes in species’ abun-
dance in response to projected climate change. – Divers. Dis-
trib. 18: 121–132.

Ricart, A. M. et al. 2018. Long-term shifts in the north western 
Mediterranean coastal seascape: the habitat-forming seaweed 
Codium vermilara. – Mar. Pollut. Bull. 127: 334–341.

Roberts, D. R. et al. 2017. Cross-validation strategies for data with 
temporal, spatial, hierarchical or phylogenetic structure. – 
Ecography 40: 913–929.

Román-Palacios, C. and Wiens, J. J. 2020. Recent responses to 
climate change reveal the drivers of species extinction and sur-
vival. – Proc. Natl Acad. Sci. USA 117: 4211–4217.

Rondinini, C. and Chiozza, F. 2010. Quantitative methods for 
defining percentage area targets for habitat types in conserva-
tion planning. – Biol. Conserv. 143: 1646–1653.

Roslin, T. et al. 2009. Some like it hot: microclimatic variation 
affects the abundance and movements of a critically endangered 
dung beetle. – Insect Conserv. Divers. 2: 232–241.

Santini, L. et al. 2019. Addressing common pitfalls does not pro-
vide more support to geographical and ecological abundant-
centre hypotheses. – Ecography 42: 696–705.

Schulz, T. et al. 2020. Long-term demographic surveys reveal a 
consistent relationship between average occupancy and abun-
dance within local populations of a butterfly metapopulation. 
– Ecography 43: 306–317.

Selig, E. R. et al. 2014. Global priorities for marine biodiversity 
conservation. – PLoS One 9: e82898.

Senior, R. A. et al. 2017. A pantropical analysis of the impacts of 
forest degradation and conversion on local temperature. – Ecol. 
Evol. 7: 7897–7908.

Sequeira, A. M. M. et al. 2018a. Transferring biodiversity models 
for conservation: opportunities and challenges. – Methods Ecol. 
Evol. 9: 1250–1264.

Sequeira, A. M. M. et al. 2018b. Challenges of transferring models 
of fish abundance between coral reefs. – PeerJ 6: e4566.

Sherley, R. B. et al. 2020. The conservation status and population 
decline of the African penguin deconstructed in space and time. 
– Ecol. Evol. 10: 8506–8516.

Sporbert, M. et al. 2020. Testing macroecological abundance pat-
terns: the relationship between local abundance and range size, 
range position and climatic suitability among European vascu-
lar plants. – J. Biogeogr. 47: 2210–2222.

Stacklies, W. et al. 2007. pcaMethods - a bioconductor package 
providing PCA methods for incomplete data. – Bioinformatics. 
23: 1164–1167.

Stuart-Smith, R. D. et al. 2013. Integrating abundance and func-
tional traits reveals new global hotspots of fish diversity. – 
Nature 501: 539–542.

Suggitt, A. J. et al. 2018. Extinction risk from climate change is reduced 
by microclimatic buffering. – Nat. Clim. Change 8: 713–717.

Thuiller, W. et al. 2019. Uncertainty in ensembles of global biodi-
versity scenarios. – Nat. Commun. 10: 1446.

Timus, N. et al. 2017. Conservation implications of source-sink 
dynamics within populations of endangered Maculinea butter-
flies. – J. Insect Conserv. 21: 369–378.

Vanderwal, J. et al. 2009. Abundance and the environmental 
niche: environmental suitability estimated from niche models 
predicts the upper limit of local abundance. – Am. Nat. 174: 
282–291.

Vázquez, D. P. et al. 2007. Species abundance and asymmetric inter-
action strength in ecological networks. – Oikos 116: 1120–1127.

Venter, O.  et  al. 2014. Targeting global protected area expansion 
for imperiled biodiversity. – PLoS Biol. 12: e1001891.

Violle, C. et al. 2017. Functional rarity: the ecology of outliers. – 
Trends Ecol. Evol. 32: 356–367.

Waldock, C. et al. 2019. The shape of abundance distributions 
across temperature gradients in reef fishes. – Ecol. Lett. 22: 
685–696.

Waldock, C. et al. 2021. Data from: A quantitative review of abun-
dance-based species distribution models. – Figshare Digital Repos-
itory, <https://doi.org/10.6084/m9.figshare.16930180.v1>.

Waldock, C. A. et al. 2020. Insect occurrence in agricultural land-
uses depends on realized niche and geographic range properties. 
– Ecography 43: 1717–1728.

Williams, J. W. and Jackson, S. T. 2007. Novel climates, no-analog 
communities and ecological surprises. – Front. Ecol. Environ. 
5: 475–482.



18

Williams, R. et al. 2014. Prioritizing global marine mammal habi-
tats using density maps in place of range maps. – Ecography 
37: 212–220.

Winfree, R. et al. 2015. Abundance of common species, not species 
richness, drives delivery of a real-world ecosystem service. – 
Ecol. Lett. 18: 626–635.

Wisz, M. S. et al. 2008. Effects of sample size on the  
performance of species distribution models. – Divers. Distrib. 
14: 763–773.

Wisz, M. S. et al. 2013. The role of biotic interactions in shaping 
distributions and realised assemblages of species: Implications 
for species distribution modelling. – Biol. Rev. 88: 15–30.

Woods, H. A. et al. 2015. The roles of microclimatic diversity and 
of behavior in mediating the responses of ectotherms to climate 
change. – J. Therm. Biol. 54: 86–97.

Wootton, J. T. and Emmerson, M. 2005. Measurement of interac-
tion strength in nature. – Annu. Rev. Ecol. Evol. Syst. 36: 
419–444.

Yancovitch Shalom, H.  et  al. 2020. A closer examination of the 
‘abundant centre’ hypothesis for reef fishes. – J. Biogeogr. 47: 
2194–2209.

Yañez-Arenas, C. et al. 2014. Predicting species’ abundances from 
occurrence data: effects of sample size and bias. – Ecol. Model. 
294: 36–41.

Yates, K. L. et al. 2018. Outstanding challenges in the transferabil-
ity of ecological models. – Trends Ecol. Evol. 33: 790–802.

Yenni, G. et al. 2017. Do persistent rare species experience stronger 
negative frequency dependence than common species? – Global 
Ecol. Biogeogr. 26: 513–523.

Yokomizo, H. et al. 2009. Managing the impact of invasive species: 
the value of knowing the density–impact curve. – Ecol. Appl. 
19: 376–386.

Zhao, L. et al. 2014. Strong contributions of local background 
climate to urban heat islands. – Nature 511: 216–219.

Zurell, D. et al. 2016. Benchmarking novel approaches for modelling 
species range dynamics. – Global Change Biol. 22: 2651–2664.


