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Abstract: We analyze the influence of repair on a two-component warm-standby system with
switching and back-switching failures. The repair of the primary component follows a minimal
process, i.e., it experiences full aging during the repair. The backup component operates only while
the primary component is being repaired, but it can also fail in standby, in which case there will be
no repair for the backup component (as there is no indication of the failure). Four types of system
failures are investigated: both components fail to operate in a different order or one of two types of
switching failures occur. The reliability behavior of the system is investigated under three different
aging assumptions for the backup component during warm-standby: full aging, no aging, and partial
aging. Four failure and repair distributions determine the reliability behavior of the system. We
analyzed two cases—in the First Case, we utilized constant failure rate distributions. In the Second
Case, we applied the more realistic time-dependent failure rates. We used three methods to identify
the reliability characteristics of the system: analytical, numerical, and simulational. The analytical
approach is limited and only viable for constant failure rate distributions i.e., the First Case. The
numerical method integrates simultaneous Algebraic Differential Equations. It produces a solution
in the First Case under any type of aging, and in the Second Case but only under the assumption
of full aging in warm-standby. On the other hand, the developed simulation algorithms produce
solutions for any set of distributions (i.e., the First Case and the Second Case) under any of the three
aging assumptions for the backup component in standby. The simulation solution is quantitively
verified by comparison with the other two methods, and qualitatively verified by comparing the
solutions under the three aging assumptions. It is numerically proven that the full aging and no
aging solutions could serve as bounds of the partial aging case even when the precise mechanism of
partial aging is unknown.

Keywords: state probability functions; partial aging in standby; Monte Carlo simulation; qualitative
and quantitative verification of simulation model

1. Introduction

Assessing the reliability of a system is a key engineering task that has economic
and safety implications. Having a better understanding of failure/repair rates of system
components is a tool to design highly reliable systems and conduct repair operations at
adequate cost levels while complying with adequate and reasonable maintenance schedules.
A common approach for improving the reliability is to provide redundancy for excessively
failing components. The redundant components may operate simultaneously in a sense
that the system will never fail if at least one of the parallel components operates [1]. Another
possibility is to design a “k out of n” configuration where all n components are in operation
and the system is not failing if at least k of them operate properly [2]. However, the standby
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arrangement is the simplest, cheapest and the most utilized one; the system operates with
some of its components (called primary) whereas the redundant components (called backup
components) are in standby, but when a primary component fails, they take its place [3]. In
this paper, we will focus on a two-component system with a standby arrangement where
the backup components may fail either while in standby, or during operation after some
imperfect switching mechanism has put those online. The switching mechanism can be
continuous type when it actively monitors the primary component and makes its own
decisions, but it can malfunction at any time [4]. However, in this paper, we will treat
exclusively the widespread mechanisms that can fail only on demand when the switching is
needed [5]. According to the failure intensities of the backup component, such systems are
classified as cold-standby, warm-standby, and hot-standby [6]. In the hot-standby system,
the intensity of failures of the backup component is the same during standby and operation,
whereas in the cold-standby, there is no failure in standby. We will concentrate on the
two-component warm-standby systems where there are failures of the backup component
in standby, but with smaller intensity compared to its operational mode.

Additionally, the reliability of a system with backup components depends on the
way of aging of the backup components while in standby. Previous works have identified
three types of aging of the backup component during warm-standby: full aging, no aging
and partial aging [7]. The full aging assumption means that the component changes its
failure/repair rate during standby as if it is operational. Under the no aging assumption,
the component does not change its failure/repair rate during standby. The partial aging
assumption models the intermediate situation where the backup component experiences
some wear during standby, but at a slower rate than if operational.

If some components of the system are deemed repairable, the system can be brought
to its full operational capacity by replacing parts or by making adjustments [8]. In most
works, the focus is on single-component repairable systems under various repair activities.
A detailed discussion on how such tasks can be approached with modern statistical tools
is offered in [9]. There are different types of repairs that can be adopted depending on
objectives. The first possibility is the so-called perfect repair (a.k.a. as-good-as-new (AGAN)
repair), where the primary component fails and it is replaced or restored to its original or
good-as-new condition [10]. Minimal repair restores the device to the condition it was in
immediately before the failure [11] (pp. 226–227). There may also be intermediate types of
repairs (e.g., the partial perfect repair procedures mentioned in [8]). In the current work,
the focus is on the case of minimal repair of the special type worse-than-old (WTO) [12].
The assumption is that during this repair, the non-repaired elements of the primary unit
age as if the latter was operational.

In this paper, we will investigate the effects that adding repair and back-switching
failures to a two-component warm-standby system with switching mechanism has on the
reliability of the system. Our goal is to analyze how this affects the system reliability under
different aging assumptions in standby. In such a system, the primary component begins
operation, and when it fails, the system will try to activate the backup component, but
a switching failure is possible. When the backup component is operational, the primary
component undergoes minimal repair. If the latter finishes before the backup component
fails, the system will try to activate back the primary component, but again a back-switching
failure is possible. However, it is possible that the backup component will fail in standby. In
that case, there will be no repair for the backup component since there will be no indication
of the failure. The system is considered to have failed when either both components fail
to operate at any given time, or when, after primary component failure, the switching
mechanism fails on demand to switch the system operation to the secondary component
(switching failure), or when, after a successful repair, the switching mechanism fails on
demand to switch the system operation back to the primary component (back-switching
failure). The primary component undergoes minimal repair, i.e., the primary component
experiences full aging during the repair. The reliability behavior of the system will be
investigated under three different aging assumptions for the backup component during
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standby: full aging, no aging and partial aging. Only mechanical aging of the components
will be considered, which excludes any influence by some software aging (for discussion of
the latter topic see [13,14]).

The focus of our investigation would be a two-component warm-standby system with
repair, switching, and back-switching failures, denoted as 2SBRSBF. Our study concentrates
on the characteristics of the uptime of the 2SBRSBF. We only consider repairs of the failed
primary component of a working system. The repair of the failed system, which relates
to downtime, is an important component of system availability, but it is outside of the
scope of our paper (for elaborate case study of data center availability using Markovian
modeling, see [14]). In [15], the causes of system and component failures were classified as
technological failures, natural disaster failures, and man-made disasters (e.g., terrorism).
In our study, we will consider only the technological failure of 2SBRSBF since the other
two types tend to cause dependent component failures, which is outside of the scope of
our study. Here, the standby mode of the 2SBRSBF is defined as a situation, where the
primary component is working properly, and the backup component is fully operational,
but its failure will not affect the normal operation of the system at this moment (in [16]
such component configuration is classified as “active/cold-standby”).

The reliability behavior of the 2SBRSBF depends on four distributions: the failure and
the repair distributions of the primary component, the failure distributions of the backup
component in operation and in standby. We will analyze two cases for those distributions.
In the First Case, all distributions will be with constant failure/repair rates. In the Second
Case, the more realistic time-dependent failure/repair rates will be applied.

We will use three methods to identify the reliability characteristics of the 2SBRSBF:
analytical, numerical, and simulational. The analytical approach is applicable for the First
Case distributions. We will develop novel analytical solutions for the state probability
functions in the case of exponential distributions. The numerical method creates and
integrates simultaneous Ordinary Differential Equations (ODEs) for 2SBRSBF. This method
is applicable for any set of First Case distributions and for Second Case distributions under
the assumption of full aging in standby. However, there are no simultaneous ODEs that
describe the behavior of 2SBRSBF with time-dependent distributions (i.e., Second Case) un-
der no aging or partial aging assumptions in standby. To facilitate the simulational solution,
we will introduce a novel method to generate failure times of the backup component in
standby under the assumptions of full aging, no aging, or partial aging. Using this method,
we will modify and generalize the algorithm from [17] to simulate the behavior of 2SBRSBF
and to calculate its most important reliability characteristics. That algorithm will produce a
novel simulation solution for any set of distributions (i.e., the First Case and the Second
Case) under any of the three aging assumptions for the backup component in standby. The
proposed algorithm will be validated quantitively by comparing with the analytical and
with the numerical solutions (if those exist) as well as quantitatively by comparing with
the full aging results.

In what follows, Section 2 summarizes the state-of-the-art in the field and outlines the
contributions of our paper. Section 3 will setup the problem for reliability characteristics
assessment of a 2SBRSBF function. In Section 4, we present a novel analytical solution
of the formulated problem in the case of distributions with constant failure/repair rate.
A numerical solution will be identified in Section 5 where a system of four simultaneous
deferential algebraic equations will model the 2SBRSBF in the case of full aging of the
backup component during standby. In Section 6, the same problem will be solved with
simulation which can be used with any distributions under three different assumptions
about the aging mechanism of the backup component. Section 7 contains the results
of three numerical examples, where we validate the proposed simulational algorithm
quantitatively (by comparing with the analytical and the numerical solutions when those
exist) and qualitatively (by checking whether the effects of no aging and partial aging
correspond to the logically expected ones). Section 8 concludes the paper.
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2. Related Works and Contributions of the Paper

Although the publications about warm-backup system reliability are growing recently,
they are rare in comparison with reliability studies of cold-backup and hot-backup system,
since the realistic models of the former tend to be more elaborate [18]. In [19] (pp. 113–115),
the analytical solution for two-component warm-standby system with switching failure
(2SBSF) was developed. The switching mechanism fails on demand. The failure distribu-
tions were considered exponential. Hence, no aging effect was taken into account. Explicit
formulae were derived for the reliability of the system and for all state probability func-
tions. In [20] (pp. 167–170), a model of a two-component warm-standby system (2SB) with
arbitrary failure distributions was proposed. Although no particular simulation algorithm
was developed, general advice was given on how to acquire the reliability function and the
state probability functions using Monte Carlo simulation and how to deal with different
aging assumptions. In [21], a model of a 2SB system was proposed under general standby,
which generalizes the three special cases of warm-, cold- and hot-standby. The failure
distributions can be arbitrary. The aging effects are accounted for using a pre-specified
virtual aging function. An integral equation, connecting the failure rates and the virtual
aging function with the reliability of the system was proposed. In [6], these results from [21]
were generalized to solve the problem of allocation of redundancy that includes two inde-
pendent and one generalized standby component. The reliability and the state probability
functions of a generic two-component standby system under full aging, no aging, and
partial aging were identified with a simulation algorithm in [22] using arbitrary failure
distributions. That solution is verified with analytical and numerical special cases. The
results from this work were expanded in [17] to model the 2SBSF, but some numerical
problems connected with random variate generation and arbitrary failure rate calculations
were resolved.

The majority of the above models consider aging effects, but none of them has repairs.
A 14-states model of two dissimilar warm-standby subsystems in series with repair

were discussed in [23]. The failure distributions are exponential, and the system is with
constant repair rates. The type of repair is AGAN. The problem of aging is not considered.
Some analytical steady-state characteristics of the system are provided using Laplace
transforms. Those characteristics for two-component warm-standby system with repair
(2SBR) can be obtained as special cases from the results in the paper. The work [4] performs
reliability analysis for a two-component warm-standby system with repair and switching
failures (2SBRSF). The failure and repair rates are constant. The switching mechanism
is of continuous type and has its own failure distribution. This leads to a possibility of
repairing the failed backup unit while the primary component operates. All failure and
repair distributions are exponential. Any failure of the switch leads to system failure. The
repairs are AGAN and no aging is considered. The system has 10 states. The reliability and
the state probability functions of the system were identified with a numerical algorithm
as a solution of an ODE system. Another interesting two-identical-component standby
system is given in [24]. The type of standby is difficult to determine since the failure in
standby mode is deterministic and happens after surpassing a pre-specified time. The
failure distribution of the operating unit is exponential, but the repair rate is arbitrary.
There is no switching failure, but the switching mechanism inspects the failed standby
unit and decides whether to replace it or to repair it. No aging is considered in this model.
Some steady-state measures of reliability are obtained using semi-Markov models. In [25],
the authors propose a system with m identical components working in parallel with s
components in warm-standby. The system includes a service station that can also fail
and be repaired. There are no switching failures, and all failure and repair distributions
of the components are exponential. The failure and repair distributions of the service
station are also exponential. The repairs are AGAN, and no aging is considered. The
reliability and the state probability functions of the system were approximated using
symbolic computer software. The work [18] presents a system of n components in series
with one component in warm-standby. There are neither switching failures nor aging
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considerations. The failure distributions are exponential, but the repair distributions are
arbitrary. The system is also subjected to non-repairable failures. Some reliability and
availability steady-state characteristics of the system are derived using Laplace transforms.
In [26], the authors discuss a three identical component warm-standby system. Initially,
the primary component is working, and the other two are in standby. The failure of the
operating unit and the repairs are with random distributions, however in standby there is
constant failure rate. The repairs are AGAN, there are no switching failures, and no aging
is considered. An integral equation, connecting the failure rates with the reliability of the
system is proposed.

The models with repair discussed above do not consider any aging effects.
In Table 1, we summarized seven characteristics for each of the above-discussed 12

papers plus the current work. The information in Table 1 highlights the novelty of our
work against the discussed state-of-the-art studies in the literature. The contributions of
our study can be outlined as follows:

1. We shall formulate a novel model of 2SBRSBF containing three operational states and
four system failure substates. The switching mechanism will fail on demand and
the repair of the primary unit will be WTO. This warm-standby system will utilize
arbitrary failure and repair distributions and will have three types of aging modes of
the backup component in warm-standby—no aging, full aging, and partial aging.

2. We shall create a novel six-attribute procedure, which gives numerically stable estimates
of the equivalent age of the backup unit under any of the three aging assumptions.

3. We shall formulate 11 properties of the event chain (EC) describing the 2SBRSBF that
can happen during the normal exploitation of the system.

4. We shall develop a novel algorithm to generate a random EC for the 2SBRSBF, which
satisfies the EC properties in step 3 above.

5. We shall propose a simulation algorithm to calculate the state probability functions
and the rest of the reliability characteristics of a 2SBRSBF in their dynamics.

6. We shall develop a novel analytical solution of the 2SBRSBF when the failure and
the repair rates are constant. We will prove that the solution is real for any constant
failure/repair rates and switching mechanism failure probabilities.

7. We shall develop a numerical solution of the 2SBRSBF under the assumption of full
aging of the backup component in warm-standby. The procedure will use a semi-
explicit system of four simultaneous differential algebraic equations (DAEs) with
differential index 1, singular constant mass matrix, and Jacobian matrix depending
only on the time. The main novelty is the calculation of stable approximations of the
failure/repair rates at any moment of time.

8. We shall verify quantitatively the results from the simulation procedure using analyti-
cal and numerical solutions in special cases of the 2SBRSBF. The solutions in the three
aging modes will serve as qualitative validation of the simulation solution.

Table 1. Overview of the state-of-the-art publications in the warm-standby area.

Reference
Arbitrary

Failure
Distribution

Arbitrary Repair
Distribution

Switching
Failure Aging Repair Repair Type Dynamic

Solution

[19] no N/A yes no no N/A yes
[20] (pp. 167–170) yes N/A no yes no N/A yes

[21] yes N/A no yes no N/A yes
[6] yes N/A no yes no N/A yes

[22] yes N/A no yes no N/A yes
[17] yes N/A yes yes no N/A yes
[23] no no no no yes AGAN no
[4] no no yes no yes AGAN yes

[24] no yes no no yes AGAN no
[25] no no no no yes AGAN yes
[18] no yes no no yes AGAN no
[26] yes yes no no yes AGAN yes

Current study yes yes yes yes yes WTO yes
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3. States, Transition Rates, and Distributions

The dynamics of a 2SBRSBF system can be determined by its transition between
several possible states [27]. The 2SBRSBF has four major states, but State 4 (where the
2SBRSBF system is not operational) is subdivided into 4 substates, called types.

In State 1, the primary component operates, the backup component is fully operational
but is in standby. Sooner or later, one of the two components will fail:

(A) If the primary component fails, the system will attempt a transit to State 2, where the
backup component operates and the primary component is under repair. However,
if the switching device fails to operate properly, we observe the so-called switching
failure on demand resulting in transition to State 4, where the 2SBRSBF system is not
operational (type a system failure).

(B) If the backup component fails in standby, the system will transit to State 3 where the
primary component operates but the backup component is not operational. There
will be no indication whether the system is in State 1 or in State 3, so no maintenance
decision will be made in those two states.

In State 2 sooner or later either the primary component will be repaired, or the backup
component will fail. Then one of the following two events will occur:

(A) If the primary component is repaired, the system will try a transit to State 1. How-
ever, if the switching device fails to operate properly, we observe the so-called back-
switching failure resulting in transition to State 4, where the 2SBRSBF system is not
operational (type b system failure).

(B) If the backup component fails in operation, the system will transit to State 4 where
the 2SBRSBF system is not operational (type c system failure).

In State 3, sooner or later, the primary component will fail and there will be no
operational backup component to take over. The system will transit to State 4 where the
2SBRSBF system is not operational (type d system failure).

The State 4, where the 2SBRSBF system is not operational, is irreversible in our model
regardless of the type of the system failure.

The described system is partially observable since we will not know whether the
system is in State 1 or in State 3, but State 4 and State 2 are observable. At the same
time, 2SBRSBF is controllable by three trivial event-driven decisions: (a) when the primary
component fails, attempt to move to State 2, by switching to the backup unit; (b) when the
backup unit is in operation, start repairing the primary component; (c) when the primary
component is repaired, attempt to move to State 1, by back-switching to the primary unit.

The state function Pg(t) (for g = 1,2,3,4) measures the probability of the 2SBRSBF to be
in State g at time t (for t ≥ 0). Since the system will be in one state and in one state only at
any non-negative time moment t, then:

P1(t) + P2(t) + P3(t) + P4(t)= 1, for t ∈ [0, ∞) (1)

The 2SBRSBF system starts in fully operational mode so initially it will be in State 1:

P1(0) = 1 and P2(0) = P3(0) = P4(0) = 0 (2)

If the four state functions are identified, then the 2SBRSBF system is quantitatively
described and we can calculate all its reliability characteristics. The reliability of the system
is the sum of the first three state probabilities (i.e., the probability not to be in State 4):

Rsys(t) = P1(t) + P2(t) + P3(t) = 1− P4(t), for t ∈ [0, ∞) (3)

The mean time to failure (MTTF) of the 2SBRSBF system can be calculated as:

MTTFsys =

∞∫
0

Rsys(t)dt (4)



Mathematics 2021, 9, 2547 7 of 40

The time for which the reliability of the system will be α is known as α-design life (tdes,α).
It can be identified as the unique solution of Equation (5) in the domain tdes,α ∈ (0, ∞):

Rsys(tdes,α) = α, for α ∈ (0, 1) (5)

The median (Mediansys), the B1 life (B1_life), the B10-life (B10_life), and the interquartile
range (IQRsys) of the 2SBRSBF system reliability can be easily estimated using Equation (5)
respectively as tdes,0.5, tdes,0.99, tdes,0.9, and tdes,0.25 − tdes,0.75 [20] (pp. 87–88).

To identify the four required state functions of the 2SBRSBF system, we need to know:

• The probability, pf, for switching failure on demand.
• The probability, pr, for back-switching failure on demand.
• The probability density function (PDF), f 1(t), of the failure distribution for the primary

component in operation.
• The PDF, f 2(t), of the failure distribution for the standby component in operation.
• The PDF, f 3(t), of the failure distribution for the standby component in standby.
• The PDF, f 4(t), of the repair distribution for the primary component.

Each of the four PDFs, fk(t), (for k = 1, 2, 3, 4) can be transformed into four alternative
forms: a cumulative distribution function (CDF), Fk(t), a failure/repair rate, λk(t) (as
shown in [28]), a complementary CDF, or Rk(t), and an inverse CDF, i.e., F−1

k (p). The five
forms fk(t), Fk(t), λk(t), Rk(t), and F−1

k (p) contain the same information and are equivalent.
In the ideal world the domain of the first four functions and the range of the last one
will be t ∈ [0, ∞) where t can be interpreted as time. However, this is not always the
case—those failure and repair distributions are based on information about the behavior
of the components. The first step is to summarize the available information in several
nodes of the CDF. If the reliability information is in the form of fully observed or multiply
sensor data, then we can produce an empirical distribution, using either the Kaplan-Meier
product limit estimator method [29] (see the function ecdf.m in [30], which embodies
the method) or the invertible ECDF estimator with maximum count of nodes [31], or
any other modern method. If the information is in the form of expert knowledge, then
we can extract subjective quantiles using the triple bisection method [32] as described
in [33]. The second step is to fit a parametric distribution of some type to the nodes of
the CDF identified in the first step. The work [20] (p. 399) gives several reasons to use
parametric distributions rather than empirical ones, with the most important one being that
empirical distributions can only be trusted at the beginning of the failure/repair process.
Regardless of the method utilized to identify the parameters in the second step (least
square, maximum likelihood estimation, Bayesian estimation, etc.), it is quite possible that
some of the derived parametric distributions would have substantial support for negative
values of the argument t. For purely pragmatic reasons, we assume that for each k, we
are given only procedures to calculate fk(t), Fk(t), and F−1

k (p). Such numerical procedures
exist in almost any software package. For example, the Statistics and Machine Learning
Toolbox in MATLAB contains the pdf.m, cdf.m, and icdf.m which calculate the PDF, the CDF,
and the inverse CDF values for any distribution object created by the makedist.m [30]. The
latter can choose a wide variety of parametrical 1D distributions with arbitrary specified
parameters. Unluckily, some of those parametrical distributions are defined over the whole
real axis (e.g., the normal distribution, or the extreme value distribution). Traditionally, no
numerical procedures are given for estimating the values of λk(t) and Rk(t), which have to
be approximated using fk(t), Fk(t), F−1

k (p). In this paper, any of the procedures fk(t), Fk(t),
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Rk(t), λk(t), F−1
k (p) will be called the kth original distribution since the five of them describe

in alternative form the uncertainty of a real continuous variable:

(a) fk(t), for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )

(b) Fk(t) =
t∫
−∞

fk(t)dt, for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )

(c) λk(t) = fk(t)/[1− Fk(t)], for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )
(d) Rk(t) = 1− Fk(t), for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )

(e) F−1
k (p), for k = 1, 2, 3, 4 with Domain p ∈ [0, 1]

(6)

Here, Rk,(t) from Equation (6) a is aka original reliability/repair function when the real
argument t is non-negative and can be interpreted as time. In our problem, the argument t
would be most often the time (or other suitable non-negative variable, e.g., mileage), so
we will use the original distribution in Equation (6) a–e to approximate their truncated
versions which take the form of conditional distributions provided that the failure/repair
has not happened till time 0:

(a) fk,trun(t) = fk(t|0) = fk(t)/Rk(0), fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)
(b)Fk,trun(t) = Fk(t|0) = 1− Rk(t)/Rk(0), fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)
(c)λk,trun(t) = λk(t|0) = fk,trun(t)/[1− Fk,trun(t)], fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)
(d)Rk,trun(t) = Rk(t|0) = 1− Fk,trun(t), fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)

(e)F−1
k,trun(p) = F−1

k (p|0), fork = 1, 2, 3, 4with Domainp ∈ [0, 1]

(7)

In this paper, any of the functions fk,trun(t), Fk,trun(t), Rk,trun(t), λk,trun(t), F−1
k,trun(p) will

be called the kth truncated distribution, since the five of them describe in alternative forms
the uncertainty of a real non-negative continuous variable which can be interpreted as
time. The Rk,trun(t) from Equation (7) d is aka truncated reliability/repair function. Let us
concentrate on the 2SBRSBF system at time t:

• The rate for transitioning between State 1 and State 2 will depend on P1(t), on pf,
and on the conditional failure distribution f 1(τ|t) (failure density of the primary
component in operation, given that it has not failed till time t). The reason is that any
possible previous repairs of the primary component were from minimal type which
equates to the full aging assumption for the primary component during repair and
any failure will behave like a first failure at time t.

• The rate for transitioning between State 1 and State 4 (type a system failure) will
depend on P1(t) and on the conditional failure distribution f 1(τ|t) since the same
arguments made for the State 1–State 2 transition apply.

• The rate for transitioning between State 3 and State 4 (type d system failure) will
depend on P3(t), on pf, and on the conditional failure distribution f 1(τ|t) since the
same arguments made in the State 1–State 2 transition apply.

• The rate for transitioning between State 2 and State 1 will depend on P2(t), on pr, and
on the conditional repair distribution f 4(τ|t) (repair density of the primary component,
given that the repair starts at time t). The reason is that any possible previous repairs
of the primary component were from minimal type, which equates to the full aging
assumption for the primary component during operation and any repair will look like
a first repair at time t.

• The rate for transitioning between State 2 and State 4 (type b system failure) will
depend on P2(t), on pr, and on the conditional repair distribution f 4(τ|t) since the
same arguments made in the State 2–State 1 transition apply.

• The rate for transitioning between State 1 and State 3 will depend on P1(t) and on
the conditional failure distribution f 3(τ|t) (failure density of the backup component
in standby, given that it has not failed till time t). The backup component is never
repaired until there is a system failure, which suggests that the failure rate in standby
should depend only on the time the system operates but not on the backup component
history of utilization (alternating between operational and standby modes).
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• The rate for transitioning between State 2 and State 4 (type c system failure) will
depend on P2(t) and on the conditional failure distribution f 2(τ|tage) (failure density
of the backup component in operation, given that it has not failed till time tage). Here
tage is the equivalent aging of the backup component in operation. It depends on the
type of aging and possibly on the backup component history of utilization (alternating
between operational and standby modes).

The four state functions of 2SBRSBF system can be identified using computer simula-
tion in the above setup for any set of distributions and aging assumptions during standby.
However, for verification purposes, two alternative solution methods can be developed for
some special cases of the 2SBRSBF system. This approach was successfully applied in [34]
for verification of a novel simulation-based optimization algorithm used in redundancy
allocati on problems using Markovian models as special cases.

If we have a set of First Case distributions, then all state transitions will depend on the
absolute densities, rather than from conditional ones. The reason is that the exponential
distributions have no memory, and hence any aging assumptions are irrelevant. Then the
probabilities for transitioning between the states depend only on the current state of the
system, but not on the history describing how the system turns out to be in the current
state. This means that the 2SBRSBF system with First Case distributions degenerates to a
Markov model [27] (more precisely to a partially observable Markov decision process [35]).
Such Markov model can be conveniently visualized with the Rate Diagram (RD) [20]
(pp. 155–170) shown in Figure 1a. Using that RD, we will derive an analytical solution for
the four state probability functions of the 2SBRSBF system with First Case distributions.

Figure 1. Rate diagram for 2SBRSBF with: (a) First Case distributions; (b) Second Case distributions with full aging
in standby.

If we have a system with full aging assumption during standby, then the equivalent
aging of the backup component in operation rate tage, described above in the transitioning
between State 2 and State 4 (type c system failure) will be simply the current time t. The
reason is that the backup component is assumed to age during standby in the same fashion
as in operation, which shows that any failure of the backup component during operation
will behave like a first failure at time t. This means that the 2SBRSBF system with full
aging assumption degenerates to a semi-Markov model where the transition probabilities
depend not only on the current state but also on the current time [36]. The semi-Markov
model can be conveniently visualized with the Generalized Rate Diagram (GRD) shown in
Figure 1b [37] (pp. 521–526). Using the GRD, we can describe the 2SBRSBF system with
simultaneous ODEs. This is possible because the failure/repair rate of any distribution,
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F(t), at time t* coincides with the failure/repair rate of the conditional distribution F(τ|T)
at the same time t*, if T ≤ t*. This trivial fact is proven in Appendix A. The derived Cauchi
problem can be solved numerically. Obviously, such solution exists also for the First Case
distribution, which will allow the comparison of the analytical and the numerical solutions.

Neither the analytical, nor the numerical solutions can be derived for the cases of
the Second Case distribution under the assumptions of no aging and partial aging since
general aging effects cannot be described by any Markovian or semi-Markovian model and
there is no system of ODE which fully quantifies the reliability behavior of 2SBRSBF unless
when the primary component is subjected to full aging in standby (see [14,36]).

4. Analytical Solution

This solution is applicable only for First Case distributions, where the failure/repair
rates are constant. The rate diagram in Figure 1a can be represented as a system of three
ODEs from Equation (8) about the first three state probability functions [38]:

dP1
dt (t) = −(λ1 + λ3)P1(t) + (1− pr)λ4P2(t)

dP2
dt (t) =

(
1− p f

)
λ1P1(t)− (λ4 + λ2)P2(t)

dP3
dt (t) = λ3P1(t)− λ1P3(t)

(8)

The initial conditions are given in Equation (2). After solving Equation (8), the last
probability function, P4(t), can be estimated from Equation (3) as the complement to 1 of
the other state probability functions. The analytical solution of 2SBRSBF with First Case
distributions can be described as: “set the constants from Equation (9) and form the state
probability functions from Equation (10)” (see Appendix B for the proof).

K = (λ1 + λ2 + λ3 + λ4)/2; C = (λ1 + λ3)(λ2 + λ4)−
(

1− p f

)
(1− pr)λ1λ4

s1 = −K +
√

K2 − C; s2 = −K−
√

K2 − C

A1 = s1+λ2+λ4
s1−s2

; B1 = s2+λ2+λ4
s2−s1

; A2 =
(1−p f )λ1

s1−s2
; B2 =

(1−p f )λ1
s2−s1

A3 = λ3(s1+λ2+λ4)
(s1−s2)(λ1+s1)

; B3 = λ3(s2+λ2+λ4)
(s2−s1)(λ1+s2)

; C3 = λ3(λ1+λ2+λ4)
(λ1−s1)(λ1−s2)

(9)

Domain : t ∈ [0, ∞)
P1(t) = A1es1t − B1es2t

P2(t) = A2es1t − B2es2t

P3(t) = A3es1t − B3es2t + C3e−λ1t

P4(t) = 1− (A1 + A2 + A3)es1t + (B1 + B2 + B3)es2t − C3e−λ1t

(10)

The reliability of the system from Equation (11) and its MTTF from Equation (12) are
derived as special cases of Equations (3) and (4):

Rsys(t) = (A1 + A2 + A3)es1t − (B1 + B2 + B3)es2t + C3e−λ1t, for t ∈ [0, ∞) (11)

MTTFsys = −(A1 + A2 + A3)/s1 + (B1 + B2 + B3)/s2 + C3/λ1 (12)

5. Numerical Solution

This solution is applicable for any Second Case distribution with full aging of the
backup component in standby and for any First Case distribution. The GRD in Figure 1b
can be represented as a system of four simultaneous DAEs from Equation (16) about
the four state probability functions, Pg(t) (g = 1,2,3,4). The system of DAEs will be nu-
merically integrated from 0 to tend, where the latter will be selected sufficiently large, so
Rsys(tend) ≈ 0 (< 0 .01). The main numerical difficulty in solving Equation (16) is to advise
a procedure for stable approximation of the failure/repair rates, λk(t) (k = 1,2,3,4), at any
t ∈ [0, tend]. That problem is far from trivial since sometimes Fk(t) is so close to 1, that
the denominator of Equation (7) turns into 0. For each of the four distributions, using the
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original inverse CDF function, we can calculate the time tλ,k, where the denominator of
Equation (7) equals to 100 times the machine epsilon (ε):

tλ,k = F−1
k (1− 100ε), for k = 1, 2, 3, 4 (13)

The approximated failure/repair rate, λk,a(t) (k = 1,2,3,4) equals to Equation (7) if its
denominator is greater than 100ε or equals the failure/repair rate at tλ,k otherwise:

λk,a =

{
fk(t)/[1− Fk(t)] , t ∈ [0, tλ,k]

fk(tλ,k)/[1− Fk(tλ,k)] , t ∈ (tλ,k, ∞)
, where k = 1, 2, 3, 4 (14)

Equation (14) produces numerically stable approximations of the failure/repair rates
at any non-negative time not greater than tend. This is true even when a distribution is
truncated which means that Fk(0) > 0 and only its part in the non-negative domain has
to be used. Then, according to Appendix A, the value of the failure/repair rate for any
non-negative time will be the same as that of the non-truncated distribution since the
truncated distribution can be represented as a conditional nontruncated one:

Fk,trun(t) = Fk(t|T0 = 0) = 1− [1− Fk(t)]/[1− Fk(0)], t ≥ 0 (15)

Now, we can write the DAE system corresponding to Figure 1b:
dP1
dt (t) = −[λ1,a(t) + λ3,a(t)]P1(t) + (1− pr)λ4,a(t)P2(t)

dP2
dt (t) =

(
1− p f

)
λ1,a(t)P1(t)− [λ4,a(t) + λ2,a(t)]P2(t)

dP3
dt (t) = λ3,a(t)P1(t)− λ1,a(t)P3(t)

0 = P1(t) + P2(t) + P2(t) + P2(t)− 1

(16)

The dependent variables can be organized in a 4D vector:
→
y (t) = [P1(t), P2(t), P3(t), P4(t)]

T.
The DAE from Equation (16) is semi-explicit with differential index 1. It has a singular constant
mass matrix:

M
(

t,
→
y
)
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (17)

The Jacobian matrix of the RHS of Equation (16) depends only on the time t:

J
(

t,
→
y
)
=


−λ1,a(t)− λ3,a(t) (1− pr)λ4,a(t) 0 0
(1− pr)λ1,a(t) −λ4,a(t)− λ2,a(t) 0 0

λ3,a(t) 0 −λ1,a(t) 0
1 1 1 1

 (18)

The initial conditions given in Equation (2) together with Equations (16) and (17) form
a Cauchi problem:

M
(

t,
→
y
)→

y
′
(t) =

→
f
(

t,
→
y (t)

)
with

→
y ini =

→
y (0) = [P1(0), P2(0), P3(0), P4(0)]

T = [1, 0, 0, 0]T (19)

Here,
→
y
′
(t) = [dP1(t)/dt, dP2(t)/dt, dP3(t)/dt, dP4(t)/dt]T , M

(
t,
→
y
)

is the mass ma-

trix (17), and the 4D
→
f
(

t,
→
y (t)

)
is the RHS of Equation (16). The problem from Equation (19)

can be numerically integrated (e.g., using ode15s.m from MATLAB [39]) at 2000 evenly
distributed time points from 0 to tend:

ti = (i− 1)tend/1999 , for i = 1, 2, . . . , 2000 (20)
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The reliability function and the MTTFsys can be calculated approximating Equations (3) and (4)
as:

Rsys(ti) = 1− P4(ti) , for i = 1, 2, . . . , 2000 (21)

MTTFsys =

[
Rsys(t1) + Rsys(t2000) + 2

1999

∑
i=2

Rsys(ti)

]
tend/1999 (22)

6. Simulation Solution

This solution is applicable for any set of distribution (First Case or Second Case) and
for any type of aging of the backup component in standby (full aging, no aging, or partial
aging). Any simulation uses multiple pseudo-realities to study the system in question. The
information from each generated pseudo-reality will be kept in an EC, whose definition
and properties will be discussed in Section 6.1. In Section 6.2 we will concentrate on
the development of specific functions generating random time intervals for the 2SBRSBF
system. Those functions will be used in Section 6.3 where an algorithm will be developed
to generate a random EC describing the 2SBRSBF system. In Section 6.4 we will extract the
information in the generated ECs to calculate the state probability functions and the rest of
the reliability characteristics of a 2SBRSBF system.

6.1. Definition and Properties of the Event Chains for 2SBRSBF

In the simulational solution, we generate a large count N of pseudo-realities in which
we observe the behavior of the 2SBRSBF system from time 0 to system failure or to time tend
whichever comes first. As in the numerical solution (described in Section 5) the constant
tend is selected sufficiently large, so Rsys(tend)< 0.01. The pseudo-realities are described
with the ECs introduced in [22] where the EC of the jth pseudo-reality is defined as the set:

ECj =
{[

timepsrj(k), statepsrj(k)
]
|k = 1, 2 , · · · , qj

}
(23)

The notation in Equation (23) shows that the jth pseudo-reality contains qj state transi-
tions (called events) where the kth consecutive event which happened at time timepsrj(k) is a
transition to state/substate timepsrj(k). The latter is coded either with 1, 2, and 3 respectively
for State 1, State 2, and State 3, or with 40, 41, 42, and 43 respectively for system failure
type b, type a, type c, and type d (all of them denoting State 4). Any EC for a 2SBRSBF
system should have the following properties:

p1) It contains at least one event: qj ≥ 1.
p2) The events happen at strictly increasing times: timepsrj(k)< timepsrj(k + 1) for

k = 1,2, . . . ,(qj − 1).
p3) The initial event is at time zero: timepsrj(1) = 0.
p4) The final event happens before tend: timepsrj(qj) < tend.
p5) The simulation starts with fully operational system: statepsrj(1) = 1.
p6) Whenever a system failure is observed the simulation ends: if statepsrj(b) > 3, then

qj = b.
p7) Whenever the State 3 is observed either it is the last event, or the next event is the

system failure type d: if statepsrj(b) = 3, then either qj = b, or qj = (b + 1) and statepsrj(qj) = 43.
p8) The State 3 and the State 4 (in all its substates) can happen only once: #[statepsrj(k) = 3]≤ 1,

#[statepsrj(k) = 40]≤ 1, #[statepsrj(k) = 41]≤ 1, #[statepsrj(k) = 42]≤ 1, #[statepsrj(k) = 43]≤ 1.
p9) The State 1 and State 2 alternate in the beginning of the EC including to the hth

event and neither one happens later: statepsrj(k) = 1 if and only if k is odd and k ≤ h,
whereas statepsrj(k) = 2 if and only if k is even and k ≤ h.

p10) There could be maximum two events after h: h ≤ qj ≤ (h + 2).
p11) If there are events after the hth one, they are either a transition to State 3 or a

transition to State 4 (in all its substates): statepsrj(k) ≥ 3 for all k > h and k ≤ qj.
p12) The State 2 can be observed only on an even position and the previous event is

always a transition to State 1: if statepsrj(b) = 2, then b is even and statepsrj(b − 1) = 1.
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p13) The State 3 can be observed only on an even position and the previous event is
always a transition to State 1: if statepsrj(b) = 3, then b is even and statepsrj(b − 1) = 1.

The formulated EC properties will facilitate the generation of time-period variates
presented in Section 6.2. The algorithm described in Section 6.3 will generate ECs with the
formulated EC properties. The latter will be used in Section 6.4 to prove the methods for
extracting reliability information from the generated set of ECs for 2SBRSBF system.

6.2. Generating Times Periods Using Conditional Distributions from 2SBRSBF

As discussed in Section 3, to simulate an EC of a 2SBRSBF system we need to generate
random time-periods complying with the conditional failure distributions f 1(τ|t), f 3(τ|t),
and f 2(τ|tage) and with the conditional repair distribution f 4(τ|t), where t and tage are
non-negative values.

We do not know which of the four original distributions, fk(t) (k = 1,2,3,4), are defined
only in the non-negative domain and which are defined in the entire real axes so we need to
substitute them with their truncated distributions, fk,trunc(t) = fk(t|0) for k = 1,2,3,4. Noting
that if the first condition is met, then fk,trunc(t) = fk(t|0) = fk(t) (k = 1,2,3,4), and we can
safely work only with truncated distributions. So, strictly speaking, we need to generate
time-period variates from the conditional truncated distributions f 1,trun(τ|t), f 3,trun(τ|t),
f 2,trun(τ|tage), and f 4,trun (τ|t). However, for any k it is true that:

fk,trun(τ|t) =
fk,trun(τ + t)

Rk,trun(t)
=

fk(τ + t|0)
Rk(t|0)

=
fk(τ + t + 0)/Rk(0)

Rk(t + 0)/Rk(0)
=

fk(τ + t)
Rk(t)

= fk(τ|t) (24)

According to Equation (24) the conditional truncated distributions coincide with the
conditional original distributions. In case t and tage are known entities we can generate
random time-period variates as special cases of the Practical Indirect Sampling Method from
Conditional CDF (PISMCF) [17] where the algorithm is motivated, formalized, illustrated,
and proven. On its basis we can define a three-attribute procedure, PISMCF(.), which
generates numerically stable random time interval variate, ∆τ, from a given conditional
CDF, F(t|Tsurv), where Tsurv is a non-negative real number representing the time of survival:

∆τ = PISMCF
(

F(.), F−1(.), Tsurv

)
(25)

In Equation (25), F(.) is the unconditional CDF which can express F(t|Tsurv) using
Equation (26):

1− F(t|Tsurv) =
1− F(t + Tsurv)

1− F(Tsurv)
(26)

The second argument, F–1(.), of the PISMCF procedure from Equation (25) being the
inverse CDF, can be used to estimate the time tλ where the denominator of Equation (26) is
100 machine epsilons (ε):

tλ = F−1(1− 100ε) (27)

In short, the algorithm for estimating Equation (25) is: (a) Calculate tλ using Equation (27);
(b) if Tsurv < tλ, then set Tcut = Tsurv, else set Tcut = tλ; (c) Generate RD as a uniformly
distributed variate in the unit interval (0,1); (d) estimate pRD = 1 − RD [1 − F(Tcut)]; (e) Set
∆τ = F−1(pRD).

Let us assume that while performing the simulation of the jth pseudo-reality for the
2SBRSBF system we have observed only the first kcur state events. The simulation probably
will continue and therefore, the EC is yet incomplete:

ECinc
j =

{[
timepsrj(k), statepsrj(k)

]
|k = 1, 2 , · · · , kcur

}
(28)

Then, the current state of the system is scur = statesprj(kcur) and the simulational time is
Tcur = timesprj(kcur) < tend (see EC property p3). The incomplete EC in Equation (28) is never
empty since kcur ≥ 1 (see EC properties p1, p3, and p5).
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If scur > 3, we do not need to generate any time-period variates since it shows a system
failure, i.e., end of the simulation in the jth pseudo-reality (see EC properties p8, p11,
and p6).

If scur is 1, we need to generate two possible time-period variates: the time to failure
of the primary unit, ∆τ1, f p, and the time to failure in standby of the backup unit, ∆τ1, f b.
Using Equation (25):

∆τ1, f p = PISMCF
(

F1(.), F−1
1 (.), Tcur

)
(29)

∆τ1, f b = PISMCF
(

F3(.), F−1
3 (.), Tcur

)
(30)

If scur is 3, we do not need to generate any time-period variate since the possible time
to failure of the primary unit is known to be

(
∆τ1, f p − ∆τ1, f b

)
, where ∆τ1, f p and ∆τ1, f b are

generated in the previous State 1 (see EC properties p9 and p13).
If scur > 3, we do not need to generate any time-period variate since we have observed

a system failure of some type which means that the simulation in the jth pseudo-reality
should stop and therefore qj = kcur (see EC properties p6, p8, and p11).

If scur is 2, we need to generate two possible time-period variates: the time to repair
of the primary unit, ∆τ2,rp, and the time to failure in operation of the backup unit, ∆τ2, f b.
Using Equation (25):

∆τ2,rp = PISMCF
(

F4(.), F−1
4 (.), Tcur

)
(31)

∆τ2, f b = PISMCF
(

F2(.), F−1
2 (.), tage

)
(32)

If the 2SBRSBF operates with First Case distributions, the equivalent age, tage, of the
backup unit when it starts operation at time Tcur is rather irrelevant since F2(.) is the CDF of
an exponential distribution. Then we can compare the state probability functions derived
by the simulational solution with the same acquired, on one hand, from numerical solution
with the DAE system from Equation (16) according to the RD in Figure 1b and on the other
hand with the analytical solution from Equations (9)–(12) according to the RD in Figure 1a.

If, however, the 2SBRSBF operates with Second Case distributions, then in order to
use Equation (32), we have to determine the equivalent age, tage, at time Tcur. Since we
need ∆τ2, f b only when the system is State 2, it follows that kcur is even (see EC property p9).
From the beginning of the jth pseudo-reality up to time Tcur, the backup component has
been in standby (kcur/2) times when the primary component was operating till its failure
(see EC property p9). Up to Tcur, the backup component has never failed in standby when
the primary component was in operation, i.e., during the compound time interval with
overall positive length Tsb (see EC properties p6, p8, and p9). The latter time length can be
defined using Equation (28) as:

Tsb =
kcur/2

∑
i=1

[
timepsrj(2i)− timepsrj(2i− 1)

]
(33)

On the other hand, the backup component has been in operation (kcur/2 − 1) times,
when the primary component was in successful repair (see EC property p9). Up to Tcur, the
backup component has never failed during operation when the primary component was
successfully repaired, i.e., during the compound time interval with overall non-negative
length Toper time (see EC properties p7, p8, and p9). The latter time length can be estimated
by noting that up to Tcur the 2SBRSBF system is either in State 1 or in State 2:

Toper = Tcur − Tsb (34)
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The non-negative value of tage will be the sum of the backup component operation
time, Toper, with the equivalent operating time Tequ with which the backup component
would age during the standby time Tsb:

tage = Toper + Tequ (35)

The equivalent operating time Tequ depends on aging in standby mechanism under
which the 2SBRSBF system functions. There are three alternative assumptions for the
nature of this aging in standby mechanism: full aging, no aging, or partial aging.

The full aging assumption accepts that the aging of the backup component during
standby is the same as during operation (see Figure 2a):

Tequ = Tsb ⇒ tage = Toper + Tsb = Tcur − Tsb + Tsb = Tcur (36)

Figure 2. Cont.
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Figure 2. Identification of the equivalent aging time for different aging assumptions: (a) under full
aging; (b) under no aging; (c) under partial aging.

Under the full aging assumption, a 2SBRSBF can be described with the DAE system
from Equation (16) according to the RD in Figure 1b, which allows us to acquire numerical
solution for Second Case distributions. The numerical solution can be compared with
simulational state probability functions.

The no aging assumption accepts that the backup component during standby never
ages (see Figure 2b):

Tequ = 0⇒ tage = Toper + 0 = Tcur − Tsb (37)

Under the no aging assumption, a 2SBRSBF cannot be described with a DAE system
since no RD adequately reflects the reliability behavior of the 2SBRSBF. For Second Case
distributions, the only possible solution is the simulational one.

The partial aging assumption accepts that the backup component in standby ages to
the same reliability as the backup component in operation during the equivalent operating
time Tequ

sb (see Figure 2c):

F2,trun

(
Tequ

sb

)
= F3,trun(Tsb) (38)

Equation (38) in simplified form was firstly proposed in [22], where it was successfully
tested for Two-Component Standby System with Failures in Standby. In a real 2SBRSBF
system, the failures of the backup component will be more frequent during operation
than during standby which means that F2,trun(t) ≥ F3,trun(t) for any non-negative time t.
This inequality, together with Equation (38), assures that practically always Tequ ∈ [0, Tsb].
Applying Equation (15) twice to Equation (38) we get:

Tequ =

{
F−1

2 (pequ) i f pequ < 1− 100ε

tλ,2 i f pequ ≥ 1− 100ε
, where pequ = 1− 1− F2(0)

1− F3(0)
[1− F3(Tsb)] (39)

In Equation (39), tλ,2 is calculated with Equation (13) for k = 2, therefore it uses the
ideas in Equation (14) for stable approximation of the equivalent operating time, Tequ, at
any Tcur ∈ [0, tend] for arbitrary incomplete EC from Equation (23) describing the behavior
of a 2SBRSBF.

Under the partial aging assumption, the 2SBRSBF cannot be described with a DAE
system since no RD adequately reflects the reliability behavior of the 2SBRSBF similarly to
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the no aging assumption. Again, for Second Case distributions, the only possible solution
is the simulational one.

We combined Equations (33)–(37) into a six-attribute procedure, TAGEASS(.), which
gives numerically stable estimates for the equivalent age, tage, of the backup unit under any
of the three aging assumptions:

tage = TAGEASS
(

F2(.), F−1
2 (.), F3(.), ECinc

j , Tcur, FlagA

)
(40)

In Equation (40), the variable FlagA is 1, 2 or 3, respectively when the 2SBRSBF operates
under the full aging, no aging, or partial aging assumptions. Then Equation (40) can be
estimated using Algorithm 1.

Algorithm 1 Equivalent Age Estimation in the jth Pseudo-Reality for 2SBRSBF

1) Calculate the total standby time of the backup component, Tsb, using (33).
2) Calculate the total operational time of the backup component, Toper, using (34).
3) If FlagA = 1 (full aging assumption), then calculate the equivalent operating time, Tequ, using (36).
4) If FlagA = 2 (no aging assumption), then calculate the equivalent operating time, Tequ, using (37).
5) If FlagA = 3 (partial aging assumption), then:

5.1) Calculate the positive constant, tλ,2, using (13) with k = 2.
5.2) Calculate the probability, pequ, using the second part of (39).
5.3) Calculate the equivalent operating time, Tequ, the first part of (39)

6) Calculate the equivalent age of the backup component, tage, using (35).

6.3. Event Chain Generation for 2SBRSBF

After developing the procedures for random time-period generation in Section 6.2, we
may simulate an EC for the jth pseudo-reality of a 2SBRSBF system which satisfies all EC
properties defined in Section 6.1.

The following is given:

(1) For each k = 1, 2, 3, 4, the original CDFs, Fk(t), defined for any real argument.
(2) For each k = 1, 2, 3, 4 the original inverse CDFs F−1

k (p), defined for any p belonging to
the unit interval.

(3) The probability, pf, for switching failure on demand.
(4) The probability, pr, for back-switching failure on demand.
(5) The value of the FlagA, which determines under which aging assumption the 2SBRSBF

operates.
(6) The positive final simulation time, tend, such that Rsys(tend) ≈ 0 (< 0 .01).
(7) The consecutive number, j, of the pseudo-reality.

It is easy to demonstrate that any EC generated by Algorithm 2 satisfies all EC
properties formulated in Section 6.1.

The event chain for the jth pseudo-reality, ECj can be calculated using Algorithm 2.
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Algorithm 2 Generation of the Event Chain for the jth Pseudo-Reality of 2SBRSBF

1) Initiate the incomplete event chain, ECinc
j :

1.1) Set, Tcur =0 (the current system time is zero)
1.2) Set, kcur = 1 (the current count of events is one)
1.3) Set, timepsrj(kcur) = Tcur (the time of the first event is zero)
1.4) Set, statepsrj(kcur) = 1 (the system starts from State 1)

2) If statepsrj(kcur) = 1 (the system is currently in State 1), then:

2.1) Estimate, ∆τ1, f p = PISMCF
(

F1(.), F−1
1 (.), Tcur

)
(the possible time to failure of the primary unit).

2.2) Estimate, ∆τ1, f b = PISMCF
(

F3(.), F−1
3 (.), Tcur

)
(the possible time to standby failure of the backup unit).

2.3) If tend ≤ Tcur + ∆τ1, f p and tend ≤ Tcur + ∆τ1, f b (the end of simulation comes first), then:

2.3.1) Set qj = kcur (the last event count in ECj)
2.3.2) Set ECj = ECinc

j (the final ECj)
2.3.3) Stop the Algorithm

2.4) If ∆τ1, f p ≤ ∆τ1, f b (the primary unit is failing first), then:

2.4.1) Set kcur= kcur +1 (new event)
2.4.2) Set Tcur= Tcur + ∆τ2, f b (new current system time)
2.4.3) Set timepsrj(kcur) = Tcur (the time of the new event)
2.4.4) Generate RN as an evenly distributed number in the unit interval (check which is the new state)

2.4.4.1) If RN > pf, then statepsrj(kcur) = 2 (i.e., no switching failure, move to State 2)
A. If RN ≤ pf, then statepsrj(kcur) = 41 (i.e., switching failure, move to State 4, type a)

2.5) If ∆τ1, f p > ∆τ1, f b (the backup unit is failing first), then:

2.5.1) Set kcur= kcur + 1 (new event)
2.5.2) Set Tcur= Tcur + ∆τ1, f b (new current system time)
2.5.3) Set timepsrj(kcur) = Tcur (the time of the new event)
2.5.4) Set statepsrj(kcur) = 3 (move to State 2)

3) If statepsrj(kcur) = 2 (the system is currently in State 2), then:

3.1) Estimate, ∆τ2,rp = PISMCF
(

F4(.), F−1
4 (.), Tcur

)
(the possible time to repair of the primary unit).

3.2) Estimate tage = TAGEASS
(

F2(.), F−1
2 (.), F3(.), ECinc

j , Tcur , FlagA

)
(the equivalent age of the backup unit)

3.3) Estimate, ∆τ2, f b = PISMCF
(

F2(.), F−1
2 (.), tage

)
(the possible time to operational failure of the backup unit).

3.4) If tend ≤ Tcur + ∆τ2,rp and tend ≤ Tcur + ∆τ2, f b (the end of simulation comes first), then:

3.4.1) Set qj = kcur (the last event count in ECj)
3.4.2) Set ECj = ECinc

j (the final ECj)
3.4.3.) Stop the Algorithm

3.5) If ∆τ2,rp ≤ ∆τ2, f b (the primary unit is repaired first), then:

3.5.1) Set kcur = kcur + 1 (new event)
3.5.2) Set Tcur = Tcur + ∆τ2,rp (new current system time)
3.5.3) Set, timepsrj(kcur) = Tcur (the time of the new event)
3.5.4) Generate RN as an evenly distributed number in the unit interval (check which is the new state)

3.5.4.1) If RN > pr, then statepsrj(kcur) =1 (no back-switching failure, move to State 1)
3.5.4.2) If RN ≤ pr, then statepsrj(kcur) = 40 (back-switching failure, move to State 4, type b)

3.6) If ∆τ2,rp > ∆τ2, f b (the backup unit is failing first), then:

3.6.1) Set, kcur = kcur + 1 (new event)
3.6.2) Set, Tcur = Tcur + ∆τ2, f b (new current system time)
3.6.3) Set, timepsrj(kcur) = Tcur (the time of the new event)
3.6.4) Set, statepsrj(kcur) =42 (move to State 4, type c)

4) If statepsrj(kcur) = 3 (the system is currently in State 3), then:

4.1) If tend ≤ Tcur + ∆τ1, f p − ∆τ1, f b (the end of simulation comes first), then:

4.1.1) Set, qj= kcur (the last event count in ECj)
4.1.2) Set, ECj = ECinc

j (the final ECj)
4.1.3) Stop the Algorithm

4.2) If tend > Tcur + ∆τ1, f p − ∆τ1, f b (the primary unit is failing first), then:

4.2.1) Set, kcur= kcur+1 (new event)
4.2.2) Set, Tcur= Tcur+∆τ1, f p − ∆τ1, f b (new current system time)
4.2.3) Set, timepsrj(kcur) = Tcur (the time of the new event)
4.2.4) Set, statepsrj(kcur) = 43 (switching failure, move to State 4, type d)

5) If statepsrj(kcur) > 3 (the system is currently in State 4), then:

5.1) Set, qj = kcur (the last event count in ECj)
5.2) Set, ECj = ECinc

j (the final ECj)
5.3) Stop the Algorithm

6) Go to Step 2 (try a next transition)
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6.4. Extracting Reliability Information from the Simulated ECs

Let N be a large positive integer representing the count of the randomly simulated
pseudo-realities. Using Algorithm 2, we can simulate ECj, for j = 1,2, . . . , N. In this section,
we will extract the reliability information from the simulated ECs, approach which is the
essence of any Monte Carlo simulation [37] (pp. 290–294).

Let us calculate the state probability functions at the 2000 evenly distributed time
points from 0 to tend given in Equation (20). For a given ECj we can estimate the state, Sti,j,
at each of the time points ti:

Sti,j =

{
statepsrj(k) if timepsrj(k) ≤ ti < timepsrj(k + 1) , for k < qj

statepsrj
(
qj
)

if timepsrj
(
qj
)
≤ ti ≤ tend

, where
i = 1, 2, . . . , 2000

j = 1, 2, . . . , N
(41)

From Equation (41) it is easy to estimate the values of the first three state probability
functions at the time point, ti:

Pg(ti) =
1
N

#
(
Si,j = g

∣∣j = 1, 2, . . . , N
)
, where g = 1, 2, 3 and i = 1, 2, . . . , 2000 (42)

In Equation (42) the #
(
Si,j = g

∣∣j = 1, 2, . . . , N
)

is the count of all states at the time
point ti which are equal to g.

The fourth state probability function can be estimated using Equation (1) as:

P4(ti) = 1− P3(ti)− P2(ti)− P3(ti) , for i = 1, 2, . . . , 2000 (43)

The reliability function and the MTTFsys can be approximated with Equations (21) and (22).
According to the ES property p1, the reliability in Equation (22) has decreasing nodes:

Rsys(ti) ≥ Rsys(ti+1) , for i = 1, 2, . . . , 1999 (44)

One way to identify the α-design life, tdes,α for given α is to transform the nodes,{[
ti, Rsys(ti)

]∣∣i = 1, 2, . . . , 2000
}

, of the system reliability from Equation (22) into strictly

decreasing purged nodes
{[

tpu
i , Rpu

sys

(
tpu
i

)]∣∣∣i = 1, 2, . . . , npu
}

where:

Rpu
sys

(
tpu
i

)
> Rpu

sys

(
tpu
i

)
, for i = 1, 2, . . . , npu (45)

Such a purging procedure is proposed in [17], where the algorithm is motivated, for-
malized, illustrated, and proven. In short, it runs in the steps summarized in Algorithm 3.

Algorithm 3 Purging Algorithm

(a) Identify the time of the first purged node
[
tpu
1 , Rpu

sys
(
tpu
1

)
= 1

]
as the greatest ti for which Rsys(ti) = 1;

(b) Substitute all internal nodes with equal reliability with one purged node in the center of the horizontal platform;

(c) Identify the time of the last purged node
[
tpu
npu , Rpu

sys

(
tpu
npu

)]
as the smallest ti for which Rsys(ti) = Rsys(t2000).

Having the strictly decreasing purged system reliability function, we can identify the
α-design life, tdes,α for any α ∈

[
Rpu

sys

(
tpu
npu

)
, 1
]
:

tdes,α = tpu
i +

[
Rpu

sys

(
tpu
i

)
− α
] tpu

i+1 − tpu
i

Rpu
sys

(
tpu
i

)
− Rpu

sys

(
tpu
i+1

) , for Rpu
sys

(
tpu
i

)
≥ α > Rpu

sys

(
tpu
i+1

)
(46)

As discussed in Section 3, the reliability numerical characteristics Mediansys, B1_life,
B10_life, and IQRsys can be estimated as tdes,0.5, tdes,0.99, tdes,0.9, and tdes,0.25− tdes,0.75 respec-
tively by applying Equation (46) five times.
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The simulational solution is universal and exists even when the numerical and analyt-
ical solutions are impossible. Even when the numerical and the analytical solutions exist,
the simulational solution can provide richer reliability information.

For example, it is obvious that the 2SBRSBF system will have 100% chance to ever be
in the State 1. It is also clear that if tend is correctly selected, then the 2SBRSBF system will
have more than 99% chance to ever be in the State 4. However, it is interesting to know the
chance, P2,ever, for the 2SBRSBF system to ever be in the State 2, since that probability will
help us plan the resources needed for the repair of the primary unit. Similarly, the chance,
P3,ever, for the 2SBRSBF system to ever be in the State 3 is important, since that will show us
the prevalence of the failure in standby of the backup unit. So, for a given 2SBRSBF system,
we can estimate the chances, Pg,ever, for g = 1,2,3:

Pg,ever =
100
N

#
(
∃i, that Si,j = g

∣∣j = 1, 2, . . . , N
)
, where g = 1, 2, 3 (47)

In Equation (47), #
(
∃i, that Si,j = g

∣∣j = 1, 2, . . . , N
)

is the count of pseudo-realities in
which State g can be found at least once. Similarly, for a given 2SBRSBF system we can
estimate the chance, P4,ever as:

P4,ever =
100
N

#
(
∃i, that Si,j > 3

∣∣j = 1, 2, . . . , N
)

(48)

In Equation (48), #
(
∃i, that Si,j > 3

∣∣j = 1, 2, . . . , N
)

is the count of pseudo-realities in
which State 4 (system failure) can be found at least once.

As another example for reliability information, which can be acquired neither with the
numerical, nor with the analytical solution, can be found in the four conditional chances,
Pcond

g,ever (for g = 40, 41, 42, 43), of the 2SBRSBF system to have respectively type b, type a,
type c, or type d system failure, provided that system has failed:

Pcond
g,ever = 100

#
(

Si,qj = g
∣∣∣j = 1, 2, . . . , N

)
NP4,ever/100

, where g = 40, 41, 42, 43 (49)

The information in Equation (49) allows to identify the types of system failures which
dominate the 2SBRSBF system. That knowledge will increase the efficiency of the reliability
improvement measures. Equations (42), (47)–(49) use the frequentist interpretation of
probability [40] (pp. 42–43).

Knowing how to simulate an EC for the jth pseudo-reality of a 2SBRSBF system,
allows us to develop the simulational solution of a given 2SBRSBF system. We have the
following given:

(1) For each k = 1, 2, 3, 4, the original CDFs, Fk(t), defined for any real argument.
(2) For each k = 1, 2, 3, 4, the original inverse CDFs F−1

k (p), defined for any p belonging
to the unit interval.

(3) The probability, pf, for switching failure on demand.
(4) The probability, pr, for back-switching failure on demand.
(5) The value of the FlagA, which determines under which aging assumption the 2SBRSBF

operates.

The proposed algorithm in [17] uses simulation to find the reliability characteristics
of a two-component standby systems with switching failures and aging in standby. The
simulational solution for 2SBRSBF system can be obtained through a generalization of that
algorithm, which is formalized as Algorithm 4 below.

With the formulation of Algorithm 4 the universal simulational solution for a 2SBRSBF
system is complete.
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Algorithm 4 Simulational Solution of a 2SBRSBF System

1) Select the count N of pseudo-realities to be simulated as a large integer.
2) Select the final simulation time, tend, as a positive real number.
3) Set, j = 1 (initiate the consecutive number of the simulated pseudo-reality)
4) Generate the ECj, using Algorithm 2.
5) Set, j = j + 1 (move to next pseudo-reality).
6) If j ≤ N, then go to Step 4 (repeat the EC generation N times).
7) Estimate 2000 equally spaced times, ti, in the closed interval [0, tend] using Equation (20).
8) Estimate the states, Sti,j, using Equation (41).
9) Estimate the first three state probability functions,Pg(ti) (for g = 1, 2, 3) at the time points ti using Equation (42).
10) Estimate the fourth state probability function, P4(ti), at the time point ti using Equation (43).
11) Estimate the system reliability function, Rsys(ti) at the time point ti using Equation (21).
12) Estimate the system mean time to failure,MTTFsys using Equation (22).
13) Estimate the nodes,

{[
tpu
i , Rpu

sys
(
tpu
i

)]∣∣i = 1, 2, . . . , npu
}

, of the invertible reliability function using Algorithm 3.
14) Estimate the design lives, tdes,0.5, tdes,0.99, tdes,0.9, tdes,0.25 and tdes,0.75 using Equation (46) five times.
15) Set the median time, Mediansys = tdes,0.5.
16) Set the B1 life, tdes,0.99.
17) Set the B10 life, tdes,0.9.
18) Set the interquartile range, IQR = tdes,0.25 − tdes,0.75.
19) Estimate the first three unconditional chances, Pg,ever (for g = 1, 2, 3) using Equation (47).
20) Estimate the fourth unconditional chance, P4,ever using Equation (48).
21) Estimate the conditional chances, Pcond

g,ever (for g = 40, 41, 42, 43) using Equation (49).

7. Illustrative Examples
7.1. Examples Setup

We shall analyze three Illustrative Examples. In all of them, the probability for
switching failure is pf = 0.12, whereas the probability for back-switching failure is pr = 0.03.
The ratio between those values is plausible for the following reasons. If the switching is
successful, it means that the switching device operated properly. Then a back-switching
failure is less probable since it will be demanded shortly afterwards (the repair time of the
primary component is much smaller than its failure time).

In Example 1, any of the four original distributions has a constant failure/repair rate
λk shown in Table 2 (for k = 1,2,3,4). The PDFs of the original exponential distributions are:

fk(t) = λke−λkt, for t ≥ 0 where k = 1, 2, 3, 4 (50)

Table 2. Description of the original distributions in Example 1.

Component—Event—Mode Distribution Parameters

Primary Component Failure Exponential λ1 = 0.0005 failures/h
Backup Component Failure in operation Exponential λ2 = 0.0008 failures/h
Backup Component Failure in standby Exponential λ3 = 0.00025 failures/h

Primary Component Repair Exponential λ4 = 0.008 failures/h

The PDFs, the reliability/repair functions, and the failure/repair rates of the truncated
distributions from Equation (50) are plotted in Figure 3. Example 1 will illustrate the
behavior of the 2SBRSBF system with First Case distributions. Here, the original and the
truncated distributions coincide.

In Example 2, the original distributions are as follows:

(1) a Rayleigh distribution with shape parameter b1 [41] for the failures of the primary
component:

f1(t) = (t/b1)e−0.5(t/b1)
2
, for t ≥ 0 (51)

(2) a normal distribution with mean value µ2 h and standard deviation σ2 h [42] for the
failures of the backup component in operation:

f2(t) =
1√

2πσ2
e−0.5(t−µ2)

2/(σ2)
2
, for t ∈ (−∞,+∞) (52)



Mathematics 2021, 9, 2547 22 of 40

(3) a Weibull distribution with a scale parameter θ3 h and a shape parameter β3 [43] for
the failures of the backup component in standby:

f3(t) =
β3

θ3

(
t

θ3

)β3−1
e−(t/θ3)

β3 , for t ≥ 0 (53)

(4) a lognormal distribution with median time tmed,4 h and shape parameter s4 [44] for
the repairs of the primary component:

f4(t) =
1√

2πs4t
e−0.5 ln2 (t/tmed,4)/(s4)

2
, for t ≥ 0 (54)

The original distribution Example 2 are described in Table 3. The PDFs, the relia-
bility/repair functions, and the failure/repair rates of the truncated distributions from
Equations (51)–(54) are plotted in Figure 4. Example 2 will illustrate the behavior of the
2SBRSBF system with Second Case distributions where the failures of the backup com-
ponent in operation have an Increasing Failure Rate (IFR). Such a typical situation can
occur when the operational failure is caused mainly by high wearing in the backup compo-
nent [11] (pp. 73–75). Here, the original and the truncated distributions coincide except for
the f 2(t) and f 2,trunc(t).

Figure 3. The truncated distributions in Example 1. The three failure distributions are shown in section (a–c), whereas the
repair distribution is shown in section (d–f). The reliability/repair functions, the PDFs and the failure/repair rates are given
respectively in the first (sections (a,d)), the second (section (b,e)), and the third row (sections (c,f)).
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Table 3. Description of the original distributions in Example 2.

Component—Event—Mode Distribution Parameters

Primary Component Failure Rayleigh b1 = 1600 h
Backup Component Failure in operation normal µ2 = 1000 h and σ2 = 900 h
Backup Component Failure in standby Weibull θ3 = 4500 h and β3 = 2.2

Primary Component Repair lognormal tmed,4 = 90 h and s4 = 0.8

Figure 4. The truncated distributions in Example 2. The three failure distributions are shown in section (a–c), whereas the
repair distribution is shown in section (d–f). The reliability/repair functions, the PDFs and the failure/repair rates are given
respectively in the first (sections (a,d)), the second (section (b,e)), and the third row (sections (c,f)).

In Example 3 the distributions are the same as in Example 2, except for the second
type, which changes to:

2) a lognormal distribution with median time tmed,2 h and shape parameter s2 for the
failures of the backup component in operation:

f2(t) =
1√

2πs2t
e−0.5 ln2 (t/tmed,2)/(s2)

2
, for t ≥ 0 (55)

The original distribution Example 3 are described in Table 4. The PDFs, the relia-
bility/repair functions, and the failure/repair rates of the truncated distributions from
Equations (51), (53)–(55) are plotted in Figure 5. Example 3 will illustrate the behavior of
the 2SBRSBF system with Second Case distributions where the failures of the backup com-
ponent in operation have a Decreasing Failure Rate (DFR). Such an atypical situation can
occur when the operational failure is caused mainly by high child mortality in the backup
component [11] (pp. 73–75). Here, the original and the truncated distributions coincide.
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Table 4. Description of the original distributions in Example 3.

Component—Event—Mode Distribution Parameters

Primary Component Failure Rayleigh b1 = 1600 h
Backup Component Failure in operation lognormal tmed,2 = 537 h and s2 = 1.3
Backup Component Failure in standby Weibull θ3 = 4500 h and β3 = 2.2

Primary Component Repair lognormal tmed,4 = 90 h and s4 = 0.8

Figure 5. The truncated distributions in Example 3. The three failure distributions are shown in section (a–c), whereas the
repair distribution is shown in section (d–f). The reliability/repair functions, the PDFs and the failure/repair rates are given
respectively in the first (sections (a,d)), the second (section (b,e)), and the third row (sections (c,f)).

7.2. Example 1 Solution

Since in Example 1, we are dealing with First Case distributions, the type of aging has
no effect on the reliability performance of the 2SBRSBF system. The simulation solution was
obtained by Algorithm 4 with N = 10,000 pseudo-realities for time from 0 to tend = 20,000 h.
Four typical pseudo-realities are shown in Table 5 where the different types of system
failures are demonstrated. The four state probability functions are shown in Figure 6a–d,
respectively. The system reliability function is depicted in Figure 7. The simulation
reliability at tend was negligible (as required Rsys(20,000) = 0.0024 < 0.01) which justifies the
selection of tend. Important simulation numerical characteristics of the 2SBRSBF reliability
can be found in Table 6. The chances of some events of interest (described in Section 6.4)
can be found in Table 7. It is revealing so see that the backup component has approximately
69% chance to endure failure in standby (State 3). Another useful fact is that the switching
failures (Type a) are more frequent than the backup component failures in operation
(Type c) (17% vs. 11% conditional chance). That fact suggests that it is easier to improve
the reliability by upgrading the switching mechanism than by upgrading the backup unit.
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Table 5. Four typical pseudo-realities from Example 1.

1

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

2

Time 1378.3 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 1753.2 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 2016.9 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 2348.6 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

3

Time 1467.6 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

Time 1821.4 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

Time 2042.9 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

Time 2406.5 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

4

Time 2099.6 h: The primary
component fails in operation.

Switching failure. Type a system
failure (switching failure).

Time 4321.5 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 8168.7 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 3057.8 h: The backup
component fails in standby. The

primary component operates,
the backup component failed

in standby.

5

Time 4460.6 h: The primary
component successfully

repaired. Back-Switching
failure. Type b system failure

(back-switching failure).

Time 8288.8 h: The backup
component fails in operation.
Type c system failure (backup

component failure during
primary repair).

Time 3712.4 h: The primary
component fails in operation.

Type d system failure (standby
failure+ primary failure).

Figure 6. State probability functions for Example 1 (with states 1 through 4 given in sections (a–d) respectively) from the
analytical, numerical and simulation solution.
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Figure 7. Reliability functions for Example 1 from the analytical, numerical and simulation solution.

Table 6. Reliability characteristics of the 2SBRSBF from Example 1.

Count of pseudo-realities 100,000

Simulation time 2.000 × 10+4 h

Mean value (Simulation) 4.294 × 10+3 h

Median 3.418 × 10+3 h

Interquartile range 4.187 × 10+3 h

B10 life 7.922 × 10+2 h

B1 life 1.174 × 10+2 h

Mean value (Analytical) 4.282 × 10+3 h

Mean value (Numerical) 4.280 × 10+3 h

Table 7. Chances for events of interest in % for Example 1.

Unconditional Chance for State 1 to happen 100.00% The primary component operates, the backup
component is ready

Unconditional Chance for State 2 to happen 58.66% The primary component under repair, the backup
component operates

Unconditional Chance for State 3 to happen 68.98% The primary component operates, the backup
component failed in standby

Unconditional Chance for State 4 to happen 99.76% System failure

Conditional chance for type a failure to happen 16.68% Switching failure

Conditional chance for type b failure to happen 3.25% Back-switching failure

Conditional chance for type c failure to happen 11.07% Backup component failure during primary repair

Conditional chance for type d failure to happen 69.00% Standby failure + primary failure

The simulation results were verified by comparison with the precise analytical solution
(see Section 4). According to Table 6, the precise analytical MTTF is 4282 h, whereas the
simulational MTTF is estimated as 4294 h, which contains less than 0.3% error.

Also, the simulational results were verified by comparison with the numerical solution
(see Section 5), which, as seen from Figures 6 and 7, produced undistinguishable curves
from the simulational state probabilities and the simulational reliability function. According
to Table 6, the numerical MTTF is 4280 h, whereas the simulational MTTF is estimated
as 4294 h. The numerical solution for Example 1 (as well as in Examples 2 and 3) was
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derived by solving the index-1 DAE system described in Section 5 with the MATLAB
multistep procedure ode15s.m. The software successfully integrated the DAE system from 0
to tend = 20,000 h using variable-step method of variable order from 1 to 5 [45].

As seen from Figures 6 and 7, the analytical and the numerical solutions produce
undistinguishable curves from the simulational state probabilities and the simulational
reliability function. The observed overlap is an essential part of the verification of the
presented simulation algorithm: in the case of exponential distribution, the model is
Markovian, where the analytical, the numerical, and the simulational solutions should
practically coincide.

7.3. Example 2 Solution

Since Example 2 deals with Second Case distributions, the type of aging has an effect
on the reliability performance of the 2SBRSBF system. Three simulational solutions were
obtained by repeatedly using Algorithm 4 with N = 10,000 pseudo-realities for the three aging
assumptions: full aging, no aging and patrial aging of the backup component in standby.
Each of those solutions was estimated for time from 0 to tend = 8000 h. The three sets of four
state probability functions are shown in Figure 8a–d, respectively. The three system reliability
functions are depicted in Figure 9. The simulational reliabilities at tend were negligible and
much lower than 0.01 (for full aging-Rsys(8000) = 0; for no aging-Rsys(8000) = 0.0025; for partial
aging-Rsys(8000) = 0.0003) which justifies the selection of tend.

Figure 8. State probability functions for Example 2 (with states 1 through 4 given in sections (a–d) respectively) under the
three aging assumptions.
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Figure 9. Reliability functions for Example 2 under the three aging assumptions.

Important simulational numerical characteristics of the 2SBRSBF reliabilities can be
found in Table 8 for the three types of aging. The chances of some events of interest
(described in Section 6.4) can be found in Table 9 for each of the three aging assumptions.
It is revealing to see that the backup component has between 31% and 41% chance to
endure failure in standby (State 3) depending on the aging model. An interesting dynamic
is observed in the conditional chances of observing the different types of failure. At full
aging, the backup component failures during primary repair (Type c) have more than 50%
chance, whereas the primary component failures after failure in standby (Type d) constitute
only around 30% of the system failures. At no aging, the backup failures in operation are
less likely and, therefore, the primary component failures after backup failure in standby
(Type d) are more frequent than the backup component failures during primary repair
(Type c) (41% vs. 36% conditional chance). At the same time, Type c and Type d system
failures are marginally the same at partial aging of the backup component in standby
(37% vs. 42% conditional chance). Those facts suggest that to increase the reliability of the
2SBRSBF it is of paramount importance correctly to identify the aging mechanism of the
backup unit during standby.

Table 8. Reliability characteristics of the 2SBRSBF from Example 2 under the three aging assumptions.

Full Aging No Aging Partial Aging

Count of pseudo-realities 100,000 100,000 100,000

Simulation time 8.000 × 10+3 h 8.000 × 10+3 h 8.000 × 10+3 h

Mean value (Simulation) 2.837 × 10+3 h 3.457 × 10+3 h 3.242 × 10+3 h

Median 2.783 × 10+3 h 3.364 × 10+3 h 3.199 × 10+3 h

Interquartile range 1.531 × 10+3 h 2.051 × 10+3 h 1.785 × 10+3 h

B10 life 1.419 × 10+3 h 1.596 × 10+3 h 1.581 × 10+3 h

B1 life 5.536 × 10+2 h 5.735 × 10+2 h 5.818 × 10+2 h

Mean value (Analytical) NA NA NA

Mean value (Numerical) 2.837 × 10+3 h NA NA
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Table 9. Chances in % for events of interest for Example 2 under the three aging assumptions.

Full Aging No Aging Partial Aging

Unconditional Chance for
State 1 to happen 100.00% 100.00% 100.00% The primary component operates, the

backup component is ready

Unconditional Chance for
State 2 to happen 71.76% 71.78% 72.00% The primary component under repair, the

backup component operates

Unconditional Chance for
State 3 to happen 30.43% 40.78% 37.13% The primary component operates, the

backup component failed in standby

Unconditional Chance for
State 4 to happen 100.00% 99.75% 99.97% System failure

Conditional chance for type a
failure to happen 15.56% 20.11% 18.19% Switching failure

Conditional chance for type b
failure to happen 1.85% 3.30% 2.70% Back-switching failure

Conditional chance for type c
failure to happen 52.16% 35.75% 41.99% Backup component failure during

primary repair

Conditional chance for type d
failure to happen 30.43% 40.85% 37.12% Standby failure + primary failure

In Example 2, the distribution of the backup component failures in operation has an
IFR (see the blue line in Figure 5c), indicating that the wear out is the most likely reason for
those failures. This is by far the most widespread case in the engineering practice where the
backup component operates at the rear end of the bathtub curve [46]. Then, the severity of
the aging should increase the failure incidence of the backup component in operation and
subsequently should decrease the reliability. As expected, the system reliability function
is the best at no-aging and worst at full aging (see Figure 9 for 1500–5500 h). The MTTF
increases from 2837 h at full aging, through 3242 h at partial aging, to 3457 h at no aging,
which corresponds to substantial 21% improvement. Similar behavior can be observed in
the median, B10 life, and at the B1 life (see Table 8). Another expected result is that the
state probability functions for partial aging are between the state probability functions for
no aging and full aging (see Figure 8). The real distinction between the three curves can be
seen in State 2 probability function (Figure 8b) which is very sensitive to the aging mode.
The observed forms of the State 2 probability functions are justifiable since the severity
of aging increases the incidence of failure of the operational backup unit, which moves
the system to State 4 and decreases the probability of the 2SBRSBF to be in State 2. All the
above can serve as a qualitative validation of Algorithm 4 for simulating the reliability
behavior of the 2SBRSBF system.

Also, the simulational results were quantitatively verified by comparison with the
numerical solution (as described in Section 7.2), which, as seen from Figures 8 and 9,
produced undistinguishable curves from the simulational state probabilities and the sim-
ulational reliability function in the case of full aging of the backup component during
standby. This overlap is an important result: under the full-aging assumption the model is
semi-Markovian where the numerical, and the simulational solutions should practically
coincide. According to Table 8, the numerical MTTF and the simulational MTTF at full
aging are estimated to be equal (2837 h). Note that the analytical solution is impossible to
be derived in Example 2 since the failure/repair rates are not constant.

7.4. Example 3 Solution

Since Example 3 deals with Second Case distributions, similarly to Example 2, the type
of aging has effect on the reliability performance of the 2SBRSBF system. Three simulational
solutions were obtained by repeatedly using Algorithm 4 with N = 10,000 pseudo-realities
for the three aging assumptions: full aging, no aging and patrial aging of the backup com-
ponent in standby. Each of those solutions was estimated for time from 0 to tend = 12,000 h.
The three sets of four state probability functions are shown in Figure 10a–d, respectively.
The three system reliability functions are depicted in Figure 11. The simulational relia-
bilities at tend were negligible and lower than 0.01 (for full aging-Rsys(12000) = 0.0062; for
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no aging-Rsys(12,000) = 0.0011; for partial aging-Rsys(12,000) = 0.002) which justifies the
selection of tend.

Figure 10. State probability functions for Example 3 (with states 1 through 4 given in sections (a–d) respectively) under the
three aging assumptions.

Figure 11. Reliability functions for Example 3 under the three aging assumptions.
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Important simulational numerical characteristics of the 2SBRSBF reliabilities can be
found in Table 10 for the three types of aging. The chances of some events of interest
(described in Section 6.4) can be found in Table 11 for each of the three aging assumptions.

Table 10. Reliability characteristics of the 2SBRSBF from Example 3 under the three aging assumptions.

Full Aging No Aging Partial Aging

Count of pseudo-realities 100,000 100,000 100,000

Simulation time 1.200 × 10+4 h 1.200 × 10+4 h 1.200 × 10+4 h

Mean value (Simulation) 3.652 × 10+3 h 3.139 × 10+3 h 3.197 × 10+3 h

Median 3.317 × 10+3 h 2.957 × 10+3 h 2.957 × 10+3 h

Interquartile range 2.400 × 10+3 h 1.924 × 10+3 h 2.015 × 10+3 h

B10 life 1.432 × 10+3 h 1.364 × 10+3 h 1.336 × 10+3 h

B1 life 4.870 × 10+2 h 5.031 × 10+2 h 4.999 × 10+2 h

Mean value (Analytical) NA NA NA

Mean value (Numerical) 3.653 × 10+3 h NA NA

Table 11. Chances in % for events of interest for Example 3 under the three aging assumptions.

Full Aging No Aging Partial Aging

Unconditional Chance for
State 1 to happen 100.00% 100.00% 100.00% The primary component operates, the

backup component is ready

Unconditional Chance for
State 2 to happen 71.75% 71.83% 71.80% The primary component under repair,

the backup component operates

Unconditional Chance for
State 3 to happen 44.31% 35.71% 36.55% The primary component operates, the

backup component failed in standby

Unconditional Chance for
State 4 to happen 99.38% 99.89% 99.80% System failure

Conditional chance for type a
failure to happen 21.53% 17.73% 18.31% Switching failure

Conditional chance for type b
failure to happen 3.88% 2.48% 2.68% Back-switching failure

Conditional chance for type c
failure to happen 30.04% 44.06% 42.39% Backup component failure during

primary repair

Conditional chance for type d
failure to happen 44.56% 35.74% 36.62% Standby failure + primary failure

In Example 3, the distribution of the backup component failures in operation has an
DFR (see the blue line in Figure 5c), indicating that the child mortality is the most likely
reason for those failures. This is a very rare case in the engineering practice where the
backup component operates at the front end of the bathtub curve. Then, the severity of
the aging should decrease the failure incidence of the backup component in operation and
subsequently should increase the reliability. As expected, the system reliability function
is the worst at no-aging and best at full aging (see Figure 11 for 2000–8000 h). The MTTF
increases from 3139 h at no aging, through 3187 h at partial aging, to 3625 h at full aging,
which corresponds to noticeable 16% improvement. Similar behavior can be observed in
the median, B10 life, and at the B1 life (see Table 10). Another expected result is that the
state probability functions for partial aging are between the state probability functions for
no aging and full aging (see Figure 10). The real distinction between the three curves can be
seen in State 2 probability function (Figure 10b) which is very sensitive to the aging mode.
The observed forms of the State 2 probability functions are justifiable since the severity
of aging decreases the incidence of failure of the operational backup unit, which moves
the system to State 4 and increases the probability of the 2SBRSBF to be in State 2. All the
above can serve as a qualitative validation of Algorithm 4 for simulating the reliability
behavior of the 2SBRSBF system.

A partial overlap between the no aging simulation solution and the partial aging
simulation solution can be spotted in Figures 10 and 11. The same can also be observed
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in Figures 8 and 9 to a lesser extent. Those partial overlaps reflect the fact that for almost
all realistic distribution sets, under the applied method, the solution of partial aging
is much closer to the solution with no aging assumption than to the solution with full
aging assumption.

Again, the simulational results were quantitatively verified by comparison with the
numerical solution (as described in Section 7.2) which as seen from Figures 10 and 11
produced undistinguishable curves from the simulational state probabilities and the sim-
ulational reliability function in the case of full aging of the backup component during
standby (for comment on the observed overlap see Section 7.3). According to Table 10,
the numerical MTTF and the simulational MTTF at full aging are estimated to be virtually
equal (3653 h vs. 3652 h, respectively). Note that the analytical solution is impossible to be
derived in Example 2 since the failure/repair rates are not constant.

8. Conclusions

In this paper, we investigated the reliability effect of introducing a primary component
minimal repair in a two-component standby system with switching failures and aging in
warm-standby. A novel analytical solution was derived for distributions with constant
failure/repair rates. Under a full aging assumption of the backup component during
standby, an index-1 DAE system of four simultaneous equations with constant mass
singular matrix was proposed and solved to numerically approximate the state probability
functions and system reliability. A universal simulational algorithm was designed to solve
the 2SBFSR system under three types of aging. That algorithm generates pseudo-realities
with ECs, which satisfy the newly formulated EC properties for the 2SBFSR system. Novel
function to assess the equivalent age of the backup component under arbitrary aging
mechanisms was proposed and utilized during the EC generation. The system has a stable
operation with any type of distribution. There is a significant practical benefit in the
ability of the user to write their own distribution functions, which reflect several modes
of failure during operation, several modes of failure during warm-standby, and several
modes of repair.

Three numerical examples were elaborated to validate quantitatively and qualitatively
the simulational solution. To model the 2SBRSBF system with partial aging in standby,
we assumed that that the backup component in standby ages to the same reliability as the
backup component in operation. That is a logical and plausible hypothesis that allows
to produce a tractable aging model whose results can be treated as best estimate. Even if
the real aging mechanism is different the numerical examples show that the partial aging
results always will be bounded by the full aging and the no-aging results. That fact allows
the designers and the maintenance staff to correctly assess the effect of alternative measures
aiming at improving the system reliability even if the precise aging in standby mechanism
is known.

Although our model may look too specific and simplified, it is easily scalable. The
demonstrated methodology can easily be applied to multiple-component warm-standby
system with random configuration. We have not given such an example for purely vol-
ume constraints in this work. Any different aging assumptions can be incorporated by
modifying Algorithm 1 (hence the function TAGEASS). All aspects and elements of such
a multi-component warm-standby system can be found in 2SBRSBF. In such a way, our
model is suitable for applications in industrial systems, manufacturing, design of ship
electrical and propulsion systems, power plants, etc.

As a direction for future studies, we may study the ways to adapt our procedures to
the case of perfect repair [10] and intermediate repair [8], as this work only analyzed the
case of minimal repair.
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Appendix A

Given: Let the random variable T be the time to failure (or repair) of a component.
Also, let the random event A(T0) be that the component is operational at, or has not been
repaired up to, time T0. In fact, T is the deterministic time T0 plus the random time period
till the next event (failure or repair). This definition of T is true only for Appendix A. Then:

• The unconditional Cumulative Distribution Function (CDF) of T is F(t), for t ∈ [0, ∞).
• The unconditional Probability Density Function (PDF) of T is f (t), for t ∈ [0, ∞).
• The unconditional reliability (repair) function of T is R(t) = 1− F(t), for t ∈ [0, ∞).

• The unconditional failure (repair) rate of T is λ(t) = f (t)
R(t) , for t ∈ [0, ∞).

• The conditional CDF of T if A(T0), is Fcond(τ|T0), for τ = (t− T0) ∈ [0, ∞).

• The conditional PDF of T if A(T0), is fcond(τ|T0) = dFcond(τ|T0)
dτ , for τ = (t− T0) ∈

[0, ∞).
• The conditional reliability (repair) function of T if A(T0), is Rcond(τ|T0) = 1− Fcond(τ|T0),

for τ = (t− T0) ∈ [0, ∞).
• The conditional failure (repair) rate of T if A(T0), is λcond(τ|T0) = fcond(τ|T0)

Rcond(τ|T0)
, for

τ = (t− T0) ∈ [0, ∞).

Prove: The unconditional and the conditional failure (repair) rate are equal for any
t∗ ≥ T0, i.e., λ(t∗) = λcond(t ∗ −T0|T0), for t∗ ∈ [T0, ∞).

Proof. The unconditional R(t) and f (t) are given in Figure A1a,c. The relationship between
these functions is:

f (t) =
dF(t)

dt
=

d[1− R(t)]
dt

= −dR(t)
dt

for t ∈ [0, ∞) (A1)

Similarly, the conditional Rcond(τ|T0) and fcond(τ|T0) are given in Figure A1b,d. The
relationship between these functions is:

fcond(τ|T0) =
dFcond(τ|T0)

dτ
=

d[1− Rcond(τ|T0)]

dτ
= −dRcond(τ|T0)

dτ
forτ = (t− T0) ∈ [0, ∞) (A2)

According to [11] (p. 72), the value of the conditional Rcond(τ|T0) can be expressed as
the ratio of two unconditional values of R(t):

Rcond(τ|T0) =
R(τ + T0)

R(T0)
forτ = (t− T0) ∈ [0, ∞) (A3)

The interdependency between Figure A1a,b illustrates Equation (A3). The constant
R(T0) is the height of the red vertical line in Figure A1a.
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Figure A1. A generic distribution described by: (a) unconditional reliability; (b) conditional reliability; (c) unconditional
density; (d) conditional density.

Let us take the first derivative about τ from Equation (A3) and multiply both sides by
negative 1. Then,

−dRcond(τ|T0)

dτ
= − d

dτ

R(τ + T0)

R(T0)
forτ = (t− T0) ∈ [0, ∞) (A4)

Let us simplify the RHS of Equation (A4) using Equation (A1) and utilizing that
τ = (t− T0):

− d
dτ

R(τ+T0)
R(T0)

= − 1
R(T0)

dR(τ+T0)
dτ = − 1

R(T0)
dR(τ+T0)
d(τ+T0)

d(τ+T0)
dτ

= − 1
R(T0)

dR(t)
dt

dt
dτ = 1

R(T0)
f (t) d(τ+T0)

dτ

= f (τ+T0)
R(T0)

(1) = f (τ+T0)
R(T0)

(A5)

According to Equation (A2), the LHS of Equation (A4) is fcond(τ|T0). Then, from
Equations (A4) and (A5) it follows that:

fcond(τ|T0) =
f (τ + T0)

R(T0)
forτ = (t− T0) ∈ [0, ∞) (A6)
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The interdependency between Figure A1c,d illustrates Equation (A6). The constant
R(T0) is the area of the green patch in Figure A1c, since from Equation (A1) it follows that

R(T0) =
∞∫

T0

f (t)dt.

The conditional failure (repair) rate of T if A(T0) can be transformed using Equations (A3)
and (A6):

λcond(τ|T0) =
fcond(τ|T0)

Rcond(τ|T0)
=

f (τ + T0)

R(T0)
÷ R(τ + T0)

R(T0)
=

f (τ + T0)

R(τ + T0)
forτ = (t− T0) ∈ [0, ∞) (A7)

Let’s select a time point t∗ ≥ T0. The unconditional failure (repair) rate of T at time t* is:

λ(t∗) = f (t∗)
R(t∗) (A8)

The nominator and the denominator in Equation (A8) are respectively the heights of
the blue lines in Figure A1a,c. The conditional time τ is simply the time t delayed with T0
(i.e., t = τ + T0).

From here, the relative time moment τ∗ which coincides with time t* is:

τ∗ = t ∗ −T0 (A9)

Equation (A9) is illustrated by the transition from Figure A1a to Figure A1b, and in
the transition from Figure A1c to Figure A1d.

The value of λcond(τ|T0) at relative time point τ∗ can be easily calculated from Equa-
tion (A7) utilizing Equations (A8) and (A9):

λcond(t ∗ −T0|T0) = fcond(t∗−T|T0)
Rcond(t∗−T|T0)

= λcond(τ∗|T0)

= f (τ∗+T0)
R(τ∗+T0)

= f (t∗)
R(t∗) = λ(t∗)

, fort∗ ∈ [T0, ∞) (A10)

�

Appendix B

Given: Let λ1, λ2, λ3, and λ4 be real positive constants, whereas pr and pf are real
positive constants less than 1. The real functions P1(t), P2(t), and P3(t) are defined in the Do-
main t ∈ [0, ∞) and satisfy the system from Equation (A11) of three simultaneous ordinary
differential equations. The initial conditions of the functions are given in Equation (A12).

dP1
dt (t) = −(λ1 + λ3)P1(t) + (1− pr)λ4P2(t)

dP2
dt (t) =

(
1− p f

)
λ1P1(t)− (λ4 + λ2)P2(t)

dP3
dt (t) = λ3P1(t)− λ1P3(t)

(A11)

P1(0) = 1, P2(0) = 0, P3(0) = 0 (A12)

Find:

(a) The solution of the initial-value problem for P1(t), P2(t), and P3(t) in the Domain
t ∈ [0, ∞).

(b) The functions P4(t) = 1− P1(t)− P2(t)− P3(t) and Rsys(t) = 1− P4(t) in the Domain
t ∈ [0, ∞).

(c) The quantity MTTFsys =
∞∫
0

Rsys(t)dt.

Solution:

(a) Taking Laplace transformation [47] (pp. 331–335) of the three equations in Equation (A11)
yields a system of three algebraic equations about the Laplace transforms Y1(s), Y2(s),



Mathematics 2021, 9, 2547 36 of 40

and Y3(s) of the functions P1(t), P2(t), and P3(t), where s is a complex number known
as frequency:

sY1(s)− P1(0) = −(λ1 + λ3)Y1(s) + (1− pr)λ4Y2(s)
sY2(s)− P2(0) = (1− pr)λ1Y1(s)− (λ4 + λ2)Y2(s)
sY3(s)− P3(0) = λ3Y1(s)− λ1Y3(s)

(A13)

Substituting Equation (A12) into Equation (A13) and simplifying gives:
(s + λ1 + λ3)Y1(s)− (1− pr)λ4Y2(s) = 1
−
(

1− p f

)
λ1Y1(s) + (s + λ2 + λ4)Y2(s) = 0

−λ3Y1(s) + (λ1 + s)Y3(s) = 0
(A14)

The first two equations in Equation (A14) can be solved for Y1(s), Y2(s) using the
Cramer’s rule [48]:

Y1(s) =
s + λ2 + λ4

(s + λ1 + λ3)(s + λ2 + λ4)− (1− pr)
(

1− p f

)
λ1λ4

(A15)

Y2(s) =

(
1− p f

)
λ1

(s + λ1 + λ3)(s + λ2 + λ4)− (1− pr)
(

1− p f

)
λ1λ4

(A16)

The denominator in both Equations (A15) and (A16) is a quadratic polynomial with
real coefficients 1, K, and C:

(s + λ1 + λ3)(s + λ2 + λ4)− (1− pr)
(

1− p f

)
λ1λ4 = s2 + 2Ks + C (A17)

where the real constants K and C are:

K = (λ1 + λ2 + λ3 + λ4)/2
C = (λ1 + λ3)(λ2 + λ4)−

(
1− p f

)
(1− pr)λ1λ4

(A18)

We will prove that the discriminant, ∆, of the quadratic polynomial Equation (A17) is
always positive:

∆= (2K)2 − 4(1)C = [2(λ1 + λ2 + λ3 + λ4)/2]2 − 4
[
(λ1 + λ3)(λ2 + λ4)−

(
1− p f

)
(1− pr)λ1λ4

]
= (λ1 + λ2 + λ3 + λ4)

2 − 4(λ1 + λ3)(λ2 + λ4) + 4
(

1− p f

)
(1− pr)λ1λ4

(λ1 + λ2 + λ3 + λ4)
2 − 4(λ1 + λ3)(λ2 + λ4) + 4(1− 1)(1− pr)λ1λ4

= (λ1 + λ2 + λ3 + λ4)
2 − 4(λ1 + λ3)(λ2 + λ4) = [(λ1 + λ3) + (λ2 + λ4)]

2 − 4(λ1 + λ3)(λ2 + λ4)

= (λ1 + λ3)
2 + (λ2 + λ4)

2 + 2(λ1 + λ3)(λ2 + λ4)− 4(λ1 + λ3)(λ2 + λ4)

= (λ1 + λ3)
2 + (λ2 + λ4)

2 − 2(λ1 + λ3)(λ2 + λ4) = [(λ1 + λ3)− (λ2 + λ4)]
2 ≥ 0

⇒ ∆ > 0

(A19)

In Equation (A19) we used that 4
(

1− p f

)
(1− pr)λ1λ4 > 0 since

(
1− p f

)
> 0,

(1− pr) > 0, λ1 > 0, and λ4 > 0. From Equation (A19) it follows that the roots s1 the
s2 of the quadratic polynomial Equation (A19) are always real and different:

s1,2 =
(
−2K±

√
∆
)

/2 =
(
−2K±

√
4K2 − 4C

)
/2 = −K±

√
K2 − C (A20)

In Equation (A20) we assume that s1 > s2 (i.e., s1 = −K +
√

K2 − C and s2 = −K−√
K2 − C). It can easily be seen that the constants s1 the s2 are always negative. Using
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the quadratic factorization formula together with Equation (A17) the denominator in
both Equations (A15) and (A16) can be factored to:

s2 + 2Ks + C = 1(s− s1)(s− s2) = (s− s1)(s− s2) (A21)

From Equations (A15)–(A17), and (A21), Y1(s), Y2(s) can be simplified to:

Y1(s) =
s + λ2 + λ4

(s− s1)(s− s2)
(A22)

Y2(s) =

(
1− p f

)
λ1

(s− s1)(s− s2)
(A23)

Substituting Equation (A22) in the third equation of Equation (A14) we can find Y3(s):

Y3(s) =
λ3Y1(s)
(λ1 + s)

=
λ3(s + λ2 + λ4)

(s− s1)(s− s2)(λ1 + s)
(A24)

The identified Y1(s), Y2(s), and Y3(s) are rational fractions according to
Equations (A22)–(A24). To facilitate the inverse Laplace transform, those rational
fractions can be subjected to a partial fraction decomposition [49] (pp. 533–540):

Y1(s) =
s + λ2 + λ4

(s− s1)(s− s2)
=

A1

(s− s1)
+

B1

(s− s2)
(A25)

The constants A1 and B1 in Equation (A25) are:

A1 =
s1 + λ2 + λ4

s1 − s2
and B1 =

s2 + λ2 + λ4

s2 − s1
(A26)

Y2(s) =

(
1− p f

)
λ1

(s− s1)(s− s2)
=

A2

(s− s1)
+

B2

(s− s2)
(A27)

The constants A2 and B2 in Equation (A27) are:

A2 =

(
1− p f

)
λ1

s1 − s2
and B2 =

(
1− p f

)
λ1

s2 − s1
(A28)

Y3(s) =
λ3(s + λ2 + λ4)

(s− s1)(s− s2)(λ1 + s)
=

A3

(s− s1)
+

B3

(s− s2)
+

C3

(λ1 + s)
(A29)

The constants A3, B3, and C3 in Equation (A29) are:

A3 =
λ3(s1 + λ2 + λ4)

(s1 − s2)(λ1 + s1)
, B3 =

λ3(s2 + λ2 + λ4)

(s2 − s1)(λ1 + s2)
, and C3 =

λ3(λ1 + λ2 + λ4)

(λ1 − s1)(λ1 − s2)
(A30)

Now, we can apply the inverse Laplace transform over Equations (A25), (A27), and
(A29) and find the solutions P1(t), P2(t), and P3(t) of the stated initial-value problem:

Domain : t ∈ [0, ∞)
P1(t) = A1es1t − B1es2t

P2(t) = A2es1t − B2es2t

P3(t) = A3es1t − B3es2t + C3e−λ1t

(A31)

(b) Using the Equation (A31), the required functions can be simplified to:
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Domain :t ∈ [0, ∞)
P4(t) = 1− P1(t)− P2(t)− P3(t)

= 1−
(

A1es1t − B1es2t)− (A2es1t − B2es2t)− (A3es1t − B3es2t + C3e−λ1t)
= 1− A1es1t + B1es2t − A2es1t + B2es2t − A3es1t + B3es2t − C3e−λ1t

= 1− (A1 + A2 + A3)es1t + (B1 + B2 + B3)es2t − C3e−λ1t

(A32)

Domain :t ∈ [0, ∞)
Rsys(t) = 1− P4(t)

= 1−
[
1−

(
A1es1t − B1es2t)− (A2es1t − B2es2t)− (A3es1t − B3es2t + C3e−λ1t)]

= 1− 1 + A1es1t − B1es2t + A2es1t − B2es2t + A3es1t − B3es2t + C3e−λ1t

= (A1 + A2 + A3)es1t − (B1 + B2 + B3)es2t + C3e−λ1t

(A33)

(c) The required improper integral for MTTFsys when the integrand is given by Equation
(A33) can be calculated using the following formula:

∞∫
0

e−atdt =
1
a

where a > 0 (A34)

Then,

MTTFsys =
∞∫
0

Rsys(t)dt =
∞∫
0
(A1 + A2 + A3)es1t − (B1 + B2 + B3)es2t + C3e−λ1tdt

= (A1 + A2 + A3)
∞∫
0

es1tdt− (B1 + B2 + B3)
∞∫
0

es2tdt + C3

∞∫
0

e−λ1tdt

= −(A1 + A2 + A3)/s1 + (B1 + B2 + B3)/s2 + C3/λ1

(A35)

In the derivation shown in Equation (A35) we applied Equation (A34) three times
since s1 < 0, s2 < 0, and (–λ1) < 0.
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