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Key Points: 13 

• Sea surface temperature (SST) variability differs between the Lagrangian and Eulerian 14 
reference frames  15 

• SST variability on timescales of days to weeks encountered by advecting phytoplankton 16 
decreases phytoplankton community growth rates 17 

• The commonly used Eppley curve or Q10 growth model do not capture the effects of sea 18 
surface temperature variability on phytoplankton growth 19 

 20 
 21 
Abstract 22 
Ocean phytoplankton play a critical role in the global carbon cycle, contributing ~50% of global 23 
photosynthesis. As planktonic organisms, phytoplankton encounter significant environmental 24 
variability as they are advected throughout the ocean. How this variability impacts 25 
phytoplankton growth rates and population dynamics remains unclear. Here, we systematically 26 
investigated the impact of different rates and magnitudes of sea surface temperature (SST) 27 
variability on phytoplankton community growth rates using surface drifter observations from the 28 
Southern Ocean (> 30oS) and a phenotype-based ecosystem model. Short-term SST variability 29 
(<7 days) had a minimal impact on phytoplankton community growth rates. Moderate SST 30 
changes of 3-5oC over 7-21 days produced a large time lag between the temperature change and 31 
the biological response. The impact of SST variability on community growth rates was nonlinear 32 
and a function of the rate and magnitude of change. Additionally, the nature of variability 33 
generated in a Lagrangian reference frame (following trajectories of surface water parcels) was 34 
larger than that within an Eulerian reference frame (fixed point), which initiated different 35 
phytoplankton responses between the two reference frames. Finally, we found that these 36 
dynamics were not captured by the Eppley growth model commonly used in global 37 
biogeochemical models and resulted in an overestimation of community growth rates, 38 
particularly in dynamic, strong frontal regions of the Southern Ocean. This work demonstrates 39 
that the timescale for environmental selection (community replacement) is a critical factor in 40 
determining community composition and takes a first step towards including the impact of 41 
variability and biological response times into biogeochemical models. 42 
 43 
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Plain Language Summary 44 
Ocean phytoplankton are fundamental to the global carbon cycle. However, it remains unclear 45 
how environmental variability impacts phytoplankton growth, and thus, the global carbon cycle. 46 
Phytoplankton encounter environmental variability (e.g., sea surface temperature (SST) changes) 47 
as they are transported throughout the oceans by surface currents. Here, we quantified this 48 
variability (i.e., in a Lagrangian reference frame) using surface drifters and investigated the 49 
impact of this variability on phytoplankton community growth rates using an ecosystem model. 50 
We also compared the Lagrangian SST to the SST variability of a fixed point (e.g., a buoy) 51 
where ocean currents flow past (i.e., the Eulerian reference frame) using high-resolution satellite 52 
data. We found larger SST changes in the Lagrangian than in the Eulerian reference frame and 53 
discovered that this difference impacted phytoplankton community structure and growth rates. 54 
The impact of SST variability was not captured by the growth model that is typically used by 55 
global biogeochemical models. Our results provide an important extension on the classic 56 
principle that “everything is everywhere: but the environment selects” (Hutchinson, 1961). Even 57 
when ‘everything is everywhere’, we show that the timescale for environmental selection 58 
(community replacement) is a critical factor in determining community composition 59 
 60 
 61 
1. Introduction  62 

Phytoplankton are a fundamental part of the global carbon cycle accounting for nearly 50% of all 63 
photosynthesis globally (Falkowski et al., 2008). Phytoplankton also serve as the base of the 64 
marine food web and drive the ocean biological carbon pump, which acts to sequester carbon in 65 
the deep ocean. Understanding the impact of rising global temperatures on phytoplankton 66 
communities is therefore critical for predicting the influence of anthropogenic warming on ocean 67 
ecosystems and the global carbon cycle (Doney, 1999; Quéré et al., 2005). Currently, the 68 
parameterization of temperature-dependent growth rates is one of the main sources of uncertainty 69 
for future carbon cycle predictions among global biogeochemical models (Laufkötter et al., 70 
2015). Due to their planktonic nature, phytoplankton will encounter anthropogenic warming in 71 
two ways: 1) as a general warming overlain on top of significant temperature variability due to 72 
advection; and 2) as changes in variability driven by large-scale shifts in ocean physics (Boyd et 73 
al., 2016; Fu et al., 2016; Lomas et al., 2010). Both of these processes will shift the type and 74 
magnitude of temperature variability experienced by phytoplankton. Therefore, an improved 75 
understanding of the impact of temperature variability on phytoplankton growth rates is 76 
necessary in order to mechanistically incorporate phytoplankton growth dynamics into 77 
biogeochemical ecosystem models and to generate robust predictions of future changes.  78 
 79 
Accurately assessing the type of temperature variability (rate and magnitude of change) 80 
encountered by phytoplankton in the ocean requires the correct reference frame. For 81 
phytoplankton, the correct reference frame is Lagrangian (along trajectory) rather than an 82 
Eulerian (fixed location) reference frame (Figure 1). Modeling studies have demonstrated that 83 
both mean conditions and variability (magnitude and rate of change) can differ markedly 84 
between the two reference frames (e.g. Doblin & van Sebille, 2016). Here we quantify the nature 85 
of the variability experienced by phytoplankton along Lagrangian trajectories using in situ data 86 
from the Southern Ocean – a region where global climate models lack a consensus on the impact 87 
of anthropogenic warming on phytoplankton growth (Bopp et al, 2013). This analysis allows us 88 
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to constrain realistic rates and magnitudes of temperature changes experienced by Southern 89 
Ocean communities and determine the impact of this variability on population growth rates.    90 
 91 
The response of a phytoplankton community to changes in temperature is driven by individual 92 
phytoplankter dynamics. Growth rate as a function of temperature (reaction norm) for an 93 
individual phytoplankter is unimodal and tends to be asymmetric, often with skewed tails 94 
towards lower temperatures (Boyd, 2019). Therefore, the growth response for an individual 95 
phytoplankter to a change in sea surface temperature (SST) depends on the starting SST relative 96 
to the optimum growth temperature (Topt, the temperature with the highest growth rate) and 97 
whether the SST change is increasing or decreasing (Figure 2). The rate of change in growth rate 98 
will depend on the acclimation rate (how fast the phytoplankter adjusts to the new temperature) 99 
and type of acclimation of the phytoplankter (Kremer et al., 2018). When SST changes are 100 
slower than the phytoplankter acclimation rate, the instantaneous growth rate will be equivalent 101 
to the acclimated growth rate (i.e., the phytoplankter is able to keep up with the rate of 102 
temperature change). When the rate of SST change is faster than the rate of acclimation, the 103 
instantaneous growth rates could be higher or lower than the acclimated growth rate, depending 104 
on the type of response, detrimental or beneficial, respectively (Kremer et al., 2018). 105 
 106 
Laboratory based experiments on the impact of temperature variability on phytoplankton growth 107 
have produced conflicting results. Some studies found an overall decrease in growth rates in a 108 
thermally variable environment relative to a stable environment (Bernhardt et al., 2018; Qu et al., 109 
2019; Wang et al., 2019), while others found higher growth rates under variable conditions 110 
(Schaum et al., 2018), and some found that thermal variability did not impact community  111 
growth rates (Kling et al., 2019; Qu et al., 2019). The lack of consensus concerning the impact of 112 
variability on phytoplankton growth rates may be due to the different magnitudes and rates of 113 
change used by the different studies, which ranged from ~1.5oC/day (Schaum et al., 2018) to as 114 
high as 10oC/day (Bernhardt et al., 2018).  115 
 116 
Understanding how an in situ population of phytoplankton will respond to temperature 117 
fluctuations is further complicated by phenotype and strain diversity. Multiple phenotypes can 118 
co-occur within a population of phytoplankton each with different optimal temperatures (Topt, 119 
e.g., Webb et al., 2009). As such, the temperature response of a population is often modeled 120 
using an Eppley curve (	αe!",  Eppley, 1972) where growth rate increases exponentially with 121 
temperature rather than as a unimodal relationship (Bopp et al., 2013). In essence, this assumes 122 
rapid phenotypic shifts within the community such that, as the temperature changes, the 123 
community rapidly shifts its optimal growth temperature (Fig. 3b). Previous work has 124 
demonstrated that representing phytoplankton growth using an Eppley curve results in an over-125 
estimation of phytoplankton community growth rates (Moisan et al., 2002). In addition, the 126 
advection of communities across large temperature gradients, such as those along a western 127 
boundary current, can result in considerable differences between the optimum growth 128 
temperature (Topt) for the community and the in situ temperature (Hellweger et al. 2016). Here 129 
we build upon these studies and use a model to assess phenotypic shifts within a population in 130 
response to different types of temperature fluctuations and the resulting impact on population (or 131 
community) level growth rates.  132 
 133 
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In this study, we systematically assessed the effect of different magnitudes and rates of change of 134 
temperature on phytoplankton community growth rates in the Southern Ocean (south of 30oS) 135 
using in situ SST data and a numerical ecosystem model. This southern hemisphere region 136 
encompasses some of the lowest (0.2oC)  and highest (1.6-2.0oC ) long-term mean SST 137 
variability globally (Deser et al., 2010; Maheshwari et al., 2013). We found that relatively small 138 
changes (< 2 oC over 7-90 days) did not substantially impact community growth rates and that 139 
moderate changes (4-6oC over 21-45 days) had the largest and longest lasting effect on 140 
community growth rates. These moderate changes resulted in a temporary decrease in 141 
community growth rate, that lasted up to 20 generations, as the community responded to the new 142 
temperature. The response of community growth rate to variable temperatures was non-linear 143 
and so could not easily be accounted for with an adjustment to the Eppley curve. Finally, we 144 
found that the impact of temperature variability on phytoplankton community growth rates was 145 
present everywhere in Southern Ocean with the largest impact occurring in regions dominated by 146 
meso- and sub-mesoscale activity.  147 
 148 
2. Methods 149 
The impact of SST variability on phytoplankton community growth rates was studied by 150 
combining SST observations, both in situ and from remote sensing products, and a phenotype-151 
based ecosystem model. Here, we focused on the impact of mixed layer SST variability on 152 
phytoplankton community growth rates and therefore did not consider growth limitations due to 153 
other sources of variability such as nutrients, light, and mixed layer depth (e.g., Rohr et al., 154 
2020a, 2020b). We tested the impact of co-limitation by temperature and nitrate and found that 155 
the results were generally consistent with the findings presented here (Supplement S6). Further 156 
work is needed to investigate the impact of multiple un-correlated environmental drivers. 157 
 158 
2.1 Southern Ocean drifter profiles 159 
Lagrangian SST data were obtained from 422 Southern Ocean surface drifters from the Global 160 
Drifter Program with 6-hourly SST data. Float data south of 30oS from July 1999 – April 2016 161 
was downloaded from the Drifter Data Centre at the Atlantic Oceanographic and Meteorological 162 
Laboratory (accessed 11/2018).  The lifetime of the drifters ranged from 91 days to 5.8 years 163 
with a median duration of 521 days. Each drifter was segmented into 90-day trajectories to 164 
provide consistency in the dataset. We used only segments that had less than 10% of missing 165 
data. This resulted in 2,190 90-day trajectories (Figure 3a).  166 
 167 
To estimate the magnitude of Lagrangian variability in our study region, we calculated the range 168 
of SSTs (ΔSSTmax) and the time (∆tmax) over which the temperature change occurred using 169 
moving windows of 1 to 90 days (in 1-day increments). We then assessed the distribution of 170 
variability across different window sizes by aggregating the data into 1oC bins for ΔSSTmax and 1 171 
day ∆tmax bins. For example, a 2.4oC change that occurred over 14 days was recorded in the 2-172 
3oC and 14-day bin. To investigate the potential impact of small-scale noise, we also created 173 
smoothed splines of each of the 90-day SST profiles using a cubic smoothing spline (csaps in 174 
Matlab with a smoothing parameter of 0.00001). The splines filter out 25% of the variability on a 175 
1-day timescale up to 95% at the 90-day window (Figure S1). We then repeated the ΔSSTmax and 176 
∆tmax analysis on the spline data. 177 
 178 
2.2 Remote sensing SST 179 
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To compare the SST variability in the Lagrangian reference frame to the variability that would 180 
be captured in the Eulerian reference frame, we used high-resolution (0.01o horizontal resolution 181 
and 1-day temporal resolution) satellite SST data from GHRSST Level 4 MUR Global 182 
Foundation Sea Surface Temperature Analysis (v4.1) (JPL MUR MEaSUREs Project, 2015; 183 
accessed Oct. 2018). This dataset spanned 2003-2014 which overlaps with 71% of our 90-day 184 
drifter segments. For each 90-day drifter segment between 2003-2014, we extracted 90 days of 185 
satellite SST data for the latitude and longitude of the final location of the drifter, where the 90 186 
days corresponded to the dates of the drifter segment. We then also extracted the satellite SST 187 
along the drifter trajectories to provide a direct comparison between the Eulerian and Lagrangian 188 
reference frames in terms of the temporal and spatial resolution of the datasets. We performed 189 
the same ΔSSTmax and ∆tmax variability analyses for the satellite data as the surface drifter 190 
trajectories (described in Section 2.1). 191 
  192 
2.3 Idealized SST trajectories 193 
We complemented the observed SST trajectories with idealized SST trajectories to 194 
mechanistically understand the impact of the rate and magnitude of SST change on community 195 
growth rates. Specifically, a suite of trajectories (N = 64) was generated with both increasing and 196 
decreasing SST trends ranging from ΔSST = 2o to ΔSST = 9oC (in increments of 1oC) over 7, 21, 197 
45, and 90 days. These ΔSST values and durations were chosen based on our Lagrangian 198 
variability analysis. To minimize initialization bias, SST was held constant for the first 30 days 199 
before increasing/decreasing. After the SST change, the SST was again held constant until the 200 
200th day. The final temperature for all idealized trajectories was 15oC. The impact of the final 201 
temperature on the model results was analyzed with a set of sensitivity experiments. The final 202 
SST had no significant impact on the results when the results were reported in terms of the 203 
doubling time (generation), rather than absolute days as this normalized the effect of higher 204 
growth rates at warmer temperatures (Supplemental Material S1). Generation time was 205 
calculated as ln 2 𝜇##⁄ , where 𝜇## is the stabilized community growth rate. With a final SST of 206 
15oC, the generation time was approximately 1.37 days.  207 
 208 
2.4 Phenotype-based Ecosystem Model 209 

To estimate the impact of variable temperature on phytoplankton community growth rates, we 210 
used a phenotype-based ecosystem model. The model consisted of 319 phytoplankton 211 
phenotypes that were identicalin all aspects (i.e. model parameters) other than the optimal 212 
growth temperature (Topt). Temperature dependent growth rate (µ, day-1) was defined as a 213 
function of T (oC) (Thomas et al., 2012):  214 

 µ(𝑇) = 𝑎𝑒$% 11 − 4%&%!"#
'/)

5
)
6    Eq. 1 215 

 216 
where Topt was the optimal growth temperature. The value of b controlled the shape of the 217 
reaction norm, a (day-1) scaled the reaction norm, and w (oC) defined the width of the reaction 218 
norm (the difference between the maximum (Tmax) and minimum (Tmin) growth temperatures). 219 
We ran the model with two sets of reaction norms: a symmetrical, or broad, curve where b = 0 220 
(oC-1) and a skewed reaction norm where b = 0.3 (oC-1). Both reaction norms had a width of 14oC 221 
(w = 20 oC), consistent with observed reaction norms for many polar species (Boyd, 2019). 222 
Sensitivity tests were performed with reaction norm widths of 10.5oC (w = 15 oC) and 20.5oC (w 223 
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= 29 oC) (Supplemental Material S2). The results from these sensitivity tests did not differ 224 
substantially from the simulations with a reaction norm width of 14oC. 225 
 226 
The parameter a scaled the reaction norms at Topt to the Eppley curve (Eppley, 1972) where 227 
maximum growth rates ranged between 0.28 day-1 at -1.8oC to  1.0 day-1  at 30oC, consistent with 228 
experimental data (Boyd, 2019). Specifically, ai was defined for each phenotype i as: 229 

                        𝑎* = 0.2963𝑒+.+-+.%!"#     Eq. 2 230 
This resulted in an increase of ~1.5x in growth rate for every 10 degrees (i.e. a Q10 relationship 231 
of 1.5, see Discussion). We generated 319 phenotype curves for both the broad and skewed 232 
reaction norms with Topt ranging from -1.8 oC to 30 oC increasing by 0.1 oC (Figure 3a).  233 
 234 
The biomass of each phytoplankton phenotype Pi was calculated at each time-step as the integral 235 
of: 236 

 /0$
/1
= 𝜇*(𝑇)𝑃* −𝑚(𝑇)𝑃*)    Eq. 3 237 

where µi(T) was the temperature-dependent growth rate for phenotype i from Equation 1. m(T) 238 
was the temperature-dependent quadratic mortality rate (m3 mmol C-1 day -1) where: 239 

      m(T) = 0.35*a    Eq. 4 240 
Here we used the same temperature dependent Eppley curve (Eq. 2) to scale mortality with 241 
temperature using SST instead of Topt where a = 1 day-1 for SST = 30oC . We imposed a 242 
minimum biomass (0.001 mmol C m-3) so that no phenotype went locally extinct, akin to the 243 
“everything is everywhere” principle (Hutchinson, 1961). Sensitivity tests were performed with 244 
the minimum biomass set to 0.0001 mmol C   m-3. The minimum biomass threshold did not 245 
affect the overall patterns but did increase both the magnitude of the difference from the 246 
community growth rates obtained using the Eppley growth model and the time to acclimation 247 
(memory length, Section 3.2) for both broad and skewed reaction norms (Supplemental Material 248 
S.3). Imposing this minimum biomass purposefully introduced mass into the system which was 249 
accounted for by adjusting the biomass of each phenotype to keep the total community biomass 250 
at the concentration it would have been without the minimum biomass criteria. Specifically, the 251 
total change in biomass without the minimum biomass phenotypes was calculated using the 252 
biomass weighted community growth rate (λ) in place of µ(T) in Eq. 3, where λ was defined as: 253 
                                    λ = ∑µ*,1

0$,#
0

                                                                                          Eq. 5 254 
where, µi,t was the growth rate of the ith phenotype at time t for all phenotypes with biomass 255 
greater than the minimum, Pi,t was the biomass of the ith phenotype whose biomass was greater 256 
than the minimum at time t, P was the sum of the biomass of all phenotypes with biomass greater 257 
than the minimum at time t.  258 
 259 
Several different models for mortality and grazing were tested including linear mortality, 260 
constant mortality, a dynamic zooplankton population, and a simple ecosystem model with 261 
constant grazing pressure (see section S.4 in Supplemental Material). All model versions resulted 262 
in qualitatively similar results which demonstrated that the community dynamics were not 263 
particularly sensitive to the top-down control formulation in the model (Section S.4 in 264 
Supplemental Material). Here, we present the quadratic mortality as it was the simplest model 265 
with smooth (non-oscillatory) solutions.  266 
 267 
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The ecosystem model was forced with each of the 2,190 drifter segments (see Figure 3c-e for 268 
examples), the corresponding smoothed splines, the idealized SST trajectories, and the satellite-269 
derived SSTs. The initial biomass of phenotypes with a Topt within ± 2.5oC of the starting SST 270 
value were randomized to simulate previously accumulated biomass with phenotypes outside this 271 
range set to the minimum biomass. Simulations that used idealized SST trajectories were 272 
performed 100 times with different initial biomass conditions to account for stochasticity in the 273 
model initialization. 274 
 275 
2.5 Acclimation Rate 276 
To test the impact of different acclimation timescales, we performed sensitivity tests in which we 277 
incorporated a linear acclimation rate for all phenotypes in the model. Specifically, we 278 
incorporated a timescale over which an individual phenotype could change its growth rate in 279 
response to a temperature change. For example, if SST rapidly changed from 15oC to 16oC, a 280 
phenotype with an acclimation timescale of 0.2oC day-1 would move from the growth rate at 281 
15oC to the growth rate at 15.2oC in one day. If the SST then held constant at 16oC, the 282 
phenotype would acclimate by the end of the fifth day. We tested acclimation rates ranging from 283 
0.2 oC day-1 to 0.6 oC day-1 in increments of 0.1 oC day-1 which are consistent with acclimation 284 
rates determined for the Southern Ocean diatom F. cylindrus (see Table S2).The model with 285 
acclimation was forced with the idealized SST trajectories for a ∆SST =  2oC in 7 days (0.29 oC 286 
day-1), 3oC in 7 days (0.43 oC day-1), 4oC in 7 days (0.57 oC day-1) and 5oC in 21 days (0.24 oC 287 
day-1). These intervals corresponded to the magnitudes and rates of change most commonly 288 
experienced by the drifter trajectories (see Section 3.1) for which the rate of change was greater 289 
than 0.2 oC day-1.  290 
 291 
 292 
3. Results  293 
3.1 SST variability 294 
We characterized in situ SST variability experienced by phytoplankton (i.e., in a Lagrangian 295 
reference frame) using the surface drifter SST data. Seasonal dynamics were not filtered out as 296 
they were important sources of SST variability encountered by phytoplankton. While the surface 297 
drifters may have been subjected to some physical movements that phytoplankton do not 298 
encounter (e.g., lateral transfer across fronts due to wind rather than subduction and mixing), 299 
they provided the best in situ dataset for studying Lagrangian variability in surface temperature. 300 
However, to minimize the impact of unrealistic fluctuations in the drifter dataset, we limited our 301 
subsequent analyses to the most frequently measured scales of variability within the drifter 302 
record. The average ∆SSTmax values ranged from 0.9oC ± 0.7oC (1σ) for the 7-day window, 303 
which corresponded to 0.13oC/day change over the 7 days, to 4.2oC ± 2.0 oC (1σ) for the 90-day 304 
window or 0.05oC/day change (Figure S12, Table S1). The latter was consistent with the 305 
expected seasonal SST cycle for the Southern Ocean (Reynolds & Smith, 1994). The SST 306 
variability of the drifters (standard deviation over the window) was highly correlated with 307 
∆SSTmax (R2 = 0.92, p < 0.01, Figure S13). 308 
 309 
Using the ΔSSTmax analysis, we were able to quantify the most common types of variability 310 
encountered in situ in terms of both the magnitude of change and the rate of change (Figure 4). 311 
Due to the difference in the number of data points generated by the moving windows, we 312 
assessed the frequency of each ∆SSTmax within a given window length (y-axis) such that the 313 
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highest value across the row indicates the most likely ∆SSTmax for that window length.  The 314 
∆SSTmax bins sum to 100% across the row. Overall, there is a trend of increasing ∆SSTmax with 315 
increasing window length, as expected. We selected four representative window lengths, 7 days, 316 
21 days, 45 days, and 90 days, as illustrative examples though the results are not dependent on 317 
these selections.  A 7-day window was most likely to have a ΔSSTmax of 2oC or less (82%), and 318 
~3% of the trajectories recorded a ΔSSTmax of 4 oC. Over a 21-day window, most trajectories had 319 
a ΔSSTmax of 2-3oC (combined accounting for 86% of data) and ~10% of the trajectories had a 320 
ΔSSTmax of 4-5oC. ΔSSTmax reached as high as 9oC for the 90-day windows but accounted for 321 
only 2.5% of the data in that window.  322 
 323 
A comparison of Lagrangian and Eulerian reference frames demonstrated that, while the overall 324 
patterns of variability were similar, the Lagrangian reference frame was more likely to capture 325 
large ΔSSTmax (Figure S14). This was true for both the drifter and satellite derived Lagrangian 326 
trajectories when compared to the satellite SST in the Eulerian reference frame. For example, 327 
within a time-frame of 21 to 30 days, a ΔSSTmax greater than 3oC was more likely to occur in 328 
both the drifter and satellite derived Lagrangian (17%) trajectories than in the Eulerian (11%). 329 
Similarly, for the 51-day to 60-day windows, ΔSSTmax of 2-4 oC were common in both reference 330 
frames, but changes >4oC were more common in the satellite derived Lagrangian trajectories 331 
(24%) and the drifter Lagrangrian trajectories (23%) than the satellite Eulerian data (16%). This 332 
same pattern was consistently observed for all windows from 1 to 90 days. The impact of these 333 
differences in SST changes on phytoplankton community growth rates are discussed below (see 334 
Sections 3.2 and 3.3).  335 
 336 
For most of the SST data recorded by the drifters, the rate of SST change was slower than the 337 
expected phytoplankton acclimation rates. Acclimation rates for the Southern Ocean diatom F. 338 
cylindrus are on average 0.3oC/day (Table S2). For the drifter trajectories, only 8% of the 1-day 339 
bins (n = 197,100 days) recorded rates of SST change greater than 0.3oC/day and less than 2% of 340 
the daily bins recorded rates of change greater than 0.6oC/day (Figure S15).Because SST rates of 341 
change were typically slower than the phytoplankton acclimation rate, we hypothesize that, for 342 
the majority of the Southern Ocean, the rate of acclimation will not play a major role in the 343 
community response. Therefore, to simplify model dynamics, we ran our model with rapid 344 
acclimation such that each phenotype responded directly to SST changes. See Section 4.1 for 345 
discussion about situations in which acclimation may be important.  346 
 347 
3.2 Impact of variable SSTs on community growth rates  348 
We used idealized simulations to develop a mechanistic understanding of how variability 349 
impacts community growth rates. For small, gradual SST changes of less than 2-3oC in 45-90 350 
days (0.02-0.07 oC/day), the community growth rates changed linearly with the SST changes 351 
during the period of SST transition and then stabilized once SST stopped changing. When the 352 
rate of change was slow, the distribution of phenotypes within the community changed at the 353 
same rate as the SST such that the Topt of the most dominate phenotype closely matched the SST. 354 
As a result, the temporal response in the community growth rate from the phenotype model was 355 
similar to the growth rate from a null model using an Eppley curve parameterization.  356 
 357 
For SST rates of change larger than 2-3oC in 45-90 days (0.02-0.07 oC/day), community growth 358 
rates initially increased or decreased depending on the sign of the SST change, but then began to 359 
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decrease rapidly (see Figure S16 for example). Once SSTs stabilized at the final value, 360 
community growth rates increased and eventually stabilized. Out of the environmentally relevant 361 
rates of SST change, 4oC in 7 days (0.57oC/day) resulted in the largest change 70% ±1% (1σ) 362 
during the low growth period (Figure 5a). While the absolute percent change in growth rate was 363 
sensitive to model formulation and parameter values, the qualitative relationships presented here 364 
were robust (Figure S8).  365 
 366 
The impact of temperature variability on community growth rates is a function of both changes 367 
in the growth rates of individual phenotypes (i.e. shifts along a reaction norm) and shifts in the 368 
community composition (i.e. abundance of different phenotypes). The low growth phase after a 369 
shift in SST (either increasing or decreasing) was caused by the SSTs extending beyond the 370 
thermal optimum of the initial community such that the bulk of the biomass was growing slowly. 371 
During this period, the individual phenotypes with elevated growth rates only made up a small 372 
fraction of the community and so did not contribute significantly to the community growth rate. 373 
The community growth rates then rebounded as these high growth phenotypes increased their 374 
biomass and eventually became the dominate biomass group. Faster rates of SST change moved 375 
the community out of the thermal optimum of the initial community more quickly than smaller 376 
rates of change, and therefore larger and faster ∆SSTs resulted in greater decreases in community 377 
growth rates. However, the high growth individuals were able to dominate the community more 378 
quickly due to the high loss rates for the slow (or no) growth individuals and so the community 379 
growth rates rebounded more quickly for rapid relative to moderate rates of SST change. For 380 
rapid SST changes, the rate and type of acclimation response could potentially play a role in the 381 
shifts in community growth rates depending on the nature of the plastic response (see 382 
Discussion).  383 
 384 
An Eppley curve was unable to capture the impact of variability in SST on community growth 385 
rates due to the non-linear phenotype dynamics. Community growth rates derived directly using 386 
the Eppley curve model were always larger than those simulated by the phenotype model, 387 
consistent with previous work (Moisan et al. 2002; Bernhardt et al. 2018). The difference 388 
between the phenotype modeled growth rates and the Eppley curve estimates varied as a function 389 
of SST variability (Figures 5b, S18). As the ∆SST increased over a given window length, so did 390 
the difference between the phenotype model and the Eppley curve estimate. The largest 391 
departures occurred for ΔSSTs of 4oC and 5 oC over 7 and 21 days, respectively, with up to 80% 392 
lower simulated community growth rates for the phenotype model. Generally, larger ΔSSTs and 393 
faster rates of change (changes occurring over a few generations) resulted in larger differences 394 
between the models.  395 
 396 
Although we focus on the impact of temperature-limitation on phytoplankton growth in this 397 
study, nutrient limitation also plays an important role in co-limiting phytoplankton growth in the 398 
Southern Ocean (Cochlan, 2008). While a full analysis of the impact of fluctuating co-limitation 399 
is beyond the scope of this study, we conducted a set of model simulations to test the impact of 400 
temperature and nitrate limitation on the observed dynamics (Supplemental Material S6). Given 401 
the non-linear formulation of nutrient limitation and the relatively low half-saturation values for 402 
the uptake of nitrate, for the majority of the Southern Ocean the model results with co-limitation 403 
are similar to those from simulations with temperature limitation only. This is because the 404 
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variation in nutrient limitation was small compared to the variation in temperature limitation (at 405 
the level of individual phenotypes).  406 
 407 
3.3 Memory Effect 408 
The timescales of the biological response to temperature fluctuations varied as a function of the 409 
overall magnitude and direction (increasing or decreasing) of SST change, the duration of the 410 
SST change, and shape of the reaction norm (broad vs skewed) for the individuals within the 411 
population. Here we define the timescale of biological response as the “memory effect” – the 412 
time for the community growth rate to stabilize (±5% of the stable value). Here we present the 413 
memory effect in terms of generations calculated using the final stable growth rate. This allowed 414 
us to understand the relative impact of temperature change on phytoplankton using a common 415 
currency such that our results are not growth rate dependent.  416 
 417 
The most common ∆SST changes (Figure 4) were associated with the longest memory effects 418 
(Figures 5b, S19).  Nearly all of the environmentally relevant ∆SST values were sufficient to 419 
create a memory effect of longer than 2 generations. Moderate changes of 3-4oC over 7-45 days 420 
or 4-28 generations (0.07-0.57 oC/day) resulted in the longest memory effects of up to up to 22 421 
generations for both reaction norm shapes (Figure 5c, Figure S19). This biological response time 422 
is nearly five times longer than the duration of the temperature change. Larger SST changes (5-6 423 
oC) that occurred over 45 or 90 days or 28-57 generations (0.06-0.13 oC/day) tended to have 424 
shorter memory effects (~8-19 generations) than moderate changes that occurred over the same 425 
time frame, but this difference was not statistically significant. Longer memory effects for 426 
moderate SST changes resulted from dominant phenotypes in the previously acclimated 427 
community being able to grow in the new environment, albeit at a reduced rate. This increased 428 
the time required for the phenotypes optimally suited for the new environment to dominate the 429 
community, which resulted in larger memory effects.  430 
 431 
The sign of the SST change also impacted the response time of the community. Decreasing 432 
ΔSSTs had longer memory effects by an average of 7 generations compared to increasing ΔSSTs 433 
(t-test, 95% CI) for the skewed shaped reaction norms. The longer memory effect was due to the 434 
long tail on the decreasing side of the reaction norm, which allowed the phenotypes in the initial 435 
community to grow during decreasing SST conditions (Figure S19). For reaction norms that 436 
were symmetrical about the optimum growth temperature, the direction of ΔSST did not matter, 437 
and the memory lengths were not statistically different for increasing and decreasing ΔSSTs (t-438 
test, 95% CI) (Figure S19).  439 
 440 
3.4 Southern Ocean Drifter Trajectories 441 
The idealized simulations allowed for a mechanistic characterization of how phytoplankton 442 
community growth rates vary as  a function of rate and magnitude of SST change (sections 3.2 & 443 
3.3). However, in the ocean, SST change is much more complicated as phytoplankton are 444 
exposed to a large variety of rates and durations of SST changes. We used Southern Ocean 445 
drifter trajectories to investigate the impact of in situ SST variability on community growth rates. 446 
When phenotypic diversity was considered (phenotype model), variable SST resulted in lower 447 
average community growth rates compared to the Eppley curve approximation (Figure 6). 448 
Though nutrient and light limitation were not explicitly included in the phenotype model, the 449 
simulated growth rates were consistent with in situ (Buitenhuis et al., 2013), remote-sensed 450 
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based (Arteaga et al., 2020), and incubation derived growth rates (Boyd, 2019; Boyd et al., 451 
2013), and therefore reasonably captured growth dynamics. As drifter SST variability increased, 452 
so did the difference between the phenotype model and the Eppley curve approximation, 453 
consistent with the idealized simulation results. The mean percent difference between the 454 
phenotype model and the Eppley curve approximation over the 90-day trajectories ranged 455 
between -142% to -11.5% with a mean of -25.8% (±16.6% 1σ) for the skewed reaction norms. A 456 
similar pattern was observed for the broad shaped reaction norms, but the magnitude of the 457 
difference was smaller and ranged from just -1.3% to -53.2% different with a mean of -6.1% 458 
(±5% 1σ)  (Figure S20). Trajectories with higher mean SSTs were affected less by SST 459 
variability than trajectories with lower SSTs because faster growth rates at higher temperatures 460 
allowed quicker responses to SST changes. 461 
 462 
To isolate the impact that short-term variability may have on community growth rates relative to 463 
longer-term shifts, we compared the 90-day mean biomass-weighted community growth rate of 464 
the drifter trajectories to the smoothed splines derived from the trajectories. Removing short-465 
term variability had no significant impact on community growth rates (t-test, 95% CI; Figure 466 
S21).  467 
 468 
4. Discussion 469 
4.1 Impact of Acclimation 470 
As ocean surface temperature shifts, two processes occur simultaneously: 1) individual 471 
phytoplankton phenotypes respond to the change in temperature (acclimation), and 2) phenotype 472 
abundance within the community shifts towards individuals with higher maximum growth rates 473 
at the new temperature. In this study, we investigated the impact of these individual-level 474 
dynamics on community-level growth. We demonstrate that shifts in phenotype abundance are 475 
the primary drivers of community growth rate dynamics. This is in large part due to in situ rates 476 
of SST changes being slower than the rates of individual acclimation (based on laboratory 477 
estimates), even for the dynamic Southern Ocean. When individual acclimation rates were 478 
slower than the rate of SST change, we observed a delay in the low growth phase and a smaller 479 
magnitude decrease in community growth rates (Figure S22). The memory effect increased 480 
linearly as individual acclimation rates decreased (longer acclimation time) (Figures 7 and S23).  481 
 482 
The representation of phenotype acclimation in the model was a simplistic representation of 483 
phenotypic plasticity (see Methods).  In reality, plastic responses are much more complex and 484 
nonlinear and most likely vary among species (Kremer et al., 2018). Additional work is needed 485 
to better constrain both the range of acclimation timescales and the mechanisms of phenotypic 486 
plasticity. However, our results suggest that these dynamics will only become important under 487 
rapid temperature changes which are infrequent in the ocean.  488 
 489 
4.2 Implications for in-situ community composition 490 
Our findings support the important role of thermal history in shaping the response of 491 
phytoplankton communities to changes in temperature. We have shown that SST variability can 492 
lower community growth rates for tens of generations following SST perturbation. This indicates 493 
that, for many regions of the ocean, the phytoplankton community will not be fully acclimated to 494 
local conditions as a result of the mismatch between timescales of physical variability and 495 
biological response. This mismatch in timescales will be a function of the rate and magnitude of 496 

ESSOAr | https://doi.org/10.1002/essoar.10504700.2 | CC_BY_NC_ND_4.0 | First posted online: Sat, 31 Jul 2021 10:29:39 | This content has not been peer reviewed. 



manuscript submitted Global Biogeochemical Cycles 
 

12 
 

SST variability that phytoplankton in the water mass were previously exposed to and may be 497 
reflected in physiological properties such as optimum growth temperature or overall community 498 
growth rate.  499 
 500 
Our results also provide an important extension on the classic principle that “everything is 501 
everywhere: but the environment selects” (Hutchinson, 1961). Even when ‘everything is 502 
everywhere’, we show that the timescale for environmental selection (community replacement) 503 
is a critical factor in determining community composition. Specifically, we hypothesize that even 504 
when the ‘optimal’ organism is present in an environment, environmental variability generated 505 
by local physics, lateral advection, and seasonal trends can delay or prevent that organism from 506 
dominating the community. This hypothesis is supported by previous modeling work that has 507 
shown a time-lag on the order of weeks to a month in the phytoplankton community growth 508 
response to SST changes due to lateral advection and seasonal trends (Moisan, et al., 2002; 509 
Hellweger et al. 2016). Here, we have quantified the relationship between varying rates of SST 510 
variability and the timescale required for community replacement to impact the community 511 
composition. 512 
 513 
We tested the impact of Eulerian versus Lagrangian variability on community growth rates and 514 
demonstrated significant differences for locations in which SST variability differed in the two 515 
reference frames. Specifically, while the final SST of the drifter segments and satellite data were 516 
not statistically different (t-test, 95% CI, Figure S24), differences in the nature of variability in 517 
the proceeding 90 days resulted in a significant difference between the final SST and the Topt of 518 
the most abundant phenotype (t-test, 95% CI, Figures 8 and S25). The magnitude of the offset 519 
between SST and Topt  depended on the timing of SST changes throughout the 90-day profiles. 520 
When SST changes were slow, the offset between SST and the Topt of the most abundant 521 
phenotype were negligible (Figure S26 for an example). Large SST changes that occurred early 522 
in the 90-day segment allowed sufficient time for the community to respond (e.g. Figure S26). 523 
When SST changes occurred later in the 90-days, the community did not have sufficient time to 524 
respond which caused a larger offset between the SST at day 90 and the Topt of the community 525 
(e.g., Figure S27). Different phenotype distributions for the Eulerian versus Lagrangian reference 526 
frames is consistent with previous results that showed advection of phytoplankton communities 527 
was a key process in shaping phytoplankton diversity (Barton et al., 2010; Clayton et al., 2013; 528 
Lévy et al., 2014). 529 
 530 
The shape of the reaction norm impacts the community response to temperature variability and 531 
phenotype competitive advantage. Under decreasing temperatures, a phenotype with a skewed 532 
reaction norm (Topt closer to Tmax than Tmin) has a competitive advantage over a phenotype with a 533 
broad reaction norm (Topt at the center of Tmax and Tmin), given the same reaction norm width and 534 
Topt. A skewed reaction norm provides a larger range of temperatures <Topt under which the 535 
phenotype can grow. Therefore, organisms with skewed reaction norms should be adapted to 536 
have Topt values close to maximum encountered temperatures not only due to the rapid decline in 537 
growth rates for temperatures greater than Topt but also due to the competitive advantage under 538 
temperatures less than Topt. Conversely, broad reaction norms are favored when temperatures are 539 
warming, as expected, or when temperatures are more variable. In a highly variable region such 540 
as the Southern Ocean, there should be selective pressure for either broad reaction norms with 541 
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large growth ranges beyond Topt (Moisan et al., 2002) or skewed reaction norms where Topt is 542 
higher than mean SSTs (Thomas et al., 2012). 543 
 544 
 545 
4.3 Implications for simulating community growth rates in global biogeochemical models 546 

A form of the Eppley curve Q10 temperature-growth response (𝜇 = 𝜇+𝑄3+
&'&(
)( ) is widely used in 547 

global biogeochemical models (Bopp et al., 2013), where typical model Q10 values range 548 
between 1.5-2 (Sherman et al. 2016). The premise behind employing a Q10 growth equation is 549 
that each modeled functional group encompasses many species or strains and so the Eppley 550 
curve may be a reasonable representation of the group dynamics. However, as we have 551 
demonstrated, community growth rates (or functional group growth rates in the model 552 
framework) will depend on the underlying phenotype dynamics, which are a function of the rate, 553 
magnitude, and direction of temperature change and the shape of the species/strains’ thermal 554 
response curve. As a result, the Q10 temperature-growth response not only underestimates 555 
temperature-limitation on community growth rates (i.e., overestimates growth rates) but does so 556 
as a function of SST, SST variability, and reaction norm shape. Our work indicates that adjusting 557 
the Q10 relationship to use a lower exponent as previously suggested (Sherman et al., 2016) will 558 
only partially capture realistic dynamics. Because phytoplankton play a key role in sequestering 559 
carbon dioxide from the Earth’s atmosphere, by overestimating phytoplankton growth rates, and 560 
thus overestimating carbon uptake, biogeochemical models may be underestimating the extent of 561 
future anthropogenic warming.  562 
 563 
To predict changes in phytoplankton community growth rates robustly, models must also 564 
consider the impact of different types of SST variability and the appropriate reference frame for 565 
this variability. Specifically, we have shown that SST variability can differ markedly between 566 
the Eulerian reference frame and the Lagrangian reference frame (Figure S14). While the spatial 567 
patterns of SST variability in the Southern Ocean were similar between Eulerian and Lagrangian 568 
reference frames (Figure 9a-c), the Eulerian reference frame exhibited substantially less 569 
variability. Consequentially, the offset between Eppley curve approximation and the phenotype 570 
model was substantially less for the Eulerian relative to the Lagrangian reference frame (Figure 571 
9d-f). This pattern was consistent for both the drifter Lagrangrian trajectories and the satellite 572 
derived trajectories.   573 
 574 
Models such as DARWIN (Follows et al., 2007) resolve phenotypes with a range of thermal 575 
reaction norms and so will capture the community growth rate dynamics presented here. 576 
However, additional work is needed to compare the variability encountered by functional group 577 
phenotypes in large-scale models integrated in an Eulerian framework to true Lagrangian 578 
variability.   579 
 580 
Improving the parameterized temperature-growth relationship is particularly important in the 581 
Southern Ocean given the uncertainty of future primary productivity in this ocean basin (Bopp et 582 
al., 2013). We used our model results to identify key regions within the Southern Ocean that 583 
might be most strongly impacted by temperature variability. Three particular regions stand out 584 
that exhibited the most SST variability and had the largest relative deviations from the Eppley 585 
curve (Q10) approximation: the Malvinas-Brazil confluence zone; the Agulhas Retroflection 586 
region; and downstream from these two along the Subtropical Front near ~45oS, 60oE (Figures 587 

ESSOAr | https://doi.org/10.1002/essoar.10504700.2 | CC_BY_NC_ND_4.0 | First posted online: Sat, 31 Jul 2021 10:29:39 | This content has not been peer reviewed. 



manuscript submitted Global Biogeochemical Cycles 
 

14 
 

9a-c). All three regions were previously identified as highly dynamic, strong frontal regions 588 
(Artana et al., 2019; Beal et al., 2015; Graham & Boer, 2013) and shown to be important hot-589 
spots for phytoplankton diversity (Barton et al., 2010; Clayton et al., 2013; d’Ovidio et al., 2010; 590 
Soccodato et al., 2016). It is possible that in these highly dynamic frontal regions the floats were 591 
subjected to physical movements across the fronts that was previously thought to elude 592 
phytoplankton movements. However, recent field and modeling studies have shown that cross-593 
front transfer and diapycnal mixing can occur due to the fine-scale physics associated with these 594 
strong fronts (Clayton et al., 2017; Mahadevan, 2016; Wenegrat et al., 2020). Our results also 595 
showed that large SST changes were not required for temperature variations to have a lasting 596 
impact on community growth rates. Regions of the Southern Ocean with moderate (1-2 oC, 1σ) 597 
SST variability also recorded equally large differences in community growth rate, often at least 598 
30% smaller than Eppley curve approximations and up to ≥80% smaller than Eppley curve 599 
approximations.  600 
 601 
5. Conclusions 602 
We utilized idealized SST simulations and SST data from ocean surface drifters to show that 603 
synoptic SST variability on timescales of a few days to a few weeks decreases phytoplankton 604 
community growth rates, while higher frequency variability has little impact. The time taken for 605 
the community growth rate to reflect the new environment was dependent upon the rate and 606 
magnitude of temperature change, the direction of change, and the shape of the thermal response 607 
curve. The largest memory effects resulted from moderate changes in SST that occurred over 1-3 608 
weeks. This impact of SST variability can cause a large offset between a phenotype-based 609 
temperature-dependent community growth rate and an Eppley curve-based approximation and 610 
suggests that phytoplankton communities sampled in situ may often not be adjusted to local 611 
conditions. Given the highly variable nature of the ocean and importance of environmental 612 
variability for phytoplankton physiology, it is critical to consider the appropriate reference frame 613 
and the magnitude and duration of variability when studying phytoplankton dynamics. Here we 614 
demonstrated that variability captured in the Lagrangian reference frame (by drifters) was, in 615 
many instances, different from variability in the Eulerian frame and that this had significant 616 
impacts for estimating phytoplankton growth rates.  These findings have potentially far-reaching 617 
implications for how temperature-dependent phytoplankton growth is represented in global 618 
biogeochemical models. 619 
 620 
 621 
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 635 
Figure 1. Lagrangian versus Eulerian reference frames. Lagrangrian reference frames follow the 636 
water parcel itself through time. The Eulerian reference frame refers to a fixed point in space 637 
(e.g. buoys or mooring stations) where advection of water parcels floating past the fixed point 638 
generates temporal variability.  Panels (a), (b), and (c) depict three different water masses (grey, 639 
blue, and green) as they each pass through the fixed Eulerian location (red dot) at times t1, t2, and 640 
t3. Panel (d) shows the temperature of each water mass through time (grey, blue, and green lines) 641 
as well as the temperature recorded at the Eulerian location (red line).  Note in panel (d) that 642 
overall temperature variability in the Lagrangian reference frame (grey, blue and green lines) is 643 
much greater than that in the Eulerian reference frame (red dots) though this may not always be 644 
the case. 645 

 646 

Figure 2. The impact of SST variability on individual phenotype growth rate. (a) The 647 
temperature related growth response for a phenotype with a skewed shaped reaction norm. The 648 
values for the optimum growth temperature (Topt) and the corresponding maximum growth rate 649 
(μmax) are shown with dashed lines. (b) The 90-day SST profile of an example drifter trajectory 650 
(black) and the associated changes in phenotype growth rate (blue). The orange and red arrows in 651 
the top panel indicate the change in the phenotype growth rate associated with the corresponding 652 
changes in SST in the bottom panel.  653 

 654 
 655 
Figure 3. a) Map of all 90-day drifter trajectories (n = 2190) colored by SST. Two example 656 
trajectories are highlighted in purple and magenta. b) Reaction norms for each of the 319 657 
phenotypes in the ecosystem model. The grey lines represent all the phenotype reaction norms 658 
and the green lines are example phenotypes to highlight the reaction norm shape. c and d) 659 
Example trajectories and their resulting model outputs. The top panels show the SST (colors), the 660 
community growth rate estimated using the Eppley curve (dashed line), and the community 661 
growth rate from our phenotype-based model as calculated using Eq. 5 (solid line). The bottom 662 
panel shows the biomass through time of each phenotype (grey lines). The blue line follows the 663 
phenotype with the highest initial biomass, the red dashed line follows the phenotype that has the 664 
highest biomass at the end of the 90 days, and the green line follows the phenotype that has a Topt 665 
equal to the mean SST of the trajectory. 666 

 667 

Figure 4. SST variability analysis. The frequency of ΔSSTmax changes from the drifter segments 668 
over different window lengths are shown. Data are presented as total percent of data that fall 669 
within that window length such that each row sums to 100%. There is a general pattern of 670 
increasing magnitudes of ∆SSTmax over longer window lengths.  671 

 672 
Figure 5. Simulated response of phytoplankton community with skewed shaped reaction norm to 673 
increasing ∆SST (see Supplemental Material for decreasing ∆SST conditions and broad reaction 674 
norm results).  Panel (a) plots the decline in community growth rate in the phenotype model that 675 
results from the SST moving out of the thermal niche of the original population (see Methods 676 
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and Figure S16). Data that are greyed out represent ΔSST and window length combinations that 677 
were not supported by the results from Figure 3. Panel (b) shows the percent difference between 678 
the Eppley growth model approximation and the phenotype modeled community growth rates at 679 
the point where SST stabilizes (see Figure S16 for example). Panel (c) plots the memory effect 680 
length associated with SST changes in the idealized simulations. This represents the time it takes 681 
for the community growth rate to be within 5% of the steady state growth rate at the final SST 682 
from the first time-step that SST is constant (See Figure S16 for example). 683 

 684 
Figure 6. Impact of SST variability on community growth rate. The average percent difference in 685 
community growth rate between the phenotype model and the Eppley growth model from the 90-686 
day drifter segments are plotted against the standard deviation (1σ) of the drifter SST. Each 687 
segment is colored by the mean SST. Results from the idealized trajectories are shown as black 688 
diamonds with filled circles denoting increasing SST trajectories and open circles denoting 689 
decreasing SSTs.  Pink triangles represent the two example trajectories from Figure 3. Results 690 
shown here are for skewed shaped reaction norms, see Figure S20 for results for the broad 691 
shaped reaction norms.  692 

 693 
Figure 7. The impact of acclimation on the number of generations for which the effect persists 694 
(memory length). Acclimation rates that were slower than the rate of SST change resulted in 695 
longer memory lengths than for simulations in which acclimation rate was equal to or faster than 696 
the SST rate of change.  697 

Figure 8. The impact of Lagrangian and Eulerian variability on community composition. Here 698 
we plot the difference between the Topt of the most abundant phenotype at the end of each 90-day 699 
trajectory and the final SST for the drifter trajectory (x-axis) and the satellite data (y-axis). The 700 
final SSTs for the drifter and satellite data are not statistically different (t-test, 95% CI). 701 
Therefore, deviations from the 1:1 line demonstrate the impact of a Lagrangian versus Eulerian 702 
reference frame on community composition.  703 

Figure 9. Distribution of SST variability (a-c) and the deviation in community growth rate from 704 
the Eppley growth model (d-f) over the Southern Ocean (>30°S).  Only those drifters which 705 
overlap in space and time with the satellite data are shown. For full results, see Figure S29. Three 706 
key regions of high SST variability stand out: Malvinas-Brazil confluence zone, the Agulhas 707 
Retroflection, and the Subtropical front. These regions have enhanced SST variability in all 708 
datasets but higher variability in the Lagrangian trajectories. These high variability regions 709 
correspond to large differences between the phenotype model growth rates and the Eppley 710 
approximation of growth, a pattern consistent across all three sets of simulations. 711 

  712 
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