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Our inability to reliably predict disease outcomes in multiple sclerosis remains an issue for clinicians and clinical trialists. This

study aims to create, from available clinical, genetic and environmental factors; a clinical–environmental–genotypic prognostic

index to predict the probability of new relapses and disability worsening. The analyses cohort included prospectively assessed mul-

tiple sclerosis cases (N¼253) with 2858 repeated observations measured over 10 years. N¼ 219 had been diagnosed as relapsing-

onset, while N¼ 34 remained as clinically isolated syndrome by the 10th-year review. Genotype data were available for 199 genetic

variants associated with multiple sclerosis risk. Penalized Cox regression models were used to select potential genetic variants and

predict risk for relapses and/or worsening of disability. Multivariable Cox regression models with backward elimination were then

used to construct clinical–environmental, genetic and clinical–environmental–genotypic prognostic index, respectively. Robust time-

course predictions were obtained by Landmarking. To validate our models, Weibull calibration models were used, and the Chi-

square statistics, Harrell’s C-index and pseudo-R2 were used to compare models. The predictive performance at diagnosis was eval-

uated using the Kullback–Leibler and Brier (dynamic) prediction error (reduction) curves. The combined index (clinical–environ-

mental–genotypic) predicted a quadratic time-dynamic disease course in terms of worsening (HR¼ 2.74, CI: 2.00–3.76; pseudo-

R2¼0.64; C-index¼0.76), relapses (HR¼ 2.16, CI: 1.74–2.68; pseudo-R2¼ 0.91; C-index¼ 0.85), or both (HR¼ 3.32, CI: 1.88–

5.86; pseudo-R2 ¼ 0.72; C-index¼ 0.77). The Kullback–Leibler and Brier curves suggested that for short-term prognosis (�5 years

from diagnosis), the clinical–environmental components of disease were more relevant, whereas the genetic components reduced

the prediction errors only in the long-term (�5 years from diagnosis). The combined components performed slightly better than the

individual ones, although their prognostic sensitivities were largely modulated by the clinical–environmental components. We have

created a clinical–environmental–genotypic prognostic index using relevant clinical, environmental, and genetic predictors, and

obtained robust dynamic predictions for the probability of developing new relapses and worsening of symptoms in multiple scler-

osis. Our prognostic index provides reliable information that is relevant for long-term prognostication and may be used as a selec-

tion criterion and risk stratification tool for clinical trials. Further work to investigate component interactions is required and to

validate the index in independent data sets.
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Introduction
Our inability to reliably predict the course of disease pro-

gression in the short and long-term in people with relaps-

ing onset multiple sclerosis (ROMS) and/or clinically

isolated syndrome (CIS) remains a significant issue for

the MS community. Despite significant progress in under-

standing the pathophysiology of MS, the disease course

remains largely unpredictable,1 with considerable inter

and intra-individual variation.2–5 The limitation of cur-

rent predictors for prognostication is exemplified by con-

ventional brain MRI. For instance, MRI lesion measures

are currently incorporated in established criteria for the

MS diagnosis but have limited predictive values for dis-

ease severity.1,6

Currently, a prognostic index incorporating reported

clinical7–11; environmental12–17; and genetic factors18–20;

and capable of discriminating potential disease course at

a first demyelinating event (FDE) or at the time of MS

diagnosis is not available. Mandrioli et al.21 developed a

multifactorial prognostic index for MS that incorporated

only cerebrospinal fluid parameters while adjusting for

baseline clinical and demographics factors, but leaving

out genetic and environmental components. Perhaps the

low variability (r2 ¼ 21:4%) captured in the more recent

genetic model of MS disease severity22 could be attrib-

uted to the missing clinical and environmental compo-

nents that play a major role in MS disease severity as

reported elsewhere.23

We had previously investigated the role of genetic sus-

ceptibility variants using the standard time-invariant gen-

etic risk scores estimated from SNPs that were predictive

of clinical course in MS24 but were unable to include im-

portant clinical and environmental information. However,

whether combining genotype information with clinical

and environmental information can improve predictive

performance and increase the variation explained has not

been studied. Furthermore, how these variables are com-

bined may be important in terms of overall prediction

accuracy.

Nevertheless, statistical learning methods that combine

the clinical and environmental factors with the genetic in-

formation (e.g. the ‘super learner’ of van Houwelingen

and Putter25 and van der Laan et al.26) into a prognostic
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index have been shown to improve predictive perform-

ance in terms of risk stratification. Moreover, allowing

the effects of the genetic variants to vary with time or

landmarking their effects in the prognostic index may

provide useful biological information that could be

missed otherwise.27,28 That is the prognostic indices may

be time-dependent such that factors that predict subse-

quent prognosis may differ depending on the disease

duration.

This study aimed to create, from prospectively collected

clinical, environmental and genotype data, a clinical–en-

vironmental–genotypic (clinical–env–genotypic, herein-

after) prognostic index (CEGPI) predicting the probability

of developing new relapses and disability worsening out-

comes from FDE. We also aimed to obtain robust dy-

namic estimates from FDE and 5 years post-onset, of the

risk for relapses and worsening of disability, using a

landmark approach. By utilizing data from persons from

the time of a first clinical diagnosis of CNS demyelin-

ation (those who subsequently developed ROMS and/or

remained as CIS up to the 10th year post-onset), we

hypothesized that both clinical, environmental, and genet-

ic factors in combination and singly, would predict met-

rics of disease severity. We also hypothesized that these

factors would be time dynamic and thus knowledge of

disease duration will be an important driver of disease

progression and prognostication.

Materials and methods

Data and study design

Data were derived from the Ausimmune Longitudinal

(AusLong) study.29 The Auslong study is a population-

based prospective cohort study of FDE participants

recruited soon after their referral episode. All Participant

samples were genotyped using the Illumina MS Chip,30

which includes �240 000 exome SNPs based on the

Human Exome-12 v1.2 array plus an additional �88 600

MS-relevant variants added as a customized component.

These data were imputed to �2.9 million SNPs using the

algorithm implemented in Minimac 331 using the 1000-

genome phase-332 as the reference panel. SNP genotypes

were captured for 199 of the 233 MS risk SNPs pub-

lished by the International MS Genetics Consortium.33

The analysis cohort included 253 participants with 2858

repeated observations measured over 10 years. Of this,

219 had been diagnosed with ROMS, while 34 remained

as CIS by the 10th year review.

Definition of outcome measures

The study outcomes considered were:

• The time to relapse and/or recurrence of relapsing

events (RRE); where relapse was defined according to

the 2017 McDonald criteria.34

• The time to change in the level of the Expanded

Disability Status Scale (EDSS): Here, the follow-up

measurements for each individual included the clinical

status ‘worsening’ versus ‘not-worsening’, and the out-

come denoted as ‘WoD’ (worsening of disability)

hereafter.
• The time to ‘relapse and/or worsening of disability,’

denoted ‘RwoD’ hereafter. This is a combination of

both the RRE and the WoD status.

We restructured the data based on the Markov

assumptions of a continuous-time evolution of MS dis-

ease course (EDSS transition),35–37 whereas the definition

of WoD (‘worsening’ versus ‘not-worsening’) stems from

previous studies.2–5 By restructuring the data, and defin-

ing the WoD measure, we preserved the natural interpret-

ation of MS progression in terms of stage progression,

meanwhile ensuring the intra- and inter-ratter variability

are assessed evenly across the entire scale.

Statistical analysis

Selection of potential genetic predictors

Sample quality control of the genotype data was per-

formed as described in Anderson et al.38 To predict time

to RRE, WoD and RWoD, a global test for the added

prognostic value of all SNPs (n¼ 199) that passed the

quality control stage was done using the Goeman’s

‘globaltest0 R-package.39 Here, we test the null hypothesis

of no additional prognostic value of the genetic markers

given the clinical and environmental predictors (clinical–

env, hereinafter). Following this, we applied a least abso-

lute shrinkage and a selection operator (LASSO) within

the framework of survival models (Cox-LASSO) with

leave-one-out cross-validation (LOOCV) to select poten-

tial SNPs using Goeman’s ‘penalized’ R-package.40 The

Cox-LASSO regression was adopted given its accepted

good performance, inherent variable selection routine,

and the ability to accommodate correlated SNPs and

event times.25,41 Unbiased estimates for significant SNPs

with non-zero effect sizes were obtained using the ‘back-

fitting’ algorithm of Sauerbrei and Royston.42

For each survival endpoint that we analysed, an addi-

tive genetic model was assumed, and the significance level

to stay in the model was set to P � 0:05. The effects of

the resulting SNPs were allowed to be landmark-depend-

ent and/or vary with the logarithm of the inter-attack

intervals (i.e. the difference between event start and event

stop times) for each endpoint. Note that the SNPs

included were those suggestive of MS risk according to

the international MS genetic consortium.43 After quality

control, 17-HLA SNPs from the major histocompatibility

complex (MHC) region and 182 non-MHC autosomal

SNPs formed the basis for initial selection with Cox-

LASSO. The final genetic models for each survival end-

point included the effects of the primary signal that maps

to the HLA-DRB1 gene (HLA-DRB1*15:01 allele;
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RefSNP: rs3129889) following its previously established

primary role in MS susceptibility.44 To be specific, we

allowed the effects of the SNPs to be landmark-dependent

and/or vary with the logarithm of the inter-attack inter-

vals, as well as interactions with standardized latitudinal

coordinates to adjust for gene–environment (GxE) interac-

tions following previous findings.23

Selection of potential clinical and environmental

predictors

The predictive significance of multiple clinical–env predic-

tors of MS risk and/or disease time-course were assessed

including; age at FDE, body mass index (BMI), sex,

relapse counts, the intervals between attacks, baseline 25-

hydroxy vitamin D levels [25(OH)D], smoking status (to-

bacco or marijuana), latitude, T2 lesion counts on

baseline MRI (T2L), hours of sunlight exposure, duration

of disease-modifying therapies (DMTs) and vitamin D

supplementation; were investigated using multivariate sur-

vival models. Initially, we fitted crude Cox models which

included additional predictors such as recent immuniza-

tion status (those who have had any immunization done

since their last review), change in job status, hospital

anxiety depression scores (HADS), study site, income lev-

els and employment status; to gain insight into the prog-

nostic effect for each factor. Core clinical–env models for

each survival endpoint were then constructed using back-

ward selection (P � 0:05) with a systematic search for

multifactorial polynomial terms according to Sauerbrei

and Royston.42 These clinical–env predictors were careful-

ly selected from those reported in previous studies

(Supplementary Table 1) that examined their roles in MS

risk and disease progression. Regardless of statistical sig-

nificance in each survival endpoint; age at FDE, sex,

study site, duration of DMTs and T2L, were included as

possible adjustments in the core clinical–env models based

on their relevance in MS.9,10,13,17,21,45–49

Synthesis of the prognostic index

Using the approach of van Houwelingen and Putter25

with LOOCV to avoid model overfitting, we created:

(1) A Clinical–Env Prognostic Index (CEPI), from a multi-

variable Cox regression analysis using the core clinical-

env predictors that passed the selection stage;

(2) A Genetic Prognostic Index (GPI), from a multivariable

Cox regression on SNPs that passed the selection stage;

and

(3) A Clinical–Env–Genotypic Prognostic Index (CEGPI),

from a linear combination of CEPI þ GPI, after per-

forming a supermodel Cox regression analysis on CEPI

and GPI, respectively.

In (3), the CEGPI is constructed as

CEGPI ¼ a1�CEPIþ a2�GPI, where a1ða2Þ are, respect-

ively, the log-hazard ratios for CEPI and GPI. To avoid

potential violations of the Cox proportional hazard as-

sumption induced by time-dependent covariates

(Supplementary Table 1), the Anderson–Gill (AG)

model50 was used to obtained robust standard errors (SE)

(sandwich variance estimates) from which robust confi-

dence intervals (CIs) were estimated. Next, we stratified

the clinical–env and genetic supermodels by EDSS to in

other to capture the entire disease state space51. By so

doing, the inter and intra-individual variability is cap-

tured evenly along the entire scale of EDSS.36,51 We also

stratified by the dynamic conversion status (CDMS, clin-

ically defined MS) to account for differences that exist in

our study population (different baseline hazards for

ROMS & CIS). Right-censored events times were

assumed for each survival models that we fitted.

Dynamic prediction using the prognostic index

Using the obtained indices, we performed a supermodel

Cox regression and constructed a ‘super learner’ from

which dynamic predictions were achieved by

Landmarking described elsewhere.25,28 By definition, a

supermodel Cox regression is that which is executed on

the resulting cross-validated prognostic indices (i.e. on

CEPI only, or GPI only, or CEPI and GPI); whereas a

‘super learner’ is a supermodel Cox regression on CEGPI

only. Robust estimates (averaged over five landmark data

sets created at time points tLm ¼ 0, 1,2, 3, 4 and 5 years,

with a prediction window of width w ¼ 5 years) for the

log-hazards were then obtained by fitting proportional

baseline and stratified landmark supermodels, allowing

for linear and quadratic interactions with the landmark

times.

Validation of the prognostic index

To validate the obtained indices, the validation by cali-

bration approach of van Houwelingen52 was adopted,

wherein Weibull calibration models were fitted on four

risk groups defined as: ‘IPI1’ ¼ low risk (0–25% risk);

‘IPI2’ ¼ low intermediate risk (25–50% risk); 0IPI3’ ¼
high intermediate risk (50–75%) and 0IPI4’ ¼ high risk

(75–100%) as in van Houwelingen.52 We adjusted the

baseline hazards in our data using information from two

populations namely: the British Columbia cohort,53 and

the Phase III Tysabri trial from North America.54 These

populations were chosen due to their large sample sizes.

Finally, the model-v2, Harrell’s C-index and pseudo-R2

were used for model comparison, while the overall per-

formance of the index at diagnosis was evaluated using

the Kullback–Leibler and Brier (dynamic) prediction error

(reduction) curves. All statistical analyses were performed

using the R-software version 3.6.0.

Estimating risk scores for disease progression

The prognostic model used for obtaining the risk scores

for each IPI subgroup of the CEGPI is given by

h tjIPICEGPIð Þ ¼ h0 tð Þ � expðc1�IPI2 þ c2�IPI3 þ c3�IPI4Þ
(1)

where h tjIPICEGPIð Þ is the hazard of a relapse or
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worsening event at any given time t, h0 tð Þ is the baseline

hazard, and cð:Þ are the regression effects of the prognos-

tic subgroups. The probability, at given time, of having a

worsening or relapsing event, given all available genetic

and clinical–env components of disease; and conditional

on the IPI subgroups of the CEGPI, was obtained from

the prognostic formula (1) using:

kIPI ¼
HRIPI

1þHRIPI
(2)

where kIPI is the risk score of the prognostic subgroup,

and HRIPI ¼ expðcð:ÞÞ is the hazard ratio. The risk scores

range between 0 and 1, denoting the probability at given

time, of observing an EDSS score that is greater than or

equal to the previous score.

Table 1 Regression coefficients (b), standard errors (SE) and P-values (P) for the candidate clinical and environmen-

tal predictors included in the clinical–environmental prognostic index (CEPI) when predicting the risk of worsening

of disease (WoD), relapses (RRE) and relapse and/or worsening of disease (RWoD). Estimates for clinical predictors

not included in the final models are left blank as they did not pass the significance level (a £ 0:05) to stay in the

model

Worsening of disease N ¼
2858; D ¼ 1011

Relapses N ¼ 2858;

D ¼ 564

Relapse and/or worsening of disease

N ¼ 2858; D ¼ 1377

Clinical variables Categories b SE P b SE P b SE P

Baseline predictors

Age at FDE (years) 0.01 0.01 0.07 �0.02 0.01 <0.01 <�0.01 <0.01 0.86

Sex Female �0.06 0.09 0.55 0.02 0.11 0.88 �0.10 0.08 0.22

Study site TAS 0.09 0.13 0.52 �0.04 0.12 0.71 �0.03 0.09 0.71

VIC �0.08 0.15 0.57 0.11 0.11 0.33 �0.14 0.10 0.17

NSW 0.02 0.16 0.92 0.20 0.11 0.07 0.11 0.10 0.27

QLD Reference Reference Reference

25(OH)D (nmol/l) <�0.01 <0.01 0.12 <�0.01 <0.01 0.83 <�0.01 <0.01 <0.01

Smoke tobacco Yes – – – – – – – – –

Smoke marijuana Yes – – – – – – – – –

Educational level HE – – – – – – – – –

SE �0.15 0.10 0.13 �0.12 0.07 0.06

LSE Reference Reference Reference

Number of T2 lesions 0.45 0.09 <0.01 0.25 0.06 <0.01 0.26 0.06 <0.01

Duration of DMT �0.01 0.19 0.94 �0.22 0.14 0.12 �0.01 0.06 0.85

Time-dependent predictors

RRE Yes – – – – – – – – –

WoD Yes – – – 0.25 0.11 0.02 – – –

Body mass index (kg/m2) 1.42 0.41 <0.01 0.57 0.32 0.07 2.51 0.99 0.01

Relapse counts 0.42 0.08 <0.01 0.29 0.07 <0.01 0.67 0.05 <0.01

Recent immunization Yes 0.29 0.09 0.01 �0.12 0.14 0.38 0.09 0.08 0.23

Vitamin D supplements Yes �0.69 0.19 <0.01 �3.87 0.17 <0.01 �0.61 0.18 <0.01

HADS 0.28 0.09 <0.01 0.44 0.13 <0.01 0.60 0.07 <0.01

Job change Yes – – – – – – – – –

Employment status FT – – – – – – �0.27 0.10 0.01

DP �0.25 0.17 0.15 – – – �0.30 0.13 0.02

PT/WH – – – – – – – – –

UE Reference Reference Reference

D in sunlight exposure (h) 0.07 0.03 0.01 – – – 0.07 0.03 0.01

Income levels $1500–$2000 – – – 0.51 0.16 <0.01 0.45 0.17 0.01

$600–$1499 0.58 0.14 <0.01 0.84 0.13 <0.01 0.64 0.12 <0.01

$1–$599 0.38 0.15 0.01 0.52 0.15 <0.01 0.46 0.12 <0.01

$0 Reference Reference Reference

Log(Inter-attack intervals) �0.24 0.02 <0.01 �0.99 0.05 <0.01 �3.59 0.21 <0.01

NB: The actual values for P-values< 0.01 range between 10�3 and 10�12.

D ¼ number of events, N ¼number of observations.

DP, disability pension; FT, full time; HADS, hospital anxiety depression score; HE, higher education; LSE, less than secondary education; PT/WH, part-time/work from home; SE, sec-

ondary education; UE, unemployed.

NSW, New South Wales; QLD, Queensland; TAS, Tasmania; VIC, Victoria.

Inter-attack intervals ¼ Difference between event stop and event start time.

D in sunlight exposure: Difference in hours of sunlight exposure (winter-summer).

FDE, first demyelinating event; 25(OH)D, 25 hydroxy vitamin D levels measured in units of nmol/l.
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Data availability

The Ausimmune/AusLong data used to construct the

CEGPIs are available from the authors upon reasonable

request. The data are not publicly available due to priv-

acy and ethical restrictions.

Results
In our analysis cohort, 77.5% (n¼ 196) were females,

and the mean age at study entry was 36.6 years

(SD¼ 9.2). The mean times to relapse were 10.67 months

(SD¼ 6.00) for males and 10.31 months (SD¼ 6.10) for

females. The annual relapse rates were 0.23 (Nevents¼84,

SD¼ 1.42, range¼ 0–7) in males and 1.35 (Nevents¼493,

SD¼ 2.91, range¼ 0–25) in females; where Nevents is the

total number of post onset relapses. The mean times until

a change in the EDSS level were 7.00 months (SD¼5.30)

and 7.30 months (SD¼ 4.80) for males and females, re-

spectively. The 5 and 10 years cohort characteristics are

given on Supplementary Table 1.

Clinical–env prognostic factors

Table 1 shows the results for the core models, while

Supplementary Table 2 shows the results from the crude

models. From Table 1, seven predictors (T2L, BMI, re-

lapse counts, recent immunization status, HADS, seasonal

changes in hours of sunlight exposure, and income levels

significantly increased the risk for WoD annually after

adjusting for risk factors, such as sex, age at FDE,

DDMTs and study site. Vitamin D supplementation and

shorter inter-attack intervals reduced the likelihood of

worsening each year. Although baseline 25(OH)D was

minimally protective, its effect on disability worsening

was not significant. Except for recent immunization status

and DDMTs, the above-mentioned factors were also pre-

dictive of relapse risk. In addition to these, a ‘worsening’

clinical status is an important driver of relapse risk, but

importantly the reverse was not supported when predict-

ing the risk for worsening. From the core models

(Table 1), similar clinical–env factors were included to

predict each endpoint. With the exception of age at FDE,

sex and study site, the direction of the remaining effects

across the endpoints were consistent.

Genetic prognostic factors

The global test for the null hypothesis of no additional

prognostic values of all 199 SNPs markers given the

clinical–env predictors was rejected for each survival

endpoint. In particular, we estimated the global statistics

as: Z�WoD ¼ 0.60, Z�RRE ¼ 2.07, Z�RWoD ¼ 0.60; and the

P-values as PWoD ¼ 1.2� 10�5, PRRE ¼ 1.8� 10�162,

PRWoD ¼ 2.8� 10�11, when evaluating the predictive sig-

nificance for the risk of WoD, RRE and RWoD, respect-

ively. Unbiased estimates for the SNPs included in the

core genetic models are shown on Supplementary Table

3. Noteworthy is the significant time-dynamic (*) and

the latitudinal (�) effects for some SNPs on the end-

points. Although the effects of such SNPs decreased

with time, they remained strong. Regarding the effects

of HLA-DRB1*15:01 we observed a non-significant

main effect in terms of WoD (HR¼ 0.90; P¼ 0.79),

RRE (HR¼ 1.19, P¼ 0.78) and RWoD (HR¼ 2.94,

P¼ 0.34). Also, its interaction with time and standar-

dized latitudinal coordinates were not significant in the

WoD and RRE endpoints. However, after adjustment

for relapses (RWoD), its effect on worsening events

increased significantly with time (HR¼ 1.17; P¼ 0.01).

Given the core clinical–env predictors, the test for pre-

dictive significance indicated that the genetic variants

have additional prognostic value for disease time-course

prediction.

Distribution of the prognostic
indices

The scatter plots and histograms, alongside means and

standard errors for the distributions of CEPI and GPI for

each endpoint are shown on Fig. 1. They were con-

structed using the core clinical–env predictors (Table 1)

and genetic variants (Supplementary Table 3). Whereas

the GPIs are normally distributed, the CEPIs are mixtures

of normal distributions that capture the complex hetero-

geneity of the MS disease course.

The correlations between the CEPIs and GPIs in each

endpoint were estimated as follows: qWoD ¼ 0.61, qRRE

¼ 0.75 and qRWoD ¼0.73, indicating a moderately high

level of correlations between the clinical–env and genet-

ic predictors at each survival endpoint. Meanwhile, a

Cox regression on both the CEPI and GPI as predictors

in each endpoint produced the CEGPIs as follows:

CEGPI ¼
0:86 � CEPIþ 0:56 �GPI; if risk for WoD
0:80 � CEPIþ 0:26 �GPI; if risk for RRE
0:86 � CEPIþ 0:27 �GPI; if risk for RWoD

:

8<
:

Their respective standard deviations were estimated as

SDWoD ¼ 1.46, SDRRE ¼ 1.89 and SDRWoD ¼ 1.76.

The predictive values of the
prognostic indices

The log-hazard ratios (b), model-v2, pseudo-R2 and

Harrell’s C-index (Ĉ) for time-fixed Cox supermodels are

given in Table 2. They confirm, respectively, the highest

effect sizes, performances, variations and discrimination

of the ‘super learners’ at each endpoint. The model

parameters w1ðw2Þ (Table 2) are, respectively, the cali-

brated clinical–env (genetic) effects in the CEGPI. The ob-

servation based on the model-v2 (Table 2) when

predicting the risk for WoD is that �27%

[389=ð389þ 1043Þ	 of the overall prognostic information
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in the CEGPI is contributed by the genetic variants. For

the RRE and RWoD endpoints, we observed ’35% and

’28% genetic contributions, respectively, further estab-

lishing the prognostic value of genetic variants for disease

time-course predictions.

Meanwhile in the column denoted ‘time-varying’

(Table 3), the estimated time-dependent effects

(lnðt þ 0:5Þ) of the prognostic indices are presented, and

depicted graphically on Fig. 2 (top panels). Importantly,

adjusting these time-varying effects through time-depend-

ent Cox supermodels (‘time-varying’, Table 3), or Cox

landmark supermodels (Supplementary Table 4) improved

their predictive performance in terms of model-v2 and

prediction error probabilities (Figs 3 and 4). Regarding

the predictive accuracies of the supermodels at diagnosis,

the Kullback–Leibler and Brier (dynamic) prediction error

(reduction) curves (Figs 3 and 4) suggest that for short-

term prognosis (� 5 years), the clinical–env information is

more relevant whereas the genetic information reduces

the prediction error in the long-term (�5 years). The

‘super learners’ perform better than the individual super-

models but not greatly so.

Dynamic landmark predictions of
disease course

The log-hazard ratios of the prognostic indices obtained

from Cox supermodels performed on landmark datasets

are shown in Supplementary Table 4. These results sug-

gest that the effects of the clinical–env and genetic com-

ponents increases with time. In terms of model-v2

(Supplementary Table 4) and Kullback–Leibler informa-

tion and Brier scores (Figs 3 and 4), these results further

confirm the observation that the CEPIs performs slightly

better than the GPIs, and the fact that the CEGPIs are

not usefully better than the CEPI alone. In general, we

obtained better discriminative capabilities with landmark-

dependent, compared to landmark-fixed models (Fig. 4).

The robust estimates from the proportional baselines

and stratified landmark supermodels are presented on

Supplementary Table 5. Here, the effects of the CEPIs,

GPIs, and hence the CEGPIs is the average over five land-

mark time points (i.e. average of Supplementary Table 4).

In the column denoted ‘LM-fixed’ (Supplementary Table 5)

the results of the landmark supermodels without interac-

tions with landmark time points are reported, while in the

Figure 1 Distributions of the prognostic index. Panel (A) WoD, (B) RRE and (C) RWoD.
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Table 2 Time-fixed supermodel Cox regression on cross-validation based clinical–environmental (CEPI), genetic

(GPI) and clinical–environmental–genotype (CEGPI) prognostic indices. The P-values for all parameters were sig-

nificantly less than 2310�12

Worsening of disease (WoD)

N ¼ 2858; D ¼ 1011

Relapses (RRE)

N ¼ 2858; D ¼ 564

Relapses and/or worsening of disease

(RWoD) N ¼ 2858; D ¼ 1377

Prognostic indices

included

Parms.

(Model)

b (SE) (Ĉ, R2) Model v2 b (SE) (Ĉ, R2) Model v2 b (SE) (Ĉ, R2) Model v2

Clinical–Env. (CEPI) a1 ðM4) 0.96 (0.03) (0.73, 0.57) 859 0.93 (0.03) (0.85, 0.90) 1311 0.93 (0.05) (0.76, 0.71) 1709

Genetic (GPI) a2 ðM5) 0.86 (0.04) (0.65, 0.32) 389 0.82 (0.05) (0.79, 0.73) 746 0.84 (0.04) (0.69,0.39) 680

a1 ðM6) 0.86 (0.04) 0.80 (0.05) 0.86 (0.02)

Both (CEPI and GPI) a2 0.56 (0.07) (0.76, 0.64) 1043 0.26 (0.06) (0.85, 0.91) 1358 0.27 (0.06) (0.77, 0.72) 1776

Clinical–Env–genotype

(CEGPI)

a3 ðM7) 1.00 (0.03) (0.76, 0.64) 1043 1.00 (0.03) (0.85, 0.91) 1358 1.00 (0.03) (0.77 0.72) 1776

Calibrated clinical w1 0.86/0.96

�0.90

0.80/0.93

�0.86

0.86/0.93

�0.92

Calibrated genetic w2 0.56/0.86

�0.65

0.26/0.82

�0.32

0.31/0.85

�0.36

w1 ¼ calibration coefficient for CEPI; b ¼ the regression coefficient; D ¼ number of events; N ¼ number of observations.

w2 ¼ calibration coefficient for GPI; Ĉ ¼ Cross-validated Harrell’s C-index.

v2 ¼ model chi� square statistics; R2 ¼ pseudo � R� square computed as 1� expð�v2=DÞ.
NB: In the column denoted ‘Parms’, the actual parameters in the supermodels are given. The results on this table were obtained from the fit of models M4; M5; M6 and M7; re-

spectively (see Supplementary methods).

CEPI: Clinical–Env Prognostic Index (clinical þ environmental predictors).

GPI: Genetic Prognostic Index (Cumulative effects of single nucleotide polymorphisms markers).

CEGPI: Clinical–Env–Genotypic Prognostic Index ¼ CEPIþGPI (clinical þ environmental þ genetic).

Time-fixed Supermodels (M4; M5 & M6): Cox regression performed on CEPI only, or GPI only, or combination of CEPIþGPI, without time-varying effects.

Super learner (M7Þ: Cox regression performed on CEGPI only; after obtaining estimates from CEPI ða1Þ and GPI ða2Þ from model M6.

Table 3 Time-fixed and time-varying supermodel Cox regression on the clinical–environmental (CEPI), genetic

(GPI) and clinical–env–genotype (CEGPI) prognostic index, respectively. Shown are the standard errors (SE) and

the regression coefficients for the time-fixed effects (b ) and time-varying effects ln(1þt). Non-significant effects

have been highlighted

Prognostic index (PI) Model information Constant b SEð Þ ln(t 1 0.5) b ðSEÞ Model v2 Model

AIC

Worsening of disease (N ¼ 2858; D ¼ 1011 )

Clinical–Env. (CEPI) M4 Time-fixed 0.96 (0.03) 859 13757

Time-varying 0.87 (0.06) 0.17 (0.09) 862 13756

Genetic (GPI) M5 Time-fixed 0.86 (0.04) 389 14227

Time-varying 0.53 (0.09) 0.79 (0.17) 413 14204

Clinical–env–genotypic (CEGPI)

M6 ¼ ð0:86 � CPIþ 0:56 � GPI)

M7 Time-fixed 1.00 (0.03) 1043 13572

Time-varying 0.92 (0.04) 0.16 (0.07) 1050 13568

Relapses (N ¼ 2858; D ¼ 564 )

Clinical–Env. (CEPI) M4 Time-fixed 0.93 (0.03) 1311 7080

Time-varying 0.88 (0.03) 0.17 (0.07) 1317 7076

Genetic (GPI) M5 Time-fixed 0.82 (0.05) 746 7645

Time-Varying 0.76 (0.04) 0.28 (0.11) 727 7637

Clinical–env–genotypic (CEGPI)

M6 ¼ ð0:80 � CPI þ 0:26 � GPI)

M7 Time-fixed 1.00 (0.03) 1358 7033

Time-varying 0.93 (0.03) 0.25 (0.07) 1369 7023

Relapses and/or worsening of disease (N ¼ 2858; D ¼ 1377 )

Clinical–Env. (CEPI) M4 Time-fixed 0.93 (0.05) 1709 18162

Time-varying 0.97 (0.04) 20.13 (0.08) 1712 18162

Genetic (GPI) M5 Time-fixed 0.84 (0.04) 680 19192

Time-Varying 0.77 (0.05) 0.24 (0.12) 684 19189

Clinical–env–genotypic (CEGPI)

M6 ¼ ð0:86 � CEPI þ 0:27 � GPI)

M7 Time-fixed 1.00 (0.03) 1776 18095

Time-varying 1.02 (0.04) 20.06 (0.07) 1777 18097

Supermodels (M4; M5 & M6): Cox regression performed on CEPI only, or GPI only, or CEPIþGPI.

Super learner (M7Þ : Cox regression performed on CGPI only; after obtaining estimates from CEPI ða1Þ and GPI ða2Þ from M6.

D ¼ number of events; N ¼number of observations.

NB: The ‘time-fixed’/‘time-varying’ estimates were obtained from a Cox supermodel without/with time-varying effects, respectively. The ‘time-fixed’ estimates are identical to those

found in Table 3 above. Adding the time-varying effects improved the performance of the time-vary supermodels over the time-fixed counterparts in terms of model chi-square

(v2) and AIC.
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columns denoted ‘LM-dependent’, the results are shown

with linear (s/5) and quadratic (s/5)2 interactions with the

landmark times, respectively.

The likelihood for risk of WoD, RRE and RWoD with

regards to the quadratic of the CEGIPs effects (Fig. 2,

bottom panels) is postulated to increase annually by 73%

(HR¼ 2.74, 95% CI: 2.00–3.76), 68% (HR¼ 2.16, 95%

CI: 1.74–2.68) and 67% (HR¼ 2.10 95% CI: 1.66–

2.65), for 1unit change in the CEGPI, respectively. The

5 years dynamic prediction curves revealed four prognos-

tic groups of MS cases (Fig. 5).

Risk calibration using the prognostic

index

The estimated 5 and 10 years survival probabilities for

the prognostic subgroups are shown on Supplementary

Table 6. The hazards associated with the prognostic sub-

groups given the effects of the CEGPI are:

WoD : h tjIPICEGPIð Þ
¼ h0 tð Þ � expð1:50�IPI2 þ 1:86�IPI3 þ 3:08�IPI4

(3)

RRE : h tjIPICEGPIð Þ
¼ h0 tð Þ � expð0:96�IPI2 þ 2:48�IPI3 þ 4:03�IPI4Þ

(4)

RWoD : h tjIPICEGPIð Þ
¼ h0 tð Þ � expð1:30�IPI2 þ 1:46�IPI3 þ 3:29�IPI4Þ

(5)

where the low-risk group (IPI1) is the reference. The cor-

responding Kaplan–Meier curves for these subgroups are

shown on Fig. 6 (top-panels). From these plots, it is

clear that the CEGPIs are well calibrated in this data. In

terms of baseline hazards, the CEGPIs are also well rep-

resented in the British Columbia cohort53 and the Phase

III Tysabri trial54 (Fig. 6, bottom panels), although most

likely applicable to the latter than the former,

respectively.

Figure 2 Time-dependent regression effects of the prognostic index. From left to right is the risk for WoD, RRE and RWoD,

respectively.
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Discussion
In this study, we have developed 3 prognostic indices

(CEPI, GPI and CEGPI) that can be applied to people with

ROMS and CIS from diagnosis to 10 years of disease dur-

ation. We provided robust dynamic estimates for the risk of

worsening, relapse and a combination of these metrics, re-

spectively. The CEPIs provided the best discrimination be-

tween good and worse prognoses in the first 5 years of

clinical symptoms, meanwhile the GPI had a greater effect

after 5 years of symptomatic disease. The overall prognostic

sensitivity was improved when using the combined index

(CEGPI). The significant time-dependent effects of the prog-

nostic indices enhanced their sensitivity for disease time-

course predictions. These time-dependent effects strongly in-

dicate that there are important variations in the drivers of

MS progression, and therefore disease duration is an im-

portant variable in modelling MS progression. Importantly

worsening events predicted the onset and recurrence of

relapses, but the reverse was not supported. Interestingly,

the genetic variants found to be significant in this study

also interacted with latitude to increase the risk for worsen-

ing symptoms at higher latitudes.

Several clinical and environmental factors had signifi-

cant time-varying effects on MS progression. Baseline

T2L counts on MRI were a significant predictor of dis-

ease progression as previously described.47,48,55 Baseline

BMI was borderline predictive of relapses, but had much

stronger effects on worsening events. Regardless of previ-

ous EDSS and CDMS status, each 1 kg=m2 increase in

BMI was associated with an 81% increased risk of wor-

sening each year. Moreover, we noted that this effect was

persistent up to 10 years post-FDE (0:8110 ¼ 11% risk),

thus rendering it a good clinical marker for long-term

prognostication. BMI, along with older age, income lev-

els, smoking status and higher depression scores, has

been shown to be associated with higher global disability

in MS.45 Additionally, those taking vitamin D supple-

ments had a better prognosis in terms of relapses or wor-

sening of disability, but the effects of baseline 25(OH)D

levels were marginal, and diminished significantly after

1 year post-onset. It is important to note that vitamin D

supplementation at the time of this study largely con-

sisted of VitD in multivitamin preparations and was in

the range of 200–400 IU daily of vitamin D3.

Whether relapses are associated with worsening of dis-

ability has been an area of interest and some controversy

in MS. In this cohort, individuals who presented with a

‘worsening’ clinical status at any given time, were on

average, 56% more likely to develop relapses within the

Figure 3 Performance of the supermodels in predicting RWoD at diagnosis. Prognostic errors and error-reduction probabilities

based on the utility of the prognostic index.

10 | BRAIN COMMUNICATIONS 2021: Page 10 of 16 V. Fuh-Ngwa et al.



next year compared to those not worsening; whereas it

was the relapse counts and not the relapse status that

predicted worsening of disability. The overall finding in

this direction is that ‘worsening’ events have stronger

effects on relapse risk, but the reverse is less well sup-

ported. These observations are supported by previous

studies.53,56–58 Importantly, the longer the duration be-

tween relapses (�1 year between relapses), the greater is

the reduction in the risk of future relapses and/or worsen-

ing symptoms.

We identified a limited number of genetic variations

that predicted MS progression amongst those published

by the International MS genetic consortium43 when con-

structing the GPIs. Particularly, SNPs that increased wor-

sening risk such as rs3819292, rs10951154, rs61863928,

rs1112718 and rs3184504, had strong additive effects

that tend to be protective for every 10-degree increase in

latitude. Conversely, those that had strong protective

main effects such as rs1177228, rs9878602, rs3923387,

rs4409785 and rs9955954, interacted with latitude to in-

crease worsening of disability each year. Therefore, these

SNPs were associated with worsening symptoms mainly

at higher latitudinal levels. These latitude-related genetic

contributions are novel, and perhaps explain some of the

genetic basis of high MS risk at higher latitudes found in

this cohort.59,60

The clinical–env inputs were major contributors of dis-

ease progression, meanwhile the genetic inputs (although

they had additional prognostic values) were minor con-

tributors. These observations corroborate the views of

Taylor.23 For instance, combining the effects of clinical–

env predictors, and the genetic variations into a prognos-

tic index improved the overall prediction accuracy as

shown on Figs 3 and 4. The CEPIs alone explained

’57%, 90% and 76% of the phenotypic variance in

terms of WoD, RRE and RWoD, respectively. Given the

CEPIs, the probability of correctly assigning higher risk

scores to individuals with shorter times to events

(Harrell’s C-index) were estimated as ĈWoD ¼ 73%,

ĈRRE ¼ 85% and ĈRWoD ¼ 76%. In contrast, a total of

25 SNPs (6-HLA and 19-non MHC autosomal) included

in the GPI explained about 32% of the pure phenotypic

variance in terms of worsening, with about 65% con-

cordance among individuals. In terms of relapses, we

included 61 SNPs (11-HLA and 50-non MHC auto-

somal) in the GPI to explain 73% of the phenotypic vari-

ance with about 79% concordance. Thus after adjusting

for the effect of relapses (RWoD), the CEPI and GPI

explained about 76% and 69% of phenotypic variance in

WoD, respectively. Overall, prognostic predictions using

the CEGPIs increased the phenotypic variations to 76%

for WoD, 91% for RRE and 77% for RWoD.

Figure 4 Prospective accuracies of Landmark supermodels. Prospective accuracies of Landmark supermodels in predicting RWoD

within the next 5 years from diagnosis.
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Additionally, we found �8% overlap between the genetic

components of relapse and worsening, thus supporting

our previous findings of independent genetic processes

affecting relapse risk and disability worsening.24

Regarding the (dynamic) prediction errors, the CEPI

alone were better for short-term prognostication (�5 years

from diagnosis) whereas the GPI reduced the errors only

in the long-term (�5 years from diagnosis). The CEGPI

which combined the properties of the CEPI and GPI were

suitable for both short- and long-term prognostications.

However, its predictive accuracy depended on the time-

varying effects of the clinical–env predictors included in

the CEPIs. The underlying biological mechanism based

on these findings is that the combined effects of the clin-

ical–env predictors of disease were more variable at

symptom onset compared to the effects of the genetic

variations whose effects were pronounced only in the

long-term. Over time, both components had differential

interactions with disease duration to increase the risk of

progression, thus explaining an overall quadratic time-dy-

namic disease course in terms of RWoD 5 years post-FDE

as shown on Fig. 2 (bottom panels).

As pointed out in Henderson and Keiding,61 and

stressed in Royston and Altman,62 prognostic models are

not good at individual predictions for survival endpoints.

Notwithstanding, we can still interpret the internal cali-

bration curves of Fig. 6 (top panels) using prognostic

models built on subgroups of individuals. The CEGPIs

are capable of discriminating individuals having a poor

prognosis (high-risk) from those having a good prognosis

(low-risk). This is evident from the 5 and 10 years sur-

vival probabilities we presented on Supplementary Table

6. Importantly, individuals in the worst prognostic group

(highest risk) had a 98%(kHR¼0.98) chance of having

relapses within 1 year post-onset of symptoms. In this

subgroup, we found, on average, 1.69 points (CI: 1.57–

1.83) increment in EDSS per one-unit increase in the

CEGPI value per annum, when compared to the baseline

(low-risk). Similarly, we observed kHIR¼92% and

kLIR¼72% chances of relapses within 1 year post-onset of

symptoms in those having high- and low-intermediate

risk, respectively. The hazards in these groups were

obtained from prognostic model (4), and the risk scores

k were computed using equation (2).

The CEGPI could be used as a tool to stratify MS

cases in future clinical trials, if its accuracy can be con-

firmed externally. Particularly to understand differential

responses to therapies which may be influenced by the

complex distributions of clinical–env factors, and genetic

variations in this study cohort. If validated, it may be

Figure 5 Dynamic probability of having an RWoD event within the next 5 years. Shown based on the Landmark approach.
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used as a tool for prognostication at an individual level

to identify individuals who need greater surveillance and

earlier use of more intensive therapy, and likewise in risk

averse individuals. It may also provide some support for

lesser interventions in those with a low-risk score.21,63,64

In this cohort, we have successfully identified and discri-

minated four groups of individuals based on their level of

clinical–env and genetic risk they carry. These results are

shown on Fig. 5. These scores have clinical implications,

e.g. in treatment assignment (randomization) in clinical

trial settings.

Strengths and limitations

The most important limitation of this study is the lack of

an external validation data set. It should be noted that

the external validation by calibration curves on Fig. 4

(bottom panels) were linear interpolations of the baseline

hazards. Since the AusLong study is an internationally

unique first demyelination cohort, no external data were

involved in the validation procedure. Another important

limit is the sample size, and the restriction of the effect

of duration of DMTs effect to baseline. It should be

noted that DMTs were utilized at the discretion and tim-

ing of the clinician managing each MS case. Thus apart

from the baseline measurements, the timings of the

remaining follow-up were discrete and did not corres-

pond to the true visits. As observed in each endpoint

wherein the effects of the duration of DMTs trends to-

wards the null hypothesis, had we used the complete fol-

low-up measurements to account for its time-dynamic

effects, we would expect strong beneficial effects in terms

of relapses, and perhaps worsening of disability. This

complex dynamic effect is clearly beyond the scope of

this study and will be explored further. We also note

that our CEGPI requires significant data including SNP

data to be available for the index to be calculated which

may limit its applicability in routine clinical practice, but

should not be a concern in clinical trials as a stratifica-

tion tool.

It should be noted that interactions at the level of the

prognostic indices (CEPI � GPI) were not achievable due

to the difficulties involved in the calibration of pure clin-

ical–env effects (w1 in Table 2) and pure genetic effects

(w2 in Table 2) in the combined index (CEGPI).

Apparently, the information that is shared between the

pure clinical–env source and the pure genetic one, and

that is responsible for the correlation of the prognostic

indices is much more relevant than the pure independent

parts. However, had we included the interaction effect at

the level of the prognostic index, then it will be practical-

ly impossible to disentangle the joint and independent

Figure 6 Cross-validated Kaplan–Meier survival estimates based on the effects of the CEGPI. From left to right: WoD, RRE and

RWoD, respectively.
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effects of CEPI and GPI, separately. Thus, the decision to

allow GxE interactions at the level of individual SNPs

(SNP � Latitude) in the genetic models enabled us to

properly calibrate and partial out the pure genetic effects

(independent part) in each outcome while leveraging the

latitude-related environmental contributions thereof. As

such, a comprehensive assessment of GxE interaction at

the level of the prognostic index is required. Last but not

least, our findings that latitude interacts with the genetic

variants indicate this is a fruitful area for further

research.

Declaration of good modelling

practice

We used statistical analysis methods published in inter-

nationally reputable statistical journals 25,26,28,36,39–42,51,52

to analyse disease progression in this cohort. Outcome

measures such as the time to 3 or 6 months confirmed

disability progression, or annualized change in EDSS

have been strongly criticized for assuming the underlying

MS disease course evolves in discrete-time intervals,

meanwhile the real biological process of MS disease

(EDSS transitions) evolves in continuous-time35,36,65,66;

and for overestimating permanent disability when used in

short-term clinical trials.67 Following this, our definition

of WoD in this study was based on restructuring of the

data following Markov assumptions.35,36 In this way, the

ordinal nature of EDSS was preserved, and we analysed

the probability, at any given time, of observing the cur-

rent EDSS given the entire history. A continuous duration

of the disease rather than discrete-time (actual visits) was

considered when restructuring the data and modelling of

progression process.

Conclusion
In this cohort, we have created a CEGPI for individuals

with ROMS and CIS, taking into account the multifactor-

ial nature of MS disease course. We obtained robust dy-

namic predictions for the probability of developing new

relapses and worsening of disability. The CEGPIs ability

to reliably discriminate individuals with a higher risk of

worsening potentially makes it a useful prognostic tool

for estimating a person’s probability of developing a

worse MS course at diagnosis. Although the genetic var-

iations provided additional prognostic values for disease

time-course prediction, the clinical and environmental

components were the major contributors. Our CEGPI

provided reliable information that is relevant for long-

term prognostication, but is more applicable as a clinical

research tool. If externally validated, it may be used in

risk stratification and selection criteria in clinical trials.

Supplementary material
Supplementary material is available at Brain

Communications online.
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