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A B S T R A C T

The International Maritime Organization has been promoting energy-efficient operational measures to reduce
ships' bunker fuel consumption and the accompanying emissions, including speed optimization, trim optimiza-
tion, weather routing, and the virtual arrival policy. The theoretical foundation of these measures is a model that
can accurately forecast a ship's bunker fuel consumption rate according to its sailing speed, displacement/draft,
trim, weather conditions, and sea conditions. Voyage report is an important data source for ship fuel efficiency
modeling but its information quality on weather and sea conditions is limited by a snapshotting practice with eye
inspection. To overcome this issue, this study develops a solution to fuse voyage report data and publicly
accessible meteorological data and constructs nine datasets based on this data fusion solution. Eleven widely-
adopted machine learning models were tested over these datasets for eight 8100-TEU to 14,000-TEU contain-
erships from a global shipping company. The best datasets found reveal the benefits of fusing voyage report data
and meteorological data, as well as the practically acceptable quality of voyage report data. Extremely ran-
domized trees (ET), AdaBoost (AB), Gradient Tree Boosting (GB) and XGBoost (XG) present the best fit and
generalization performances. Their R2 values over the best datasets are all above 0.96 and even reach 0.99 to 1.00
for the training set, and 0.74 to 0.90 for the test set. Their fit errors on daily bunker fuel consumption are usually
between 0.5 and 4.0 ton/day. These models have good interpretability in explaining the relative importance of
different determinants to a ship's fuel consumption rate.
1. Introduction

Reducing bunker fuel consumption of ships are paramount for the
shipping industry with both commercial and environmental implications.
Shipping companies have been always striving to reduce their bunker
fuel costs of their fleets in marine operations because bunker fuel cost
typically accounts for about 20%–61% of a ship's operating costs (Meng
et al., 2017; Soner et al., 2018). Meanwhile, reduction in bunker fuel
consumption lies in the core of progressively stricter regulations on ship
emissions proposed by the International Maritime Organization (IMO,
2020) and other international or national organizations such as European
Union (EU, 2021), because ship emissions, especially CO2, NOx and SOx,
are proportional to the bunker fuel consumption (Adland et al., 2019).
.
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Shipping industry stakeholders, such as shipping companies, IMO,
EU, and other governmental organizations, are making unprecedented
efforts to reduce bunker fuel consumptions of ships and the accompa-
nying emissions. Due to the expensiveness of technical solutions, ship-
ping companies have been passionate in adopting various operational
measures to reduce bunker fuel consumption, including weather/envi-
ronmental routing, speed optimization, trim optimization, and virtual
(just-in-time) arrival policy (IMO, 2012; Coraddu et al., 2017; Li et al.,
2018; Wan et al., 2018; Merkel et al., 2022). IMO has been calling on the
shipping industry to implement the Data Collection System (EEOI, AER,
DIST, TIME), Energy Efficiency Design Index (EEDI), Ship Energy Effi-
ciency Management Plan (SEEMP), and in-progress Energy Efficiency
eXisting ship Index (EEXI) and Carbon Intensity Index (CII) (Wang et al.,
2022
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2021; Yan et al., 2021). EU also rolled out its Monitoring, Reporting and
Verification (MRV) system from 2018.

However, during this process, many frustrations are heard from the
shipping industry. In sailing speed optimization, a ship's fuel efficiencies,
usually measured as its fuel consumption rate in terms of metric ton (MT)
per hour, or MT per day, in different weather and sea conditions are hard
to be captured by deck officers. Therefore, a simple sprint-and-loiter
practice is widely adopted (Johnson and Andersson, 2011; C-MAP,
2022). Regarding trim optimization, it is believed that trim optimization
can save 4%–6% (even up to 15%) of bunker fuel, according to various
reports issued by IMO and DNV. However, in our collaboration with
some shipping companies, we heard many complaints about the current
trim optimization practice. Captains at sea feel that trim charts/ta-
bles/matrices based on model ship tests or computational fluid dynamics
(CFD) calculation are not convincing, because these trim charts/ta-
bles/matrices cannot reflect the influence of weather and sea conditions
on trim optimization and the suggested optimal trim values sometimes
even cannot guarantee the full submergence of the propellor in sea water.
Third, our discussion with seafarers also saw their complaints about the
weather routing services provided by Weather Information Service Pro-
viders (WISPs). The weather routing services of WISPs are expensive, and
the data received by ships may be outdated or delayed. Therefore, many
deck officers having been relying more and more on manual voyage/-
route planning with the assistance of real-time weather information
websites, such as Windy.com. Fourth, when it turns to the virtual (jus-
t-in-time) arrival policy, Rehmatulla et al. (2017), Adland et al. (2020)
and Merkel et al. (2022) report that a major barrier to this policy is
incapability of quantitively assessing the bunker fuel consumption in
different speed-weather scenarios and precisely calculating the cost
savings of the policy for each voyage.

All these frustrations are boiled down, if not fully, to how we can
quantify the synergetic impacts of many factors (speed, draft/displace-
ment, trim, weather conditions, sea conditions) on a ship's bunker fuel
consumption rate. A latest review paper, Yan et al. (2021), also points out
that the basis of all operational measures for ship bunker fuel savings and
emission mitigation is the quantitatively modeling the relationship be-
tween fuel consumption rate and its determinants, including sailing
speed, draft/displacement, trim, weather conditions, and sea conditions,
but it is not a trivial work.

As stated by Yan et al. (2021), there are two elementary factors that
determine the accuracy of ship fuel efficiency modeling: choice of data,
and choice of models. There are several data sources that can support
ship fuel efficiency modeling of a shipping company: voyage report data,
sensor data, automatic identification system (AIS) data, ship mechanical
data, ship maintenance data, and meteorological data. Haranen et al.
(2016) and Yan et al. (2021) categorize ship fuel efficiency models as
three classes: white-box models (WBMs), black-box models (BBMs), and
grey-box models (GBMs), and discuss the advantages and disadvantages
of each model class and the importance of selecting specific models.

The systematic review of Yan et al. (2021) summarizes the existing
research efforts of data collection and ship fuel efficiency analysis with
varieties of models, especially machine learning (ML) models. However,
few of them consider the complementary roles of different data sources.
For instance, the quality of voyage report data about snapshotted
weather and sea conditions is questionable, but this might be remedied
by the publicly accessible meteorological data, such as the data of wind,
waves, and sea water temperature from European Centre for
Medium-range Weather Forecasts (ECMWF) (Hersbach et al., 2018), and
the data of sea currents from Copernicus Marine Service (CMEMS) (Rio
et al., 2014). Meanwhile, through AIS data, we can access the sailing
trajectory of a ship over a day and the data about the positions of the ship
might help us to find more accurate weather and sea condition data from
meteorological data. As another example, sensor data provides
high-quality information on a ship's sailing profile including wind con-
ditions, but the information of waves, sea water temperature, and sea
currents is often absent. This may be complemented by the detailed
2

meteorological data that is publicly accessible.
Therefore, the following research questions (RQs) could be asked by

both academics and industry professionals:

� RQ1. Is it possible to combine/fuse different but complementary data
sources for the sake of modeling accuracy for ship fuel efficiency
analysis? And how these data sources can be fused?

� RQ2. Compared to a single data source, what are the benefits of
fusing different data sources in terms of modeling accuracy and
generalization?

� RQ3. Selection of datasets and choice of models are two different
decision dimensions but they rely on each other. When these two
decisions are interwoven, how can we select the best datasets and best
models?

The rest of the paper is organized as follows. Section 2 reviews the
relevant literature and clarifies the research gaps. Section 3 outlines our
research efforts, contributions, and boundary. Section 4 introduces the
rationale and solution to fuse voyage report data and meteorological
data, and the resultant datasets. Section 5 describes the technical details
of eleven ML models for ship fuel efficiency modeling. Section 6 selects
the best datasets and evaluates the fit and generalization performances of
ML models through experiments with eight containerships. Finally,
conclusions are drawn in Section 7.

2. Literature review and research gaps

2.1. Literature review

Our studies focus on accurately modeling the relationship between
ship fuel consumption rate (MT/h or MT/day) and several determinants,
including sailing speed, draft/displacement, trim, weather conditions,
and sea conditions, by using machine learning models. In this regard, Yan
et al. (2021) conduct a systematic literature review for academic papers
and technical reports published from 2008 (one year before the imple-
mentation of IMO EEOI) to 2021. In this taxonomy, machine learning
models represent one of the two types of BBMs, in parallel with statistical
BBMs. To avoid duplicating the systematic review of Yan et al. (2021), we
will only have a quick review about the BBM literature that involves two
or more data sources, because our studies are addressing the research
questions about the benefits of fusing several data sources and using
machine learning models.

Bocchetti et al. (2015) collect the data of a cruise ship from voyage
report (a.k.a. noon report) and onboard sensors about ship maintenance
and operations and sea and weather conditions, and develop a multiple
linear regression (MLR) model. Their research purpose is to predict the
fuel consumption of this cruise ship in a voyage, rather than that in a day
or hour. Meanwhile, a systematic query is absent to how to select the best
dataset by considering all the possible datasets that can be produced by
voyage report and sensor data.

Adland et al. (2018) consider voyage report and hull maintenance
data of a fleet of eight sister Aframax crude oil tankers, and perform a
MLR analysis on fuel consumption rate. Their research purpose is to
assess the impact of hull cleaning on ship fuel efficiency and thus they
combine the voyage reports of eight ships together. This is different from
our studies that aim to build ship-specific fuel efficiency models for the
applications of daily marine operations at sea, relying on daily opera-
tional data sources including voyage reports, sensor data, AIS data, and
meteorological data.

As far as we know, the study of Lee et al. (2018) is the first attempt to
combine two daily operational data sources at sea for ship fuel con-
sumption rate estimation. They fuse the data about voyages and meteo-
rological data from CMEMS and develop a data mining algorithm that
mines the impact of wind on ship fuel consumption rate. However, the
adopted data about voyages is not voyage report data but “voyage ab-
stract data” in which there is only one data entry for each voyage. This
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limitation on data availability makes the authors rely on a polynomial
regression model of ship fuel efficiency proposed by Yao et al. (2012).

Gkerekos et al. (2019) utilize voyage report data and the data from an
automated data logging&monitoring (ADLM) system. The data from the
ADLM system is sensor based but its sampling frequency, hourly, is lower
than traditional sensor data which generally has a data entry about every
10–15 min. Meanwhile, they regard voyage report and ADLM data as two
independent data sources and their purpose is to compare the perfor-
mance of machine learning models on these two different data sources.
The possibility of fusing different data sources is not discussed.

Man et al. (2020) make pioneering efforts to fuse different data
sources by considering five ferries and collecting their sensor data, AIS
data, meteorological data, and the captains’ log on the estimated time of
arrival (ETA) and summarized fuel consumption in each journey. Though
four data sources are mentioned, their studymainly combines sensor data
and meteorological data. Their AIS data from a Swedish company is not
reliable to track the ship probably because the voyages of ferries between
Gothenburg and Kiel are rather short compared to commercial cargo
ships at open sea. This paralyzes the main advantage of AIS data and
makes them approach a linear interpolation method to calculate the
sailing trajectories of these ferries. Six datasets are produced after data
fusion and tested with a multi-layer perceptron model and a
self-organizing map model. The prediction target of their machine
learning models is ship fuel consumption in a journey, rather than fuel
consumption rate, which is different from our studies and from most
studies reviewed by Yan et al. (2021). Their data structure and the nature
of short sea sailing of the five ferries under investigation could challenge
the applicability of their data fusion plans and experimental findings to
the shipping practice of cargo ships such as containerships and oil
tankers.

Farag and €Olçer (2020) adopt an artificial neural network (ANN)
model to estimate a tanker ship's brake power based on serval de-
terminants such as sailing speed and weather and sea conditions. They
utilize a dataset provided by NAPA Group that is extracted from the ship's
automatic continuous monitoring system (ACMS), AIS data, and meteo-
rological data, but NAPA hides the details on how these data sources are
combined.

Uyanık et al. (2020) combine voyage report and sensor data and
populate 75 variables/features into their machine learning models. This
is appropriate because their research purpose is to monitor engine per-
formance and their models will be used by engine rooms. This is signif-
icantly different from our studies that target ship fuel efficiency models
to be used by deck officers and captains for their daily sailing planning.
2.2. Research gaps

Contrasting the research questions proposed in Section 1 with liter-
ature review conducted in Section 2.1, we can easily see the following
research gaps posed by existing literature:

� Existing studies of ship fuel efficiency analyses that combine/fuse
multiple data sources and explore their complementary roles are rare.

� Among these rare studies, only Lee et al. (2018), Man et al. (2020),
and Uyanık et al. (2020) propose clear data fusion solutions and fuel
efficiency models/algorithms from the perspective of a ship's daily
sailing operation.

� To address the industry frustrations in speed optimization, trim
optimization, water routing, and virtual arrival policy, a reliable
model is needed to accurately estimate a ship's bunker fuel con-
sumption rate (MT/day, MT/h) based on several determinants
outside of a ship's engine (sailing speed, draft/displacement, trim,
weather conditions, and sea conditions). None of Lee et al. (2018),
Man et al. (2020), and Uyanık et al. (2020) achieve this, not to
mention a systematic research effort to construct promising fused
datasets from voyage report, AIS data, sensor data, and
3

meteorological data and to select the best datasets according to the fit
and generalization performances of multiple machine learning
models.

3. Research efforts, contributions, and scope/boundary

To address the research questions and gaps identified and build
reliable fuel consumption rate forecast models that can be used in energy-
efficient operational measures (speed optimization, trim optimization,
water routing, and virtual arrival policy), we approached different in-
dustry stakeholders and collected/purchased all the four most relevant
data sources that a shipping company can access, for eight modern mega
containerships in different sizes: voyage report data, sensor data, AIS
data, and meteorological data.

Then we analyzed the data structure of these data sources and pro-
posed the following three possible data fusion/combination solutions, by
discussing with a global shipping company, envisaging the possible in-
dustry application scenarios, and considering the endogeneity issue
pointed by Yan et al. (2021):

� Data fusion solution 1 (DFS1): voyage report data þ meteorological
data.

� Data fusion solution 2 (DFS2): voyage report data þ meteorological
data þ AIS data.

� Data fusion solution 3 (DFS3): sensor data þ meteorological data.

Readers might wonder whether it is possible to propose other data
fusion solutions, such as the fusion of meteorological data and AIS data,
or the fusion of sensor data, AIS data, and meteorological data. First, it is
not sensible to only fuse meteorological data and AIS data because
neither of these two data sources contains the information about the
ship's bunker fuel consumption, actual drafts, and trim settings, which
are essential for ship fuel efficiency analysis. Second, DFS3 is proposed
driven by the rationale that sensor data has incomplete information
about weather and sea conditions. For instance, the sensor data we
collected only contains the information about wind conditions, while the
information about waves, sea currents, and sea water temperature is
absent. However, it will bring no additional benefits if AIS data is further
fused into DFS3, because sensor data already possesses the detailed in-
formation about the ship's geographical positions and AIS data does not
provide any additional information to sensor data that is useful for ship
fuel efficiency analysis.

For each data fusion solution, we constructed all the possible datasets
by taking into account the industry applications and the impact of
endogeneity on feature/variable selection. Then we tested the fit and
generalization performances of machine learning models widely adopted
in literature over these possible datasets. When the decisions of dataset
selection and model choice are interwoven, we adopted a voting scheme
to enable machine learning models to vote for best datasets.

Experiments with these industry data and machine learning models
revealed many useful insights into the benefits of fusing these different
data sources, selection of the best datasets, and choice of the best ma-
chine learning models. Using the same ships, it also allowed us to
compare the benefits of different data sources and compare the benefits
of different data fusion solutions.

We will report the research towards data fusion solution (DFS1) with
voyage report data and metrological data in this paper, and research find-
ings towards the other two data fusion solutions (DFS2, DFS3) in another
two following papers. For the first time, this series of three studies
provide industry professionalswith clear answers toRQ1 toRQ3with
extensive and intensive experimental evidence from different sizes of
mega containerships. These studies lay a solid theoretical foundation
to accurately quantify a ship's fuel consumption rate in the energy-
efficient operational measures being promoted by IMO, including
sailing speed optimization, trim optimization, route selection
(weather routing), and the virtual arrival policy.



Table 1
Particulars of eight ships used for experiments.

Ship Year
built

Capacity
(TEU)

Size
(length �
beam)

Draft recorded:
Avg/Max (m)

Speed recorded:
Avg/Max
(knots)

S1 2013 14,000 398 m �
51 m

13.5/25.1 13.9/23.3

S2 2013 14,000 398 m �
51 m

14.1/21.5 13.8/23.3

S3 2012 11,000 347 m �
45 m

13.7/23.8 12.7/23.6

S4 2012 11,000 347 m �
45 m

12.1/15.7 12.9/24.4

S5 2013 9,200 328 m �
45 m

11.7/19.3 12.4/24.0

S6 2014 9,200 328 m �
45 m

12.6/23.5 12.8/22.3

S7 2013 9,200 328 m �
45 m

12.4/17.4 12.3/23.1

S8 2013 8,100 320 m �
46 m

12.0/22.3 12.4/23.9

Source: FleetMon.com. Accessed on 8 February 2022.

Fig. 1. Illustration of wind/wave/sea current directions. Source: Meng
et al. (2017).
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To avoid possible confusions, we define our research scope/boundary
as follows.

(a) We only consider the fuel consumption of the main engine (M/E)
of a ship, but will not consider its auxiliary engines and boilers.

(b) For the purpose of applications of models to sailing speed opti-
mization, trim optimization, route optimization, and the virtual
arrival policy, our studies only adopt the features outside of a
ship's mechanical system (engine and propulsion) as the input
variables of a model, including sailing speed, draft/displacement,
trim, and factors about weather and sea conditions. We will not
consider the technical features regarding engine and propellor
performance such as engine RPM, engine power, shaft power, and
propellor pitch. See the discussion of Yan et al. (2021) on the
endogeneity issue and application scenarios of different types of
models.

(c) The output/dependent variable of our model, i.e., the prediction
target, is the fuel consumption rate in terms of MT/day (or
equivalently MT/h), rather than fuel consumption in a voyage or
journey in term of MT or specific fuel oil consumption (SFOC) in
terms of g/kWh.

(d) Accordingly, only data sources relevant to a ship's voyage man-
agement and sailing behaviours will be utilized, including voyage
report data, sensor data, AIS data, and meteorological data. Other
data sources discussed by Yan et al. (2021) and ship fuel efficiency
models based on those sources are not relevant to energy-efficient
operational measures for voyage management (speed optimiza-
tion, trim optimization, route selection/weather routing, virtual
arrival policy).

(e) We only test the machine learning models, especially those widely
adopted in literature. We will not consider WBMs, statistical BBMs
or GBMs that are discussed in Yan et al. (2021). See Yan et al.
(2021) for a detailed discussion about the pros and cons of each
type of models.

4. Fusion of voyage report data and meteorological data

4.1. Voyage report data, meteorological data, and rationale of data fusion

Voyage report of a ship is a summary of the daily sailing situation
submitted by the captain to the onshore officers so that the onshore of-
ficers can understand the ship's real sailing conditions. Usually, the
captain will report the data at noon every day, and thus voyage report
data is also called noon report data. Ship voyage reports are usually filled
out manually by the crew based on the readings of the instruments on
board or eye inspection with personal experience. Voyage report data
includes many sailing features of the ship, such as displacement, draft,
trim, speed, true course, geographic location, Greenwich Mean Time, the
fuel consumptions of the main engine, auxiliary engines, and boilers,
weather conditions, and sea conditions.

Voyage report data of eight mega containerships is provided by a
global container shipping company, and the particulars of these eight
containerships can be seen in Table 1. The sailing period recorded by the
data spans from February 2014 to March 2016. A data preprocessing
procedure that removes invalid data entries was employed to ensure the
quality of datasets. Particularly, the data entries with N/A values, speeds
below 12 knots or above 30 knots, sailing time less than 10 h, or ship
status being not “sailing at sea” were all deleted in data preprocessing.
For the sailings of about two years, after preprocessing, ships S1 to S8
have 320, 296, 389, 380, 329, 402, 407 and 440 data entries, respec-
tively, in their voyage reports.

Motivated by the study of Du et al. (2019), this study selects the fuel
consumption rate of the main engine (ton/day) in the voyage report as
the output variable (target) of the ship fuel efficiency model. The inpu-
t/independent variables (features) of the model include displacement
(MT) (equivalent to draft (m)), trim (m), sailing speed (knots), sea water
4

temperature (�C), wind direction, wind force (Beaufort scale number),
wave (swell) direction, wave (swell) height (m), sea current direction,
and sea current speed (knots). The directions of wind, waves, and sea
currents in the voyage report are recorded by the crew as fuzzy numbers
denoting their approximate directions relative to the ship's heading,
which are illustrated in Fig. 1. For readers who are interested in the
distributions of our voyage report data entries over these important
features, see Fig. 2 for ships S5 and S8 as examples.

Yan et al. (2021) point out that weather and sea conditions recorded
by voyage report are snapshotted information by the deck officer. For
instance, the wind speed/force and direction in a voyage report data
entry are from the deck officer's one read of their anemometer, and the
time of the deck officer's reading the anemometer can be random on the
given day. Apart from the snapshotting method, our conversation with
industry collaborators show that wave and sea current conditions
recorded in voyage report depend highly on the deck officer's eye in-
spection and personal experience. These issues could all erode the data
quality of voyage report on weather and sea conditions.

To remedy the data quality issue of voyage report on weather and sea
conditions, our industry collaborators suggested us approaching some
publicly accessible meteorological data sources to retrieve more reliable
data of weather and sea conditions. Our research shows that ECMWF
provides the finest data for wind, waves, and sea water temperature in
the granularity of 0.25� (longitude)� 0.25� (latitude)� 1 h (time), while
CMEMS (a.k.a. “Copernicus”) provides the finest data for sea currents in
the granularity of 0.25� (longitude)� 0.25� (latitude)� 3 h (time). These
data sources are also adopted byWindy.comwhich is widely used by deck
officers around the world for manual voyage planning.

http://FleetMon.com


Fig. 2. Distribution of the voyage report data entries of ships S5 and S8.
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ECMWF data on 12 variables/parameters is retrieved, including
“Significant height of combined wind waves and swell” (paramId: 140229),
“Mean wave direction” (paramId: 140230), “Mean wave period” (paramId:
140232), “Significant height of wind waves” (paramId: 140234), “Mean
direction of wind waves” (paramId: 140235), “Mean period of wind waves”
(paramId: 140236), “Significant height of total swell” (paramId: 140237),
“Mean direction of total swell” (paramId: 140238), “Mean period of total
swell” (paramId: 140239), “10 m U wind component” (paramId: 165), “10
m V wind component” (paramId: 166), “Sea surface temperature” (paramId:
34). Note that waves consist of two components: swells and wind waves,
and ECMWF provides the information about swells, wind waves, and the
combinedwaves calculated from these two components. 3-hourly data on
5

sea currents is retrieved from CMEMS (Copernicus), involving two vari-
ables: eastward_sea_water_velocity and northward_sea_water_velocity.
4.2. Approach of fusing voyage report data and meteorological data

The first key step of fusing voyage report data and meteorological
data is to estimate the sailing trajectory (hourly geographical positions)
of the ship in a day. This estimation can be performed with the well-
known great circle route. In the actual voyage of a ship, the great circle
route is the shortest economic route in terms of distance. However,
following the great circle route often requires the deck team to constantly
change the course of the ship. Therefore, to facilitate navigation, the



Fig. 2. (continued).
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great circle route is usually divided into several segments and then the
ship sails along the rhumb line (or loxodrome) on each segment (Weintrit
and Kopacz, 2011). Based on this, the latitude and longitude of each
position the ship passes are calculated according to the rhumb line for-
mulas (Bennett, 1996) shown below:

S¼V � h (1)

Δφ¼ S � cosC! (2)

φ2 ¼φ1 þ Δφ (3)
6

φm ¼
φ1 þ φ2

2
(4)

Δλ¼ S � sinC!� sec φm (5)

λ2 ¼ λ1 þ Δλ (6)

t2 ¼ t1 þ h (7)

In these formulas, S is the sailing distance (n mile); V is the sailing
speed (knots) reported by the voyage report; h is the sailing time (h); Δφ



Table 2
Conversion of relative wind/wave/sea current direction data from precise values
to fuzzy values.

Relative wind/wave direction angle
(precise value)

Approximate wind/wave direction
(fuzzy value)

0�–30� E
30�–60� D/F
60�–120� C/G
120�–150� B/H
150�–180� A

X. Li et al. Communications in Transportation Research 2 (2022) 100074
is the latitude difference (�); C
!

is the ship's course (�) reported by the
voyage report since the rhumb line approach adopts a constant course for
the ship, which should be converted to the range of 0�

–90�, from north
and south (e.g., courses 150� and 300� should be converted to 30� and
60� respectively.); φ1 and φ2 are the latitudes of the departure and arrival
positions, respectively (�); φm is the average latitude between them (�); λ1
and λ2 are the longitudes of the departure and arrival positions, respec-
tively (�); Δλ is the longitude difference (�); t1 and t2 are the times of
departure and arrival, respectively.

Second, the weather and sea conditions at each hourly position can be
retrieved from ECMWF data on 12 variables and CMEMS (Copernicus)
data on 2 variables. The wind/waves/sea currents direction obtained
from meteorological data is the absolute direction. To obtain the direc-
tional information of wind/waves/sea currents relative to the bow of the
ship, the “true course” information from the voyage report is used. Due to
the symmetric structure of the ship, the relative wind/wave direction is
between 0� and 180�. 0� represents the wind/waves/sea currents coming
to the bow, and 180� represents the wind/waves/sea currents coming to
the stern.

Due to the nature of voyage report data, it usually contains only one
data entry per day. For a specific day (corresponding to a specific data
entry of voyage report), meteorological data is used for the purpose of
correcting the possibly inaccurate information of weather and sea con-
ditions contained in this voyage report data entry. Therefore, it is
necessary to average the weather/sea conditions along hourly
geographical positions traveled through by the ship, and to use this daily
average as the substitute for weather/sea condition information in this
data entry corresponding to this specific day. The average method used is
as follows:

W ¼ 1
M

XM
i¼1

Wi (8)

where W is the daily average weather/sea condition data; M ¼ 24 is the
number of hourly weather/sea condition data entries per day; Wi is the
hourly weather/sea condition data. Note that the averaging method is
widely adopted by meteorological services such as ECMWF to conduct
data conversions between different granularities of longitude � latitude
� time.
Fig. 3. Approach of fusing voyage rep
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The whole process of fusing voyage report data and meteorological
data is illustrated in Fig. 3. Until now, all the information derived from
meteorological data about weather and sea conditions is in the form the
precise values. Specifically, the relative directions of wind/waves/sea
currents are represented as the degrees relative to the ship's bow, and
wind speed is in the unit of m/s. However, voyage reports use fuzzy
values for these data. For the convenience of comparison experiments
between precise values and fuzzy values, Tables 2 and 3 can convert
precise values of weather and sea conditions to fuzzy values.

We generate nine possible datasets using voyage report data and
meteorological data, by considering the target application scenarios in
energy-efficient operational measures for voyage management, the
endogeneity issue discussed by Yan et al. (2021), the fact that waves
consist of swells and wind waves, and the experimental choice of using
precise or fuzzy values for weather and sea conditions. See Table 4 for the
details of these nine datasets.

5. Machine learning models

Not aiming to exhaust all the ML models, our studies cover a large
range of widely adopted ML models , including decision tree-based
models, ANN (Haykin, 2008), support vector machine (SVM) (Boser
et al., 1992), ridge regression (Ridge) (Hoerl and Kennard, 1970), and
LASSO (Tibshirani, 1996). Tree-based models include the basic decision
tree (DT) model (Breiman et al., 1984) and models produced by two
ensemble strategies. Extremely randomized trees (ET) (Geurts et al.,
2006) and random forest (RF) (Breiman et al., 2001) are from the bagging
ort data and meteorological data.



Table 3
Wind force scale corresponding to different wind speeds (ISO 15016: 2015(E)).

Wind speed (m/s) - precise value Wind force (Beaufort scale) - fuzzy value

0.0–0.2 0
0.3–1.5 1
1.6–3.3 2
3.4–5.4 3
5.5–7.9 4
8.0–10.7 5
10.8–13.8 6
13.9–17.1 7
17.2–20.7 8
20.8–24.4 9
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ensemble strategy that trains multiple decision trees in parallel and uses
the average of the outputs of multiple decision trees as the prediction.
AdaBoost (AB) (Freund and Schapire, 1997; Drucker, 1997), gradient
tree boosting (GB) (Friedman, 2001), XGBoost (XG) (Chen and Guestrin,
2016), and LightGBM (LB) (Ke et al., 2017) are from the boosting ensemble
strategy that trains decision trees in sequence and improves the perfor-
mance of trees step by step using the information of fitting errors and
Table 4
Features contained in each dataset.

Original datasets Data source Features Dataset

Set1 Set2preciseb

Voyage report
data

Shipping company Fuel consumption
rate

✓ ✓

Sailing speed ✓ ✓

Displacement ✓ ✓

Trim ✓ ✓

Wind speed ✓

Wind direction
(Rel.)

✓

Swell height ✓

Swell direction
(Rel.)

✓

Sea currents
speed

✓

Sea currents
direction (Rel.)

✓

Sea water
temperature

✓

Meteorological
data

European Centre for
Medium-range Weather
Forecasts (ECMWF)

Wind speed ✓

Wind direction
(Rel.)a

✓

Swell height ✓

Swell direction
(Rel.)a

✓

Swell period
Wind wave height
Wind wave
direction (Rel.)a

Wind wave period
Combined wave
height
Combined wave
direction (Rel.)a

Combined wave
period
Sea water
temperature

✓

Copernicus Marine
Service

Sea current speed ✓

Sea current
direction (Rel.)a

✓

Notes.
a Relative directions of wind/waves/sea currents are calculated based on ship's “tru

absent from voyage report data.
b The subscript “precise” means the directions of wind/waves/sea currents are calc
c The subscript “fuzzy” means the precise information of directions of wind/wave

resented by Beaufort scale numbers as per Table 3.
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negative gradients.
Meanwhile, our studies do not aim to find dedicated variants for each

type of ML models based on experiments and thus simply adopt the
typical version of each of the eleven ML models. For instance, for ANN,
we adopt a typical three-layer feedforward structure with the number of
neurons in the hidden layer being the same as the input variables. Model
training algorithms in our studies are implemented using Python 3.7.6.
The XGmodel is developed using the XGBoost 1.2.0 library, the LBmodel
is developed using the LightGBM 2.3.1 library, and the remaining models
are developed using Scikit-learn 0.22.1.

Different ML methods have different requirements for data pre-
processing. The main difference is whether to use data normalization. To
clarify the impact of data normalization on the performances of ML
models, the performances (R2) of ML models before and after data
normalization were compared in a preliminary study. This preliminary
study reveals that the performances of SVM and ANN models after data
normalization are significantly better than those before normalization,
while other models do not see a significant difference. See Fig. A1 in
Appendix. Therefore, our studies use data normalization for SVM and
ANN but not for other models.
Set2fuzzyc Set3preciseb Set3fuzzyc Set4preciseb Set4fuzzyc Set5preciseb Set5fuzzyc

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

e course” information from voyage report data because “heading” information is

ulated as the angles relative to ship's heading measured by degrees.
s/sea currents is converted to fuzzy data as per Table 2, and wind speed is rep-



Table 5
The fit performance of eleven machine learning models for ship S1.

Model Dataset R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)

DT Set1 0.846 0.643 81.022 8.934 6.851 7.995
Set2precise 0.828 0.640 82.878 9.051 6.940 8.279
Set2fuzzy 0.836 0.642 78.921 8.821 6.792 8.085
Set3precise 0.847 0.617 73.848 8.532 6.522 7.697
Set3fuzzy 0.848 0.627 73.402 8.479 6.495 7.662
Set4precise 0.853 0.613 71.091 8.348 6.369 7.558
Set4fuzzy 0.838 0.628 77.915 8.728 6.692 7.953
Set5precise 0.834 0.628 80.418 8.896 6.781 8.033
Set5fuzzy 0.828 0.640 82.894 9.035 6.922 8.213

ET Set1 0.992 0.781 4.001 1.525 1.090 1.255
Set2precise 0.931 0.762 33.569 5.674 4.330 5.239
Set2fuzzy 0.934 0.757 32.173 5.444 4.137 4.981
Set3precise 0.965 0.762 17.043 3.524 2.699 3.245
Set3fuzzy 0.939 0.766 29.313 5.012 3.862 4.698
Set4precise 0.956 0.764 20.951 3.918 2.993 3.612
Set4fuzzy 0.950 0.759 24.199 4.495 3.471 4.198
Set5precise 0.947 0.769 25.433 4.623 3.520 4.237
Set5fuzzy 0.943 0.764 27.454 4.842 3.693 4.442

RF Set1 0.964 0.761 18.837 4.321 3.194 3.721
Set2precise 0.940 0.754 28.914 5.304 3.978 4.747
Set2fuzzy 0.944 0.764 27.225 5.174 3.867 4.607
Set3precise 0.936 0.756 30.736 5.506 4.112 4.911
Set3fuzzy 0.941 0.765 28.610 5.310 3.965 4.721
Set4precise 0.942 0.758 27.841 5.210 3.875 4.612
Set4fuzzy 0.935 0.763 31.277 5.535 4.138 4.929
Set5precise 0.940 0.760 29.131 5.331 3.971 4.713
Set5fuzzy 0.938 0.765 30.079 5.418 4.035 4.804

AB Set1 0.955 0.758 23.482 4.687 4.036 4.940
Set2precise 0.931 0.753 33.603 5.671 4.810 5.910
Set2fuzzy 0.942 0.756 28.226 5.008 4.124 5.025
Set3precise 0.938 0.752 29.988 5.180 4.370 5.371
Set3fuzzy 0.926 0.752 36.202 5.814 4.843 5.928
Set4precise 0.942 0.749 28.430 5.117 4.333 5.324
Set4fuzzy 0.940 0.753 29.483 5.111 4.246 5.189
Set5precise 0.953 0.759 22.810 4.475 3.728 4.565
Set5fuzzy 0.952 0.763 23.416 4.491 3.657 4.450

GB Set1 0.987 0.764 6.570 2.238 1.633 1.893
Set2precise 0.942 0.725 27.933 4.962 3.778 4.485
Set2fuzzy 0.943 0.750 27.623 5.067 3.856 4.569
Set3precise 0.962 0.743 18.367 3.776 2.825 3.330
Set3fuzzy 0.963 0.753 18.109 3.775 2.839 3.361
Set4precise 0.951 0.730 23.216 4.268 3.205 3.816
Set4fuzzy 0.960 0.743 19.340 4.084 3.115 3.716
Set5precise 0.946 0.741 26.335 4.731 3.567 4.221
Set5fuzzy 0.953 0.761 22.634 4.487 3.474 4.054

XG Set1 0.995 0.771 2.805 1.392 1.008 1.168
Set2precise 0.959 0.740 19.763 4.102 3.055 3.544
Set2fuzzy 0.958 0.742 20.247 3.983 3.016 3.505
Set3precise 0.953 0.734 22.403 4.236 3.177 3.695
Set3fuzzy 0.947 0.747 25.851 4.557 3.419 3.985
Set4precise 0.956 0.734 21.189 3.938 2.921 3.407
Set4fuzzy 0.947 0.742 25.472 4.665 3.576 4.195
Set5precise 0.950 0.743 24.275 4.412 3.404 3.978
Set5fuzzy 0.944 0.756 26.767 4.732 3.619 4.196

LB Set1 0.989 0.755 5.857 2.183 1.652 1.924
Set2precise 0.942 0.722 28.076 4.938 3.764 4.463
Set2fuzzy 0.927 0.732 34.990 5.685 4.376 5.161
Set3precise 0.943 0.723 27.467 4.806 3.609 4.272
Set3fuzzy 0.945 0.728 26.553 4.756 3.628 4.271
Set4precise 0.937 0.723 30.701 5.313 4.035 4.803
Set4fuzzy 0.940 0.720 28.687 5.168 3.921 4.654
Set5precise 0.937 0.738 30.654 5.365 3.983 4.713
Set5fuzzy 0.931 0.741 33.492 5.687 4.279 5.080

SVM Set1 0.861 0.784 73.082 8.540 6.365 7.156
Set2precise 0.861 0.792 66.834 8.149 6.039 6.934
Set2fuzzy 0.858 0.779 68.637 8.253 6.125 7.051
Set3precise 0.858 0.786 68.382 8.263 6.143 7.059
Set3fuzzy 0.854 0.782 70.155 8.367 6.227 7.172
Set4precise 0.859 0.789 68.027 8.237 6.119 7.043
Set4fuzzy 0.854 0.779 70.517 8.384 6.239 7.201
Set5precise 0.859 0.795 68.012 8.240 6.139 7.042
Set5fuzzy 0.857 0.791 68.653 8.279 6.145 7.050

Table 5 (continued )

Model Dataset R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)

ANN Set1 0.869 0.781 68.911 8.290 6.391 7.296
Set2precise 0.829 0.744 83.006 8.767 6.810 8.060
Set2fuzzy 0.855 0.772 70.144 8.315 6.429 7.503
Set3precise 0.854 0.778 70.184 8.366 6.437 7.518
Set3fuzzy 0.846 0.780 73.937 8.593 6.608 7.710
Set4precise 0.832 0.751 80.837 8.611 6.638 7.968
Set4fuzzy 0.868 0.768 64.080 7.921 6.128 7.159
Set5precise 0.857 0.777 68.894 8.256 6.373 7.439
Set5fuzzy 0.826 0.755 83.604 8.970 6.959 8.300

Ridge Set1 0.814 0.774 97.422 9.868 7.725 8.932
Set2precise 0.825 0.782 84.128 9.170 7.087 8.291
Set2fuzzy 0.824 0.778 84.830 9.208 7.104 8.321
Set3precise 0.830 0.784 81.939 9.050 6.993 8.192
Set3fuzzy 0.829 0.784 82.300 9.070 6.989 8.183
Set4precise 0.827 0.782 83.165 9.117 7.029 8.213
Set4fuzzy 0.826 0.779 83.945 9.160 7.068 8.272
Set5precise 0.827 0.785 83.282 9.124 7.022 8.215
Set5fuzzy 0.827 0.784 83.482 9.135 7.014 8.202

LASSO Set1 0.814 0.773 97.552 9.875 7.711 8.917
Set2precise 0.825 0.781 84.185 9.173 7.100 8.309
Set2fuzzy 0.823 0.777 85.087 9.222 7.120 8.339
Set3precise 0.829 0.786 82.204 9.064 6.997 8.191
Set3fuzzy 0.828 0.785 82.832 9.099 7.002 8.184
Set4precise 0.827 0.785 83.345 9.127 7.044 8.235
Set4fuzzy 0.825 0.779 84.165 9.172 7.079 8.289
Set5precise 0.827 0.784 83.329 9.126 7.040 8.242
Set5fuzzy 0.826 0.783 83.567 9.139 7.031 8.226

X. Li et al. Communications in Transportation Research 2 (2022) 100074

9

In ML, some parameters’ values need to be set prior to the learning
process because they determine the structure of a ML model. These pa-
rameters are termed as hyperparameters. To maximize the performance of
ML models, in the implementation of the above eleven ML models, it is
necessary to adjust the corresponding hyperparameters according to the
training dataset. Table A1 in Appendix lists the hyperparameters that
need to be optimized for the eleven ML models. When experimenting
with optimization approaches for hyperparameter optimization, the
Bayesian Optimization (BO) method was identified as the best. In a
preliminary study, we further experimented with the BO method based
on tree-structured Parzen Estimators of hyperopt 0.2.2 library (Hyperopt)
(Bergstra et al., 2013), the BO method based on extra trees regressor of
scikit-optimize 0.7.4 library (Skopt), and the multi-step grid search
method of scikit-learn 0.22.1 library (Msgs). Showing superior accuracy
and least time consumption, Hyperopt was finally selected as the method
of optimizing model hyperparameters. See Fig. 2A in Appendix.

Performance metrics that gauge the fit performances of ML models
are defined in the following over the training set. The R2 value over the
test set, referred to as R2 (test), is used to measure the generalization
performance of a ML model.

R2 ¼ 1�
Pk
t¼1

�
yt � yt

�2

Pk
t¼1

ðyt � yÞ2
(9)

MSE¼ 1
k

Xk

t¼1

�
yt � yt

�2

(10)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Xk

t¼1

�
yt � yt

�2
vuut (11)

MAE¼ 1
k

Xk

t¼1

����yt � yt

���� (12)



Table 6
Best performance of each machine learning model from nine datasets and the
datasets that achieve the best performance. R2 (with two decimal places) is
considered as the first priority, and R2 (test) (with two decimal places) is the
secondary performance metric.

Ship Model Best
R2

Best R2

(test)
Datasets

S1 DT 0.85 0.64 Set1
ET 0.99 0.78 Set1
RF 0.96 0.76 Set1
AB 0.96 0.76 Set1
GB 0.99 0.76 Set1
XG 1.00 0.77 Set1
LB 0.99 0.76 Set1
SVM 0.86 0.80 Set5precise
ANN 0.87 0.78 Set1
Ridge 0.83 0.79 Set5precise
LASSO 0.83 0.79 Set3precise, Set3fuzzy, Set4precise,

S2 DT 0.87 0.61 Set2fuzzy
ET 0.98 0.76 Set4precise,
RF 0.96 0.77 Set1
AB 0.98 0.74 Set4precise,
GB 0.99 0.76 Set3precise, Set3fuzzy, Set4precise, Set4fuzzy
XG 0.99 0.77 Set3precise
LB 0.98 0.75 Set3precise
SVM 0.87 0.81 Set2precise, Set4precise, Set4fuzzy
ANN 0.91 0.80 Set2precise, Set4precise, Set5precise
Ridge 0.83 0.80 Set3precise, Set4precise
LASSO 0.82 0.80 Set2precise, Set3precise, Set3fuzzy, Set4precise,

Set4fuzzy,
Set5precise, Set5fuzzy

S3 DT 0.87 0.7 Set5precise
ET 0.99 0.82 Set3precise, Set3fuzzy, Set5fuzzy
RF 0.96 0.81 Set2precise, Set5precise, Set5fuzzy,
AB 1.00 0.81 Set4precise
GB 0.98 0.82 Set5precise
XG 0.96 0.81 Set3precise, Set3fuzzy
LB 0.96 0.81 Set5precise
SVM 0.85 0.82 Set3fuzzy
ANN 0.87 0.81 Set2precise, Set5precise
Ridge 0.80 0.80 Set3precise, Set3fuzzy, Set4precise, Set4fuzzy,

Set5precise
LASSO 0.80 0.80 Set3precise, Set3fuzzy, Set4precise, Set4fuzzy,

Set5precise
S4 DT 0.93 0.77 Set4fuzzy

ET 1.00 0.88 Set5precise
RF 0.98 0.86 Set2precise, Set4fuzzy, Set5precise, Set5fuzzy
AB 0.99 0.87 Set3precise, Set3fuzzy
GB 0.99 0.87 Set3precise, Set3fuzzy, Set4precise, Set4fuzzy,

Set5precise, Set5fuzzy
XG 1.00 0.87 Set3precise
LB 0.99 0.87 Set5precise, Set5fuzzy
SVM 0.92 0.86 Set3precise, Set4precise, Set5precise, Set5fuzzy
ANN 0.95 0.86 Set3precise, Set3fuzzy
Ridge 0.83 0.82 Set1
LASSO 0.83 0.81 Set3precise, Set3fuzzy, Set4precise, Set4fuzzy,

Set5precise, Set5fuzzy
S5 DT 0.95 0.8 Set3fuzzy

ET 1.00 0.90 Set1
RF 0.98 0.88 Set1, Set2fuzzy, Set3fuzzy, Set4fuzzy, Set5precise,

Set5fuzzy
AB 1.00 0.89 Set3precise, Set4fuzzy, Set5precise, Set5fuzzy
GB 1.00 0.89 Set2precise, Set4precise, Set4fuzzy, Set5precise
XG 0.99 0.89 Set1, Set3fuzzy, Set5fuzzy
LB 0.99 0.88 Set1, Set3fuzzy, Set5fuzzy
SVM 0.93 0.88 Set1
ANN 0.94 0.88 Set2precise, Set3precise, Set4precise
Ridge 0.89 0.88 Set5fuzzy
LASSO 0.89 0.87 Set3precise, Set3fuzzy, Set4precise, Set4fuzzy,

Set5precise
S6 DT 0.85 0.53 Set4precise

ET 0.99 0.77 Set1
RF 0.96 0.77 Set1
AB 0.98 0.76 Set3precise
GB 0.97 0.79 Set1
XG 0.97 0.79 Set1
LB 0.96 0.75 Set3precise, Set5precise, Set5fuzzy

Table 6 (continued )

Ship Model Best
R2

Best R2

(test)
Datasets

SVM 0.85 0.77 Set2precise
ANN 0.88 0.76 Set5precise,
Ridge 0.78 0.75 Set3precise
LASSO 0.77 0.75 Set3fuzzy

S7 DT 0.88 0.69 Set5precise,
ET 0.99 0.81 Set3precise
RF 0.97 0.80 Set5precise, Set5fuzzy
AB 0.99 0.78 Set4fuzzy, Set5fuzzy
GB 0.99 0.79 Set3precise
XG 0.99 0.78 Set3precise
LB 0.98 0.79 Set3precise, Set5fuzzy
SVM 0.91 0.79 Set1
ANN 0.90 0.77 Set2precise, Set4precise,
Ridge 0.82 0.76 Set2precise, Set2fuzzy, Set3precise, Set3fuzzy,

Set4precise, Set4fuzzy, Set5precise, Set5fuzzy
LASSO 0.82 0.76 Set2precise, Set2fuzzy, Set3precise, Set3fuzzy,

Set4precise, Set4fuzzy, Set5precise, Set5fuzzy
S8 DT 0.92 0.77 Set1, Set3precise

ET 1.00 0.88 Set1, Set3precise, Set5precise, Set5fuzzy
RF 0.98 0.86 Set1, Set3precise, Set5precise, Set5fuzzy
AB 1.00 0.87 Set5fuzzy
GB 1.00 0.86 Set3fuzzy
XG 1.00 0.85 Set3fuzzy
LB 0.98 0.87 Set1
SVM 0.91 0.87 Set3precise, Set4precise, Set5precise
ANN 0.92 0.86 Set3precise, Set4precise, Set5precise
Ridge 0.88 0.86 Set5precise
LASSO 0.88 0.85 Set3precise, Set4precise, Set5precise
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t¼1
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where yt is the target value – actual ship fuel consumption rate (ton/day);
yt is the predicted output value - predicted ship fuel consumption (ton/
day); y is the average of target values – average of actual ship fuel con-
sumption rate (ton/day); k is the number of samples in the data set.

6. Experimental results and discussion

6.1. Performances of eleven ML models over nine datasets and selection of
the best datasets

To evaluate the model performance as comprehensively as possible,
each of nine datasets of each ship (for instance, Set1 of ship S1) is
randomly divided into two subsets, where the training set contains 80%
of the data entries, and the test set contains 20% of the data entries. The
training set is used for model hyperparameter optimization and model
fitting, and the test set is used to assess the generalization performance of
the model. On the training set, Hyperopt, a Bayesian optimization
method, is used to optimize model hyperparameters, and the optimiza-
tion objective is to maximize the R2 value of five-fold cross-validation.

To obtain statistical comparison results and ensure the robustness of
the comparison results, the random split of each dataset of each ship (for
instance, Set1 of ship S1) into a training set and a test set is conducted 20
times. For instance, Set1 of ship S1 has 20 different splits of training set
and test set. For each random split, the hyperparameters of the ML model
under investigation are re-optimized and a model with the best hyper-
parameter values is trained. Therefore, 20 random splits of a dataset
necessitate 20 runs of hyperparameter optimization and model training,
resulting in 20 trained models (the same type of ML model with different
hyperparameter values). The average performance of the 20 runs
(trained models) is taken as the final result for model evaluation to
eliminate the impact of disturbance caused by randomness in dataset



Table 7
The performance of eleven machine learning models over dataset Set3precise.

Ship Model R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)
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division/split. The values of performance metrics of eleven ML models
over nine datasets for ship S1 are tabulated in Table 5. As stated above,
the figure in each cell of Table 5 is the average result of 20 runs corre-
sponding to 20 random splits of the dataset. For instance, R2 of the model
DT over the dataset Set1, 0.846, is the average of 20 R2 values
Fig. 4. Best datasets voted by machine learning models.

S1 DT 0.847 0.617 73.848 8.532 6.522 7.697
ET 0.965 0.762 17.043 3.524 2.699 3.245
RF 0.936 0.756 30.736 5.506 4.112 4.911
AB 0.938 0.752 29.988 5.180 4.370 5.371
GB 0.962 0.743 18.367 3.776 2.825 3.330
XG 0.953 0.734 22.403 4.236 3.177 3.695
LB 0.943 0.723 27.467 4.806 3.609 4.272
SVM 0.858 0.786 68.382 8.263 6.143 7.059
ANN 0.854 0.778 70.184 8.366 6.437 7.518
Ridge 0.830 0.784 81.939 9.050 6.993 8.192
LASSO 0.829 0.786 82.204 9.064 6.997 8.191

S2 DT 0.820 0.589 112.089 10.461 7.916 9.230
ET 0.974 0.765 15.842 3.377 2.445 2.780
RF 0.950 0.740 31.494 5.541 4.007 4.662
AB 0.961 0.743 24.755 4.778 4.073 4.729
GB 0.992 0.760 5.008 1.817 1.234 1.378
XG 0.991 0.765 5.421 1.949 1.186 1.277
LB 0.980 0.748 12.589 3.053 2.179 2.442
SVM 0.864 0.812 84.860 9.176 6.608 7.210
ANN 0.908 0.791 56.693 7.365 5.581 6.171
Ridge 0.826 0.802 108.847 10.429 8.011 9.055
LASSO 0.824 0.796 110.162 10.492 8.034 9.042

S3 DT 0.865 0.684 98.572 9.705 7.042 8.343
ET 0.985 0.821 10.758 2.846 1.716 2.181
RF 0.956 0.802 31.781 5.576 3.587 4.463
AB 0.991 0.812 6.328 2.183 1.712 1.998
GB 0.964 0.819 26.559 4.694 2.836 3.642
XG 0.961 0.810 28.714 5.030 3.052 3.828
LB 0.947 0.804 38.795 5.845 3.853 4.853
SVM 0.844 0.820 113.000 10.591 6.627 8.167
ANN 0.874 0.798 91.583 9.475 6.480 7.992
Ridge 0.801 0.796 144.061 11.987 8.329 10.615
LASSO 0.799 0.796 145.425 12.043 8.323 10.619

S4 DT 0.916 0.746 68.063 8.094 6.036 6.523
ET 0.998 0.872 1.434 0.901 0.627 0.687
RF 0.975 0.853 20.349 4.497 3.331 3.618
AB 0.986 0.865 11.021 3.144 2.591 2.905
GB 0.989 0.866 8.845 2.500 1.838 1.957
XG 0.995 0.869 3.758 1.585 1.140 1.201
LB 0.987 0.855 10.943 2.871 2.200 2.340
SVM 0.921 0.857 63.718 7.972 5.848 6.146
ANN 0.947 0.856 42.555 6.513 5.034 5.502
Ridge 0.833 0.811 135.334 11.629 9.033 9.406
LASSO 0.832 0.809 135.961 11.656 9.053 9.417

S5 DT 0.947 0.785 29.488 5.182 3.764 5.625
ET 0.997 0.892 1.413 0.854 0.619 0.935
RF 0.981 0.874 10.498 3.225 2.390 3.663
AB 0.995 0.886 2.543 1.525 1.209 2.217
GB 0.993 0.887 3.519 1.359 1.021 1.610
XG 0.993 0.878 3.601 1.605 1.133 1.749
LB 0.987 0.873 7.382 2.350 1.758 2.725
SVM 0.916 0.873 46.421 6.785 4.917 7.472
ANN 0.935 0.879 36.157 5.956 4.544 7.075
Ridge 0.889 0.868 61.610 7.846 5.934 9.109
LASSO 0.888 0.868 61.988 7.870 5.953 9.129

S6 DT 0.832 0.576 69.684 8.275 6.119 8.113
ET 0.979 0.752 8.706 2.743 2.010 2.678
RF 0.953 0.740 19.498 4.382 3.173 4.211
AB 0.980 0.755 8.175 2.647 2.186 3.210
GB 0.971 0.770 11.917 3.111 2.384 3.226
XG 0.959 0.771 17.299 3.835 2.890 3.902
LB 0.963 0.754 15.520 3.514 2.682 3.646
SVM 0.843 0.767 65.144 8.045 5.755 7.629
ANN 0.859 0.772 58.184 7.599 5.750 7.603
Ridge 0.775 0.745 93.218 9.652 7.454 9.977
LASSO 0.774 0.744 93.502 9.667 7.443 9.960

S7 DT 0.880 0.683 48.319 6.903 5.173 6.749
ET 0.987 0.805 5.176 1.848 1.259 1.639
RF 0.961 0.794 15.501 3.920 2.867 3.740
AB 0.982 0.777 7.272 2.415 1.888 2.558
GB 0.986 0.785 5.466 2.156 1.442 1.880
XG 0.986 0.784 5.731 2.093 1.424 1.808

(continued on next page)
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Table 7 (continued )

Ship Model R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)

LB 0.982 0.785 7.152 2.366 1.742 2.283
SVM 0.871 0.748 51.533 7.113 5.173 6.591
ANN 0.892 0.771 43.321 6.515 5.071 6.587
Ridge 0.820 0.758 72.381 8.498 6.520 8.315
LASSO 0.819 0.758 72.827 8.524 6.550 8.374

S8 DT 0.916 0.769 50.649 6.985 4.922 5.949
ET 0.995 0.876 2.783 1.404 0.907 1.120
RF 0.976 0.855 14.566 3.798 2.624 3.187
AB 0.991 0.863 5.365 2.114 1.693 2.148
GB 0.985 0.860 9.102 2.427 1.670 2.075
XG 0.979 0.856 12.821 2.974 2.114 2.589
LB 0.976 0.852 14.749 3.261 2.338 2.882
SVM 0.910 0.869 54.154 7.349 5.117 6.123
ANN 0.924 0.862 46.222 6.733 4.964 5.959
Ridge 0.879 0.853 72.818 8.529 6.512 7.959
LASSO 0.878 0.852 73.581 8.573 6.525 7.966
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corresponding to 20 runs of the DTmodel over Set1. The fourth column of
Table 5 (labelled as “R2 (test)”) is the R2 values on the test set. The results
for ships S2 to S8 can be found in Tables A2 to A8 in Appendix.

Onemay have been aware that performance of MLmodels and quality
of datasets are interwoven together and the job of selecting the best
datasets from the results of eleven ML models, nine datasets, and eight
ships (shown in Table 5 and Tables A2 to A8) is overwhelming, not to
mention the possible contrasts of R2 values over the training set versus
Fig. 5. Fit performance of four best models (ET, AB, GB, XG) over
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the test set. To overcome this, we develop a voting scheme to select the
best datasets. In this scheme, every ML model is a voter and votes for the
best datasets, by considering R2 (with two decimal places) as the first
priority and R2 (test) (with two decimal places) as the secondary per-
formance metric. The R2 metric, rather than other metrics such as RMSE
and MAE, is used because the purpose of this voting scheme is to find the
best dataset (combination of independent variables) and R2 measuring
how well the selected independent variables explain the variation in the
dependent variable fits this voting purpose the best. For instance, in
Table 5 for ship S1, the DT model finds the best R2 value with two dec-
imal places at 0.85 which is achieved over datasets Set1, Set3precise,
Set3fuzzy, and Set4precise. Over these four datasets, it finds the best R2 (test)
with two decimal places at 0.64 which is achieved over Set1. Therefore,
the DT model of ship S1 votes for Set1 as the best dataset. Similarly, we
allow other ML models to vote for their best datasets and apply this
voting scheme to all the eight ships. Voting results are shown in Table 6.
The number of votes received by each of nine datasets under investiga-
tion is shown in Fig. 4.

Fig. 4 is the Tally sheet that counts the votes received by each dataset:
Fig. 4(a) considers all models as voters; Fig. 4(b) does not consider DT,
SVM, ANN, Ridge, and LASSO as voters because their fit performances
are significantly worse than ET, RF, AB, GB, XG and LB and thus will not
be preferred by industry applications; Fig. 4(c) further removes RF and
LB from the voter list because they are “dominated” by ET, AB, GB, or XG
against both R2 and R2 (test). For instance, in Table 6, LB is dominated by
ET because neither of R2 and R2 (test) of the LB model is better than the
ET model.

It can be seen from Fig. 4 that Set3precise and Set1 receive the largest
numbers of votes from best models. Set3precise receives 34 votes from all
dataset Set3precise with and without wave period information.



Fig. 6. R2, mean and standard deviation of the models.
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models, 17 votes from ET, RF, AB, GB, XG, and LB, and 13 votes from ET,
AB, GB and XG. Set1 receives 24 votes from all models, 18 votes from ET,
RF, AB, GB, XG, and LB, and 10 votes from ET, AB, GB and XG. Therefore,
it will be wise to choose Set3precise and Set1 as the best datasets: Set3precise
is the best; but the quality of the voyage report data Set1 is also quite
high. The advantage of Set3precise over Set1 reveals the benefits of fusing/
combining voyage report data and meteorological data.
6.2. Performance comparison of ML models

One may have found the performance differences of 11 ML models
from Table 6. To further articulate the performances of these ML models
over all the performance metrics, Table 7 is presented for the ML models
over the best dataset Set3precise.

Tables 6 and 7 both confirm that ET, RF, AB, GB, XG and LB are good
candidate models that can be adopted by the shipping industry: their R2

values over the best datasets are all above 0.96 and even reach the level
of 0.99–1.00, while their R2 performance over test data is in the range
from 0.74 to 0.90. The remaining models, including DT, SVM, ANN,
Ridge, and LASSO, are not recommended for industry applications
because their R2 values are usually below 0.90, while the values of per-
formance metric R2 over test data are not better or even worse than ET,
13
RF, AB, GB, XG and LB.
Further, the fit performances of RF and LB are usually slightly

dominated by ET, AB, GB, and XG, against both R2 and R2 (test), which
makes it safe for industry specialists to only install ET, AB, GB and XG
into their machine learning model arsenal for ship energy efficiency
modeling. Their fit errors on daily bunker fuel consumption, measured by
RMSE and MAE, are usually between 0.5 and 4.0 ton/day, though fit
errors might be over 4.0 ton/day occasionally if datasets are not carefully
chosen.

The experimental results reported in Tables 6 and 7 also rank the
performances of eleven machine learning models into four different tiers.
The performances of the models in the same tier are quite close, while
those of the models in different tiers are significantly different.

� Tier 1: ET, AB, GB, XG, and LB;
� Tier 2: RF;
� Tier 3: DT, SVM, ANN; and
� Tier 4: Ridge, LASSO.
6.3. Impact of wave periods

Wave period measures the time (in seconds) it takes for two
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successive wave crests to pass a specific stationary point. A longer wave
period means it takes more time for the next wave to come and indicates
that stronger energy is contained in the waves traveling faster and deeper
beneath the sea surface (Pecher and Kofoed, 2017). For instance, waves
with a period of 16þ seconds are considered as powerful swells gener-
ated by distance storms. In principle, wave period has an impact on the
resistance against a ship's movement at sea and thus on ship fuel con-
sumption rate. However, none of the nine datasets under investigation so
Fig. 7. The average relative importance of models input variables.

15
far considers the features about wave period. This is because our pre-
liminary experiments found the triviality of wave period's impact on ship
fuel consumption rate and excluding the features about wave period from
consideration has enabled us to reduce the number of datasets experi-
mented with to nine shown in Table 4.

To further assess whether the introduction of wave period informa-
tion could improve the fit performance of ML models, we added the
features about wave periods (“Swell period”, “wind wave period”, and
“Combined wave period” in Table 4) into the best dataset Set3precise, and
re-experimented with four best models (ET, AB, GB, XG) for ships S1, S3,
S5 and S8. Their fit performances over Set3precise with and without wave
period information are shown in Fig. 5.

Fig. 5 indicates that including wave period information into models
will not improve and even slightly reduce the fit performances of models.
This might be explained by the fact that the impact of wave period on a
mega containership's fuel efficiency at sea is negligible and adding it to
models might introduce additional noises associated with its data. In
another word, the impact of wave period on a big containership's fuel
efficiency at sea could be covered by the random errors or noises of
machine learning models, when voyage report data and meteorological
data are used as the data sources.

6.4. Robustness of ML models’ performance

Sections 6.1 and 6.2 report the fit performance of eleven ML models,
and the experiment result reported for each ML model over each dataset
of each ship is based on the average of 20 runs corresponding to 20
random splits of the dataset into training set and test set. One may further
ask a question ‘do the fit performances of the models vary too much
across the 20 runs?‘. To answer this question about the robustness of ML
models' performance against random splits of a dataset, we present the R2

values of eleven ML models over the best dataset Set3precise for ships S1,
S3, S5, and S8 in Fig. 6.

It can be seen from Fig. 6 that except DT, LB and ANN, the robustness
of the remaining machine learning models is acceptable. RF possesses the
highest robustness. The performances of the best models we recom-
mended, including ET, AB, GB and XG, are robust enough for industry
applications.

6.5. Relative importance of each determinant to ship fuel efficiency

Yan et al. (2021) point out that one of the major drawbacks of ML
models is poor interpretability. However, one of the exceptions is that
tree-based models possess the ability to quantitatively explain the rela-
tive importance of each input variable of the model to the depend-
ant/output variable. The best ML models found by this study, including
ET, AB, GB and XG, are all decision tree-based models. Therefore, we
conducted the analyses of relative importance of each feature/deter-
minant to ship fuel consumption rate, based on these four models over
the best dataset Set3precise of ships S1, S3, S5 and S8, and collected the
results in Fig. 7.

The Figs. 7(a)–7(c) reveal that sailing speed is the most important
determinant of fuel consumption rate whose importance is between 0.6
and 0.8. This is consistent with the findings in ship propulsion theories.

Though displacement/draft is usually considered as the second
important determinant in ship propulsion principles, such as the Admi-
ralty coefficient, its impact on ship fuel efficiency at sea is basically lower
than wave conditions if both swells and wind waves are considered.
Apparently, the impact of displacement is significantly lower than the
total impact of sea and weather conditions in shipping reality. This
finding does not falsify the significant importance of displacement to ship
fuel efficiency in calm waters, but ships eventually sail at sea with
different weather and sea conditions rather than stay in calm waters.

When sea andweather conditions are considered, waves, consisting of
swells and wind waves, play the most significant role. The impact of sea
water temperature could be close to that of displacement/draft, which
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might be beyond the imagination of seafarers at sea. The impact of wind
conditions (wind speed and direction) is close to that of sea water tem-
perature and thus also close to the impact of displacement/draft. These
results all confirm the importance of weather routing practice in saving
bunker fuel and reducing ship emissions.

Seafarers at sea attach much importance to sea currents, but their
impact on a ship's fuel efficiency in reality could be not comparable to
other sea or weather conditions, such as waves, wind, or sea water
temperature.

Trim's importance for ship fuel efficiency is usually less than 0.05 but
sometimes can reach 0.1, which confirms the rationality of conducting
trim optimization for ships. This result is consistent with that reported by
the literature on trim optimization.

As shown in Fig. 7(d), compared to ET, AB, and GB, the XG model
reduces the polarization of relative importance allocated to different
variables. For instance, in XG's result, the importance of sailing speed
decreases and that of weather and sea conditions increases. This could be
related to the model structure of XG that introduces a regularization term
to avoid overfitting and prevents one variable from attracting too much
importance. This characteristic of XG model could have caused the
inconsistence of its findings on relative importance of variables/features
with other decision tree-based models such as ET, AB, and GB. Therefore,
this study leans more on the consistent results of ET, AB and GB during
the analysis towards feature importance.

7. Conclusions

Motivated by the data quality issue of voyage reports on weather and
sea conditions caused by snapshotting and human eye inspection, this
study fuses voyage report data and meteorological data, and constructs
nine datasets from this data fusion solution. We experimented with these
nine datasets and eleven widely-adopted ML models to quantify the
relationship between a ship's bunker fuel consumption rate (MT/day, or
MT/h) and its determinants, including sailing speed, displacement/draft,
trim, wind, waves (swells and wind waves), sea currents, and sea water
temperature, over eight 8,100-TEU to 14,000-TEU containerships from a
global shipping company.

The best dataset we found, Set3precise, reveals the benefits of fusing
voyage report data and meteorological data and replacing the informa-
tion of weather and sea conditions in voyage report by that from mete-
orological data. However, Set3precise is only sightly better than the original
voyage report (Set1) which indicates that voyage report has rather
acceptable (hard-to-be-improved) data quality for many application sce-
narios. This somewhat disapproves our industry collaborator's conjecture
that retrieval of accurate information of weather and sea conditions from
meteorological data sources would “significantly” improve the data
quality for ship fuel efficiency analysis.

Among elven ML models, decision tree-based ensemble models,
especially ET, AB, GB and XG, present the best fit and generalization
performances. Their R2 values over the best datasets are all above 0.96
and even reach the level of 0.99–1.00, while their R2 performance over
test data is in the range from 0.74 to 0.90. Their fit errors on daily bunker
fuel consumption, measured by RMSE and MAE, are usually between 0.5
and 4.0 ton/day. Their performances against random divisions of the
dataset into training and test sets are also quite robust. Therefore, it is
safe for industry specialists to only install ET, AB, GB and XG into their
machine learning model arsenal for ship energy efficiency analysis.
16
These four tree-based models are recommended also because of their
ability to interpret the relative importance of different determinants/
factors/features to a ship's fuel consumption rate. Our findings on the
relative importance of sailing speed and trim are consistent with existing
literature. However, all the tree-based models confirm that the impact of
weather and sea conditions is significantly higher than that of the actual
displacement/draft of a ship. This indicates the higher practical impor-
tance of weather routing studies compared to the studies that seek a
sailing route of a ship to optimize its cargo load based on the Admiralty
coefficient for the purpose of saving bunker fuel.

This is a pioneering study that combines several data sources to
improve the accuracy of ship fuel consumption rate forecast targeting the
industry applications in energy-efficient operational measures promoted
by IMO, including speed optimization, trim optimization, weather rout-
ing, and the virtual arrival policy. The research scope/boundary dis-
cussed in Section 3 reflects our research limitations.

Replication and data sharing

Computer code in Python in this study is published in GitHub as a
software infrastructure to reduce the exploration efforts of industry
professionals. Best trained machine learning models are also published in
GitHub, which enables maritime researchers to estimate the bunker fuel
consumption rates of different sizes of mega containerships in different
sailing speed, draft, trim and weather/sea conditions, though our raw
data is confidential. The machine learning models published are
completely black boxes, and one cannot conduct reverse engineering to
access the original datasets. Readers can find the computer code and
trained machine learning models in the URL: https://github.com/yuqua
ndu/Data-driven-Ship-Fuel-Efficiency-Modeling.
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Appendix A

Fig. A1. The impact of data normalization on model performance of ship S5, over a dataset similar to Set5precise that was adopted in a preliminary study.
Fig. A2. Comparison of three hyperparameter optimization methods for ship S8, over a dataset similar to Set5precise that was adopted in a preliminary study.
Table A1
Model hyperparameters to be optimized.

Model Hyperparameters Package/ Package
17
Library
 reference
DT
 max_depth [2, 30], min_samples_leaf [1, 20], min_samples_split [2, 20], max_features [1, 15]
 scikit-learn
 scikit-learn,
2020
ETs
 max_depth [2, 30], min_samples_leaf [1, 20], min_samples_split [2, 20], max_features [1, 15], n_estimators [10, 300]
 scikit-learn
 scikit-learn,
2020
RF
 max_depth [2, 30], min_samples_leaf [1, 20], min_samples_split [2, 20], max_features [1, 15], n_estimators [10, 300]
 scikit-learn
 scikit-learn,
2020
(continued on next column)



X. Li et al. Communications in Transportation Research 2 (2022) 100074
Table A1 (continued )
Model
 Hyperparameters
18
Package/
Library
Package
reference
AB
 max_depth [2, 10],min_samples_leaf [1, 20],min_samples_split [2, 20],max_features [1, 15], n_estimators [10, 300], learning_rate [0.00001,
1]
scikit-learn
 scikit-learn,
2020
GB
 max_depth [2, 10],min_samples_leaf [1, 20],min_samples_split [2, 20],max_features [1, 15], n_estimators [10, 300], learning_rate [0.00001,
1], subsample [0.4, 1]
scikit-learn
 scikit-learn,
2020
XG
 max_depth [2, 10], n_estimators [10, 300], learning_rate [0.00001, 1], min_child_weight [0, 10], gamma [0, 2], colsample_bytree [0.1, 1],
subsample [0.4, 1], reg_alpha [0, 2], reg_lambda [0, 2]
XGBoost
 XGBoost, 2020
LB
 max_depth [2, 10], n_estimators [10, 300], learning_rate [0.00001, 1], min_child_weight [0, 10], min_child_samples [2, 100],
colsample_bytree [0.1, 1], subsample [0.4, 1], reg_alpha [0, 2], reg_lambda [0, 2], num_leaves [5, 127], min_split_gain [0, 2]
LightGBM
 LightGBM,
2020
SVM
 C [0.00001, 100], gamma [0.00001, 1]
 scikit-learn
 scikit-learn,
2020
ANN
 Activation [‘identity’, ‘tanh’, ‘logistic’, ‘relu’], solver [‘lbfgs’, ‘sgd’, ‘adam’], alpha [0.00001, 2], learning_rate_init [0.00001, 1], beta_1 [0,
0.999], beta_2 [0, 0.999]
scikit-learn
 scikit-learn,
2020
Ridge
 alpha [0, 10]
 scikit-learn
 scikit-learn,
2020
LASSO
 alpha [0, 10]
 scikit-learn
 scikit-learn,
2020
Note: The brackets after the hyperparameter names list the value ranges of the hyperparameters.

Table A2
The fit performance of eleven machine learning models for ship S2.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.833
 0.668
 113.854
 10.580
 7.934
 8.951

Set2precise
 0.820
 0.591
 113.281
 10.459
 7.954
 9.321

Set2fuzzy
 0.871
 0.612
 80.754
 8.724
 6.480
 7.612

Set3precise
 0.820
 0.589
 112.089
 10.461
 7.916
 9.230

Set3fuzzy
 0.819
 0.575
 112.765
 10.428
 7.896
 9.219

Set4precise
 0.808
 0.595
 120.097
 10.818
 8.149
 9.543

Set4fuzzy
 0.814
 0.591
 116.912
 10.691
 8.068
 9.324

Set5precise
 0.823
 0.615
 110.287
 10.266
 7.739
 9.008

Set5fuzzy
 0.833
 0.596
 103.989
 9.909
 7.434
 8.724
ET
 Set1
 0.971
 0.786
 19.857
 4.055
 2.986
 3.306

Set2precise
 0.960
 0.755
 24.360
 4.399
 3.253
 3.686

Set2fuzzy
 0.958
 0.757
 25.878
 4.553
 3.366
 3.839

Set3precise
 0.974
 0.765
 15.842
 3.377
 2.445
 2.780

Set3fuzzy
 0.970
 0.763
 18.735
 3.789
 2.711
 3.086

Set4precise
 0.977
 0.764
 14.537
 3.128
 2.237
 2.530

Set4fuzzy
 0.966
 0.753
 20.670
 3.685
 2.710
 3.126

Set5precise
 0.962
 0.761
 23.530
 4.202
 3.100
 3.525

Set5fuzzy
 0.973
 0.759
 16.740
 3.553
 2.608
 2.959
RF
 Set1
 0.959
 0.766
 27.622
 5.205
 3.750
 4.227

Set2precise
 0.953
 0.739
 29.359
 5.350
 3.843
 4.436

Set2fuzzy
 0.957
 0.744
 26.791
 5.118
 3.763
 4.381

Set3precise
 0.950
 0.740
 31.494
 5.541
 4.007
 4.662

Set3fuzzy
 0.946
 0.743
 33.716
 5.699
 4.096
 4.743

Set4precise
 0.957
 0.740
 26.572
 5.118
 3.734
 4.336

Set4fuzzy
 0.947
 0.743
 33.116
 5.695
 4.054
 4.702

Set5precise
 0.953
 0.739
 29.568
 5.382
 3.900
 4.537

Set5fuzzy
 0.955
 0.750
 28.280
 5.224
 3.773
 4.393
AB
 Set1
 0.968
 0.762
 21.779
 4.305
 3.609
 4.143

Set2precise
 0.964
 0.732
 22.762
 4.602
 3.941
 4.548

Set2fuzzy
 0.959
 0.732
 25.577
 4.816
 4.018
 4.635

Set3precise
 0.961
 0.743
 24.755
 4.778
 4.073
 4.729

Set3fuzzy
 0.962
 0.739
 23.645
 4.672
 3.976
 4.617

Set4precise
 0.978
 0.739
 13.828
 3.528
 2.989
 3.464

Set4fuzzy
 0.972
 0.732
 17.180
 3.860
 3.257
 3.764

Set5precise
 0.970
 0.735
 18.789
 4.114
 3.503
 4.068

Set5fuzzy
 0.972
 0.737
 17.302
 3.979
 3.369
 3.948
GB
 Set1
 0.964
 0.781
 24.457
 4.564
 3.429
 3.793

Set2precise
 0.984
 0.756
 10.221
 2.615
 1.849
 2.072

Set2fuzzy
 0.987
 0.750
 8.325
 2.190
 1.584
 1.767

Set3precise
 0.992
 0.760
 5.008
 1.817
 1.234
 1.378

Set3fuzzy
 0.985
 0.762
 9.472
 2.472
 1.716
 1.938

Set4precise
 0.990
 0.763
 6.143
 1.963
 1.364
 1.529

Set4fuzzy
 0.990
 0.755
 6.254
 1.885
 1.401
 1.570

Set5precise
 0.975
 0.747
 15.364
 3.270
 2.336
 2.634

Set5fuzzy
 0.976
 0.756
 14.869
 3.182
 2.389
 2.720
XG
 Set1
 0.975
 0.781
 16.733
 3.503
 2.631
 2.868

Set2precise
 0.985
 0.759
 9.566
 2.542
 1.691
 1.837

Set2fuzzy
 0.990
 0.755
 6.058
 2.038
 1.246
 1.328

Set3precise
 0.991
 0.765
 5.421
 1.949
 1.186
 1.277

Set3fuzzy
 0.982
 0.759
 11.047
 3.003
 1.792
 1.921

Set4precise
 0.984
 0.770
 10.314
 2.587
 1.638
 1.760
(continued on next column)
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Table A2 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
19
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set4fuzzy
 0.988
 0.761
 7.480
 2.197
 1.362
 1.457

Set5precise
 0.967
 0.754
 21.190
 4.015
 2.689
 2.956

Set5fuzzy
 0.977
 0.755
 14.591
 3.195
 2.170
 2.360
LB
 Set1
 0.946
 0.761
 36.850
 5.784
 4.429
 4.834

Set2precise
 0.981
 0.736
 11.640
 2.940
 2.158
 2.384

Set2fuzzy
 0.981
 0.727
 12.277
 3.145
 2.224
 2.455

Set3precise
 0.980
 0.748
 12.589
 3.053
 2.179
 2.442

Set3fuzzy
 0.982
 0.741
 11.425
 3.003
 2.145
 2.400

Set4precise
 0.975
 0.753
 15.660
 3.469
 2.582
 2.863

Set4fuzzy
 0.976
 0.737
 14.911
 3.522
 2.568
 2.839

Set5precise
 0.974
 0.724
 16.238
 3.488
 2.447
 2.769

Set5fuzzy
 0.971
 0.731
 18.560
 3.787
 2.594
 2.943
SVM
 Set1
 0.848
 0.797
 103.306
 10.147
 7.260
 7.779

Set2precise
 0.868
 0.812
 82.693
 9.063
 6.443
 7.021

Set2fuzzy
 0.868
 0.802
 82.818
 9.066
 6.404
 7.072

Set3precise
 0.864
 0.812
 84.860
 9.176
 6.608
 7.210

Set3fuzzy
 0.871
 0.799
 81.178
 8.918
 6.364
 7.014

Set4precise
 0.870
 0.814
 81.122
 8.974
 6.442
 7.034

Set4fuzzy
 0.870
 0.808
 81.347
 8.990
 6.402
 7.062

Set5precise
 0.859
 0.807
 88.173
 9.339
 6.736
 7.391

Set5fuzzy
 0.867
 0.795
 83.747
 9.040
 6.466
 7.202
ANN
 Set1
 0.876
 0.787
 84.367
 9.093
 6.935
 7.682

Set2precise
 0.907
 0.800
 57.855
 7.489
 5.695
 6.295

Set2fuzzy
 0.897
 0.789
 64.406
 7.958
 6.055
 6.742

Set3precise
 0.908
 0.791
 56.693
 7.365
 5.581
 6.171

Set3fuzzy
 0.893
 0.803
 67.203
 8.110
 6.127
 6.837

Set4precise
 0.908
 0.803
 56.949
 7.439
 5.643
 6.227

Set4fuzzy
 0.892
 0.805
 67.986
 8.160
 6.176
 6.905

Set5precise
 0.909
 0.798
 56.575
 7.417
 5.624
 6.182

Set5fuzzy
 0.893
 0.787
 66.436
 8.051
 6.101
 6.783
Ridge
 Set1
 0.822
 0.786
 121.419
 11.016
 8.454
 9.312

Set2precise
 0.820
 0.801
 112.767
 10.614
 8.029
 9.059

Set2fuzzy
 0.813
 0.791
 116.890
 10.806
 8.083
 9.148

Set3precise
 0.826
 0.802
 108.847
 10.429
 8.011
 9.055

Set3fuzzy
 0.823
 0.798
 110.559
 10.511
 8.004
 9.066

Set4precise
 0.825
 0.803
 109.502
 10.460
 8.011
 9.081

Set4fuzzy
 0.821
 0.798
 112.098
 10.584
 8.023
 9.111

Set5precise
 0.821
 0.804
 112.183
 10.587
 8.050
 9.089

Set5fuzzy
 0.815
 0.796
 115.730
 10.753
 8.099
 9.178
LASSO
 Set1
 0.822
 0.785
 121.508
 11.020
 8.471
 9.331

Set2precise
 0.819
 0.798
 113.218
 10.635
 8.023
 9.028

Set2fuzzy
 0.811
 0.786
 117.999
 10.857
 8.090
 9.146

Set3precise
 0.824
 0.796
 110.162
 10.492
 8.034
 9.042

Set3fuzzy
 0.821
 0.797
 112.336
 10.595
 8.043
 9.099

Set4precise
 0.824
 0.800
 110.115
 10.490
 8.007
 9.039

Set4fuzzy
 0.820
 0.795
 112.895
 10.621
 8.032
 9.095

Set5precise
 0.820
 0.801
 112.578
 10.606
 8.047
 9.060

Set5fuzzy
 0.815
 0.796
 115.774
 10.755
 8.086
 9.150
Table A3
The fit performance of eleven machine learning models for ship S3.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.857
 0.684
 105.672
 10.125
 7.259
 8.643

Set2precise
 0.853
 0.713
 107.107
 10.167
 7.422
 8.762

Set2fuzzy
 0.845
 0.700
 112.697
 10.432
 7.586
 9.080

Set3precise
 0.865
 0.684
 98.572
 9.705
 7.042
 8.343

Set3fuzzy
 0.868
 0.692
 95.656
 9.586
 6.903
 8.258

Set4precise
 0.864
 0.694
 99.016
 9.741
 7.126
 8.471

Set4fuzzy
 0.874
 0.678
 90.962
 9.304
 6.662
 7.963

Set5precise
 0.870
 0.701
 94.794
 9.586
 6.956
 8.295

Set5fuzzy
 0.858
 0.695
 102.704
 9.931
 7.215
 8.621
ET
 Set1
 0.977
 0.800
 17.021
 3.911
 2.462
 2.964

Set2precise
 0.973
 0.821
 19.352
 3.820
 2.270
 2.890

Set2fuzzy
 0.969
 0.820
 22.459
 4.479
 2.719
 3.433

Set3precise
 0.985
 0.821
 10.758
 2.846
 1.716
 2.181

Set3fuzzy
 0.986
 0.818
 10.342
 2.391
 1.438
 1.823

Set4precise
 0.975
 0.821
 18.085
 3.943
 2.304
 2.928

Set4fuzzy
 0.976
 0.819
 17.269
 3.827
 2.328
 2.940

Set5precise
 0.984
 0.830
 11.712
 2.940
 1.661
 2.141

Set5fuzzy
 0.985
 0.824
 11.150
 2.920
 1.767
 2.250
RF
 Set1
 0.960
 0.768
 29.573
 5.369
 3.497
 4.234

Set2precise
 0.959
 0.809
 29.986
 5.388
 3.453
 4.290

Set2fuzzy
 0.963
 0.801
 27.032
 5.170
 3.369
 4.169
(continued on next column)
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Table A3 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
20
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set3precise
 0.956
 0.802
 31.781
 5.576
 3.587
 4.463

Set3fuzzy
 0.952
 0.805
 34.613
 5.786
 3.654
 4.563

Set4precise
 0.959
 0.804
 29.892
 5.406
 3.491
 4.325

Set4fuzzy
 0.952
 0.802
 34.739
 5.778
 3.694
 4.603

Set5precise
 0.958
 0.812
 30.199
 5.441
 3.473
 4.321

Set5fuzzy
 0.959
 0.806
 29.588
 5.388
 3.409
 4.241
AB
 Set1
 0.988
 0.798
 9.177
 2.942
 2.371
 2.718

Set2precise
 0.986
 0.810
 10.039
 2.915
 2.240
 2.541

Set2fuzzy
 0.984
 0.805
 11.278
 3.202
 2.508
 2.796

Set3precise
 0.991
 0.812
 6.328
 2.183
 1.712
 1.998

Set3fuzzy
 0.992
 0.807
 5.598
 2.100
 1.542
 1.789

Set4precise
 0.995
 0.814
 3.875
 1.811
 1.356
 1.550

Set4fuzzy
 0.992
 0.801
 5.657
 2.166
 1.647
 1.869

Set5precise
 0.994
 0.813
 4.175
 1.738
 1.313
 1.514

Set5fuzzy
 0.996
 0.797
 3.048
 1.491
 1.070
 1.230
GB
 Set1
 0.962
 0.776
 28.220
 4.726
 3.221
 3.841

Set2precise
 0.968
 0.814
 23.569
 4.167
 2.747
 3.412

Set2fuzzy
 0.948
 0.813
 37.767
 5.792
 3.874
 4.811

Set3precise
 0.964
 0.819
 26.559
 4.694
 2.836
 3.642

Set3fuzzy
 0.968
 0.812
 23.652
 4.569
 2.741
 3.501

Set4precise
 0.956
 0.818
 32.004
 5.489
 3.562
 4.440

Set4fuzzy
 0.956
 0.810
 32.023
 5.280
 3.217
 4.123

Set5precise
 0.976
 0.819
 17.731
 3.499
 2.207
 2.765

Set5fuzzy
 0.969
 0.816
 22.829
 4.478
 3.030
 3.732
XG
 Set1
 0.959
 0.778
 30.013
 4.738
 3.214
 3.744

Set2precise
 0.941
 0.811
 42.884
 6.013
 3.809
 4.801

Set2fuzzy
 0.950
 0.799
 36.417
 5.386
 3.565
 4.427

Set3precise
 0.961
 0.810
 28.714
 5.030
 3.052
 3.828

Set3fuzzy
 0.962
 0.809
 27.987
 4.971
 3.024
 3.802

Set4precise
 0.952
 0.816
 34.801
 5.579
 3.556
 4.392

Set4fuzzy
 0.949
 0.807
 37.325
 5.970
 3.839
 4.756

Set5precise
 0.951
 0.816
 35.428
 5.466
 3.558
 4.432

Set5fuzzy
 0.953
 0.808
 34.093
 5.267
 3.457
 4.250
LB
 Set1
 0.935
 0.766
 48.608
 6.560
 4.506
 5.448

Set2precise
 0.946
 0.809
 39.482
 5.955
 3.895
 4.905

Set2fuzzy
 0.921
 0.799
 57.989
 7.204
 4.865
 6.100

Set3precise
 0.947
 0.804
 38.795
 5.845
 3.853
 4.853

Set3fuzzy
 0.952
 0.801
 35.030
 5.577
 3.723
 4.654

Set4precise
 0.951
 0.805
 35.768
 5.641
 3.702
 4.652

Set4fuzzy
 0.935
 0.803
 47.096
 6.576
 4.433
 5.520

Set5precise
 0.963
 0.808
 26.595
 4.681
 2.977
 3.758

Set5fuzzy
 0.939
 0.798
 43.912
 6.098
 4.029
 5.143
SVM
 Set1
 0.812
 0.791
 138.669
 11.753
 7.557
 8.957

Set2precise
 0.837
 0.823
 117.826
 10.819
 6.698
 8.237

Set2fuzzy
 0.830
 0.818
 123.105
 11.072
 6.843
 8.436

Set3precise
 0.844
 0.820
 113.000
 10.591
 6.627
 8.167

Set3fuzzy
 0.847
 0.817
 111.184
 10.490
 6.551
 8.120

Set4precise
 0.844
 0.822
 113.090
 10.598
 6.624
 8.169

Set4fuzzy
 0.843
 0.821
 113.745
 10.618
 6.643
 8.199

Set5precise
 0.840
 0.823
 115.818
 10.727
 6.701
 8.227

Set5fuzzy
 0.833
 0.821
 121.038
 10.973
 6.888
 8.472
ANN
 Set1
 0.829
 0.780
 126.769
 11.217
 7.780
 9.353

Set2precise
 0.865
 0.809
 98.002
 9.850
 6.647
 8.181

Set2fuzzy
 0.859
 0.807
 102.467
 10.070
 6.665
 8.284

Set3precise
 0.874
 0.798
 91.583
 9.475
 6.480
 7.992

Set3fuzzy
 0.859
 0.796
 101.857
 10.026
 6.907
 8.541

Set4precise
 0.861
 0.800
 100.566
 9.972
 6.828
 8.394

Set4fuzzy
 0.848
 0.796
 110.236
 10.430
 7.158
 8.877

Set5precise
 0.865
 0.809
 97.761
 9.821
 6.634
 8.116

Set5fuzzy
 0.853
 0.801
 106.070
 10.237
 6.811
 8.423
Ridge
 Set1
 0.780
 0.778
 162.676
 12.739
 9.007
 11.114

Set2precise
 0.792
 0.799
 150.342
 12.247
 8.523
 10.908

Set2fuzzy
 0.790
 0.798
 151.889
 12.310
 8.513
 10.899

Set3precise
 0.801
 0.796
 144.061
 11.987
 8.329
 10.615

Set3fuzzy
 0.801
 0.797
 143.736
 11.974
 8.307
 10.617

Set4precise
 0.798
 0.797
 146.525
 12.089
 8.366
 10.721

Set4fuzzy
 0.798
 0.798
 145.947
 12.066
 8.335
 10.674

Set5precise
 0.795
 0.803
 148.003
 12.151
 8.436
 10.765

Set5fuzzy
 0.793
 0.802
 149.528
 12.214
 8.459
 10.815
LASSO
 Set1
 0.779
 0.778
 163.445
 12.769
 9.011
 11.128

Set2precise
 0.792
 0.798
 150.396
 12.249
 8.514
 10.895

Set2fuzzy
 0.790
 0.797
 151.947
 12.313
 8.502
 10.883

Set3precise
 0.799
 0.796
 145.425
 12.043
 8.323
 10.619

Set3fuzzy
 0.799
 0.798
 145.550
 12.049
 8.307
 10.630

Set4precise
 0.797
 0.796
 147.092
 12.112
 8.361
 10.718

Set4fuzzy
 0.798
 0.796
 146.291
 12.080
 8.324
 10.657
(continued on next column)
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Table A3 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
21
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set5precise
 0.795
 0.803
 148.077
 12.154
 8.433
 10.758

Set5fuzzy
 0.793
 0.801
 149.538
 12.215
 8.448
 10.795
Table A4
The fit performance of eleven machine learning models for ship S4.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.906
 0.758
 81.312
 8.851
 6.363
 6.681

Set2precise
 0.926
 0.750
 59.829
 7.503
 5.663
 6.124

Set2fuzzy
 0.921
 0.759
 63.603
 7.812
 5.886
 6.341

Set3precise
 0.916
 0.746
 68.063
 8.094
 6.036
 6.523

Set3fuzzy
 0.921
 0.755
 63.698
 7.776
 5.796
 6.220

Set4precise
 0.917
 0.758
 67.295
 7.920
 5.904
 6.372

Set4fuzzy
 0.928
 0.771
 58.562
 7.517
 5.638
 6.059

Set5precise
 0.905
 0.739
 76.918
 8.473
 6.344
 6.864

Set5fuzzy
 0.918
 0.764
 66.324
 7.897
 5.900
 6.326
ET
 Set1
 0.988
 0.858
 10.120
 2.625
 1.778
 1.862

Set2precise
 0.996
 0.865
 2.961
 1.362
 0.957
 1.036

Set2fuzzy
 0.998
 0.862
 1.882
 1.077
 0.738
 0.796

Set3precise
 0.998
 0.872
 1.434
 0.901
 0.627
 0.687

Set3fuzzy
 0.998
 0.870
 1.957
 1.022
 0.713
 0.777

Set4precise
 0.997
 0.871
 2.141
 1.101
 0.778
 0.844

Set4fuzzy
 0.997
 0.867
 2.092
 0.994
 0.710
 0.779

Set5precise
 0.999
 0.875
 1.183
 0.904
 0.623
 0.675

Set5fuzzy
 0.999
 0.871
 0.933
 0.704
 0.479
 0.524
RF
 Set1
 0.974
 0.848
 22.794
 4.752
 3.335
 3.501

Set2precise
 0.977
 0.855
 18.989
 4.350
 3.226
 3.528

Set2fuzzy
 0.975
 0.852
 20.670
 4.529
 3.344
 3.673

Set3precise
 0.975
 0.853
 20.349
 4.497
 3.331
 3.618

Set3fuzzy
 0.974
 0.856
 20.789
 4.535
 3.341
 3.631

Set4precise
 0.974
 0.855
 21.029
 4.568
 3.359
 3.660

Set4fuzzy
 0.976
 0.855
 19.273
 4.381
 3.235
 3.533

Set5precise
 0.975
 0.857
 20.143
 4.472
 3.320
 3.609

Set5fuzzy
 0.975
 0.859
 20.015
 4.457
 3.275
 3.570
AB
 Set1
 0.980
 0.843
 17.332
 3.939
 3.283
 3.654

Set2precise
 0.981
 0.855
 15.155
 3.560
 2.938
 3.255

Set2fuzzy
 0.980
 0.856
 16.402
 3.758
 3.082
 3.408

Set3precise
 0.986
 0.865
 11.021
 3.144
 2.591
 2.905

Set3fuzzy
 0.992
 0.868
 6.360
 2.277
 1.815
 2.053

Set4precise
 0.992
 0.864
 6.179
 2.258
 1.821
 2.046

Set4fuzzy
 0.992
 0.864
 6.345
 2.272
 1.806
 2.021

Set5precise
 0.991
 0.864
 7.066
 2.371
 1.903
 2.139

Set5fuzzy
 0.993
 0.862
 5.401
 2.070
 1.614
 1.806
GB
 Set1
 0.977
 0.851
 19.591
 4.196
 3.176
 3.352

Set2precise
 0.986
 0.863
 11.541
 2.974
 2.340
 2.505

Set2fuzzy
 0.985
 0.858
 12.254
 2.929
 2.287
 2.437

Set3precise
 0.989
 0.866
 8.845
 2.500
 1.838
 1.957

Set3fuzzy
 0.986
 0.869
 11.433
 2.985
 2.229
 2.395

Set4precise
 0.991
 0.870
 7.282
 2.380
 1.819
 1.934

Set4fuzzy
 0.990
 0.867
 8.073
 2.523
 1.913
 2.039

Set5precise
 0.990
 0.867
 7.786
 2.438
 1.819
 1.963

Set5fuzzy
 0.986
 0.868
 11.156
 2.861
 2.190
 2.362
XG
 Set1
 0.977
 0.858
 19.657
 4.126
 3.068
 3.185

Set2precise
 0.993
 0.860
 5.385
 1.929
 1.448
 1.532

Set2fuzzy
 0.993
 0.864
 5.871
 2.111
 1.576
 1.681

Set3precise
 0.995
 0.869
 3.758
 1.585
 1.140
 1.201

Set3fuzzy
 0.993
 0.874
 5.620
 2.167
 1.535
 1.623

Set4precise
 0.994
 0.871
 4.730
 1.636
 1.209
 1.273

Set4fuzzy
 0.990
 0.868
 7.942
 2.402
 1.785
 1.886

Set5precise
 0.993
 0.869
 5.929
 1.909
 1.441
 1.535

Set5fuzzy
 0.986
 0.871
 11.464
 2.905
 2.212
 2.369
LB
 Set1
 0.968
 0.844
 28.153
 5.010
 3.861
 4.044

Set2precise
 0.980
 0.850
 15.758
 3.612
 2.794
 2.972

Set2fuzzy
 0.978
 0.851
 17.859
 3.894
 3.036
 3.245

Set3precise
 0.987
 0.855
 10.943
 2.871
 2.200
 2.340

Set3fuzzy
 0.987
 0.861
 10.620
 2.951
 2.264
 2.432

Set4precise
 0.986
 0.857
 11.242
 2.921
 2.241
 2.385

Set4fuzzy
 0.977
 0.863
 18.771
 4.087
 3.166
 3.364

Set5precise
 0.992
 0.866
 6.305
 2.107
 1.627
 1.771

Set5fuzzy
 0.987
 0.868
 10.615
 2.972
 2.300
 2.509
SVM
 Set1
 0.906
 0.842
 81.874
 9.015
 6.318
 6.374

Set2precise
 0.920
 0.852
 64.910
 8.026
 5.944
 6.337

Set2fuzzy
 0.917
 0.847
 67.218
 8.157
 5.995
 6.449

Set3precise
 0.921
 0.857
 63.718
 7.972
 5.848
 6.146
(continued on next column)



X. Li et al. Communications in Transportation Research 2 (2022) 100074
Table A4 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
22
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set3fuzzy
 0.912
 0.853
 70.915
 8.406
 6.166
 6.467

Set4precise
 0.920
 0.861
 64.380
 8.005
 5.896
 6.203

Set4fuzzy
 0.913
 0.855
 70.163
 8.353
 6.150
 6.479

Set5precise
 0.921
 0.863
 64.323
 8.003
 5.923
 6.291

Set5fuzzy
 0.918
 0.862
 66.783
 8.152
 6.034
 6.410
ANN
 Set1
 0.925
 0.845
 65.521
 8.076
 6.102
 6.390

Set2precise
 0.936
 0.848
 51.520
 7.145
 5.561
 6.025

Set2fuzzy
 0.939
 0.851
 49.215
 6.999
 5.433
 5.884

Set3precise
 0.947
 0.856
 42.555
 6.513
 5.034
 5.502

Set3fuzzy
 0.947
 0.863
 42.882
 6.543
 5.085
 5.528

Set4precise
 0.944
 0.859
 45.586
 6.744
 5.243
 5.676

Set4fuzzy
 0.942
 0.855
 47.334
 6.865
 5.320
 5.759

Set5precise
 0.939
 0.866
 49.545
 7.025
 5.477
 5.914

Set5fuzzy
 0.933
 0.865
 54.535
 7.374
 5.737
 6.216
Ridge
 Set1
 0.825
 0.821
 152.631
 12.351
 9.343
 9.548

Set2precise
 0.824
 0.805
 142.173
 11.919
 9.220
 9.569

Set2fuzzy
 0.820
 0.799
 145.931
 12.075
 9.331
 9.742

Set3precise
 0.833
 0.811
 135.334
 11.629
 9.033
 9.406

Set3fuzzy
 0.828
 0.806
 138.677
 11.771
 9.128
 9.537

Set4precise
 0.833
 0.812
 135.132
 11.620
 9.021
 9.387

Set4fuzzy
 0.829
 0.807
 138.424
 11.761
 9.115
 9.516

Set5precise
 0.829
 0.812
 138.032
 11.744
 9.121
 9.468

Set5fuzzy
 0.826
 0.808
 140.883
 11.865
 9.207
 9.606
LASSO
 Set1
 0.824
 0.823
 153.402
 12.382
 9.347
 9.537

Set2precise
 0.824
 0.804
 142.470
 11.932
 9.228
 9.572

Set2fuzzy
 0.819
 0.799
 146.410
 12.095
 9.344
 9.750

Set3precise
 0.832
 0.809
 135.961
 11.656
 9.053
 9.417

Set3fuzzy
 0.826
 0.806
 140.683
 11.856
 9.181
 9.580

Set4precise
 0.833
 0.810
 135.135
 11.621
 9.022
 9.385

Set4fuzzy
 0.828
 0.806
 139.214
 11.793
 9.132
 9.526

Set5precise
 0.829
 0.811
 138.350
 11.758
 9.127
 9.471

Set5fuzzy
 0.825
 0.807
 141.337
 11.884
 9.215
 9.611
Table A5
The fit performance of eleven machine learning models for ship S5.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.939
 0.821
 33.699
 5.588
 4.144
 6.259

Set2precise
 0.938
 0.795
 34.454
 5.745
 4.239
 6.417

Set2fuzzy
 0.935
 0.810
 35.970
 5.952
 4.463
 6.795

Set3precise
 0.947
 0.785
 29.488
 5.182
 3.764
 5.625

Set3fuzzy
 0.948
 0.798
 28.634
 5.139
 3.789
 5.696

Set4precise
 0.938
 0.786
 34.047
 5.667
 4.152
 6.186

Set4fuzzy
 0.940
 0.799
 33.582
 5.565
 4.092
 6.178

Set5precise
 0.937
 0.799
 35.019
 5.784
 4.241
 6.345

Set5fuzzy
 0.941
 0.811
 32.605
 5.613
 4.060
 6.073
ET
 Set1
 0.998
 0.895
 1.057
 0.805
 0.569
 0.857

Set2precise
 0.996
 0.892
 2.026
 1.108
 0.820
 1.257

Set2fuzzy
 0.994
 0.889
 3.403
 1.580
 1.182
 1.787

Set3precise
 0.997
 0.892
 1.413
 0.854
 0.619
 0.935

Set3fuzzy
 0.997
 0.891
 1.821
 1.076
 0.784
 1.184

Set4precise
 0.995
 0.892
 2.602
 1.195
 0.883
 1.343

Set4fuzzy
 0.997
 0.888
 1.705
 0.950
 0.681
 1.028

Set5precise
 0.998
 0.890
 0.845
 0.785
 0.560
 0.856

Set5fuzzy
 0.997
 0.889
 1.447
 0.856
 0.619
 0.939
RF
 Set1
 0.982
 0.884
 9.951
 3.140
 2.354
 3.594

Set2precise
 0.981
 0.874
 10.785
 3.268
 2.396
 3.663

Set2fuzzy
 0.983
 0.881
 9.662
 3.097
 2.265
 3.480

Set3precise
 0.981
 0.874
 10.498
 3.225
 2.390
 3.663

Set3fuzzy
 0.981
 0.882
 10.352
 3.195
 2.354
 3.614

Set4precise
 0.982
 0.873
 9.889
 3.137
 2.295
 3.509

Set4fuzzy
 0.981
 0.880
 10.422
 3.210
 2.317
 3.539

Set5precise
 0.981
 0.876
 10.305
 3.189
 2.355
 3.598

Set5fuzzy
 0.982
 0.881
 10.256
 3.184
 2.356
 3.630
AB
 Set1
 0.990
 0.895
 5.408
 2.213
 1.830
 3.156

Set2precise
 0.994
 0.882
 3.555
 1.780
 1.439
 2.538

Set2fuzzy
 0.992
 0.890
 4.604
 1.967
 1.620
 2.822

Set3precise
 0.995
 0.886
 2.543
 1.525
 1.209
 2.217

Set3fuzzy
 0.994
 0.893
 3.311
 1.634
 1.320
 2.360

Set4precise
 0.994
 0.882
 3.462
 1.734
 1.393
 2.479

Set4fuzzy
 0.995
 0.890
 2.588
 1.508
 1.191
 2.135

Set5precise
 0.995
 0.886
 2.965
 1.629
 1.315
 2.379

Set5fuzzy
 0.996
 0.890
 2.337
 1.387
 1.066
 1.931
GB
 Set1
 0.993
 0.895
 3.885
 1.743
 1.360
 2.158
(continued on next column)
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Table A5 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
23
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set2precise
 0.996
 0.887
 2.381
 1.188
 0.926
 1.492

Set2fuzzy
 0.990
 0.888
 5.618
 1.854
 1.419
 2.233

Set3precise
 0.993
 0.887
 3.519
 1.359
 1.021
 1.610

Set3fuzzy
 0.994
 0.888
 3.316
 1.398
 1.074
 1.699

Set4precise
 0.997
 0.889
 1.727
 1.039
 0.805
 1.275

Set4fuzzy
 0.995
 0.891
 2.928
 1.162
 0.867
 1.355

Set5precise
 0.996
 0.884
 2.061
 1.052
 0.818
 1.293

Set5fuzzy
 0.993
 0.886
 3.950
 1.562
 1.211
 1.917
XG
 Set1
 0.990
 0.892
 5.361
 1.995
 1.520
 2.370

Set2precise
 0.993
 0.873
 3.883
 1.589
 1.173
 1.842

Set2fuzzy
 0.987
 0.881
 7.018
 2.245
 1.655
 2.554

Set3precise
 0.993
 0.878
 3.601
 1.605
 1.133
 1.749

Set3fuzzy
 0.989
 0.888
 5.924
 2.046
 1.490
 2.314

Set4precise
 0.994
 0.878
 3.149
 1.496
 1.041
 1.616

Set4fuzzy
 0.990
 0.883
 5.556
 2.019
 1.478
 2.308

Set5precise
 0.987
 0.883
 7.125
 2.403
 1.776
 2.773

Set5fuzzy
 0.993
 0.886
 3.759
 1.666
 1.228
 1.927
LB
 Set1
 0.986
 0.879
 7.810
 2.636
 2.028
 3.173

Set2precise
 0.984
 0.874
 9.087
 2.680
 2.016
 3.145

Set2fuzzy
 0.984
 0.882
 9.066
 2.728
 2.073
 3.215

Set3precise
 0.987
 0.873
 7.382
 2.350
 1.758
 2.725

Set3fuzzy
 0.987
 0.876
 7.357
 2.458
 1.852
 2.887

Set4precise
 0.979
 0.875
 11.525
 3.220
 2.420
 3.743

Set4fuzzy
 0.980
 0.877
 11.114
 3.131
 2.393
 3.696

Set5precise
 0.984
 0.871
 8.646
 2.662
 1.998
 3.104

Set5fuzzy
 0.987
 0.876
 7.270
 2.424
 1.830
 2.842
SVM
 Set1
 0.931
 0.884
 38.408
 6.173
 4.382
 6.630

Set2precise
 0.919
 0.879
 45.002
 6.674
 4.868
 7.358

Set2fuzzy
 0.919
 0.883
 44.677
 6.633
 4.835
 7.319

Set3precise
 0.916
 0.873
 46.421
 6.785
 4.917
 7.472

Set3fuzzy
 0.917
 0.882
 46.286
 6.793
 4.904
 7.472

Set4precise
 0.915
 0.876
 47.018
 6.840
 4.985
 7.541

Set4fuzzy
 0.917
 0.879
 45.834
 6.758
 4.928
 7.496

Set5precise
 0.924
 0.878
 41.942
 6.444
 4.689
 7.114

Set5fuzzy
 0.921
 0.880
 43.746
 6.591
 4.771
 7.252
ANN
 Set1
 0.926
 0.886
 40.737
 6.373
 4.900
 7.545

Set2precise
 0.940
 0.876
 33.557
 5.753
 4.426
 6.867

Set2fuzzy
 0.930
 0.876
 38.794
 6.188
 4.724
 7.295

Set3precise
 0.935
 0.879
 36.157
 5.956
 4.544
 7.075

Set3fuzzy
 0.932
 0.882
 37.513
 6.094
 4.633
 7.202

Set4precise
 0.941
 0.882
 32.448
 5.659
 4.328
 6.738

Set4fuzzy
 0.929
 0.878
 39.150
 6.229
 4.760
 7.381

Set5precise
 0.928
 0.876
 39.757
 6.269
 4.802
 7.409

Set5fuzzy
 0.930
 0.884
 38.850
 6.201
 4.720
 7.277
Ridge
 Set1
 0.875
 0.868
 69.368
 8.325
 6.341
 9.937

Set2precise
 0.883
 0.873
 65.112
 8.066
 6.112
 9.419

Set2fuzzy
 0.881
 0.873
 66.119
 8.128
 6.124
 9.423

Set3precise
 0.889
 0.868
 61.610
 7.846
 5.934
 9.109

Set3fuzzy
 0.888
 0.870
 62.092
 7.876
 5.983
 9.191

Set4precise
 0.887
 0.871
 62.716
 7.916
 6.011
 9.210

Set4fuzzy
 0.886
 0.870
 63.240
 7.949
 6.063
 9.298

Set5precise
 0.885
 0.874
 63.789
 7.983
 6.042
 9.244

Set5fuzzy
 0.885
 0.875
 63.975
 7.995
 6.045
 9.248
LASSO
 Set1
 0.874
 0.868
 69.799
 8.351
 6.357
 9.948

Set2precise
 0.882
 0.873
 65.214
 8.072
 6.121
 9.436

Set2fuzzy
 0.881
 0.873
 66.225
 8.135
 6.131
 9.439

Set3precise
 0.888
 0.868
 61.988
 7.870
 5.953
 9.129

Set3fuzzy
 0.887
 0.870
 62.780
 7.920
 6.019
 9.213

Set4precise
 0.886
 0.870
 62.963
 7.932
 6.022
 9.224

Set4fuzzy
 0.886
 0.871
 63.365
 7.957
 6.070
 9.298

Set5precise
 0.885
 0.874
 63.959
 7.994
 6.054
 9.256

Set5fuzzy
 0.884
 0.873
 64.202
 8.009
 6.059
 9.247
Table A6
The fit performance of eleven machine learning models for ship S6.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.837
 0.636
 67.292
 8.143
 5.917
 7.777

Set2precise
 0.812
 0.542
 77.709
 8.758
 6.526
 8.686

Set2fuzzy
 0.825
 0.576
 72.552
 8.460
 6.207
 8.219

Set3precise
 0.832
 0.576
 69.684
 8.275
 6.119
 8.113

Set3fuzzy
 0.813
 0.579
 77.414
 8.738
 6.468
 8.593

Set4precise
 0.852
 0.530
 60.986
 7.701
 5.653
 7.536

Set4fuzzy
 0.832
 0.561
 69.219
 8.249
 6.071
 8.066
(continued on next column)
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Table A6 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
24
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set5precise
 0.832
 0.578
 69.447
 8.227
 6.047
 8.027

Set5fuzzy
 0.816
 0.589
 76.002
 8.649
 6.372
 8.434
ET
 Set1
 0.985
 0.765
 6.050
 1.928
 1.359
 1.796

Set2precise
 0.982
 0.755
 7.287
 2.366
 1.743
 2.313

Set2fuzzy
 0.982
 0.749
 7.640
 2.515
 1.877
 2.489

Set3precise
 0.979
 0.752
 8.706
 2.743
 2.010
 2.678

Set3fuzzy
 0.976
 0.744
 9.938
 2.705
 1.995
 2.654

Set4precise
 0.986
 0.747
 5.823
 2.122
 1.533
 2.036

Set4fuzzy
 0.973
 0.743
 10.997
 2.925
 2.161
 2.860

Set5precise
 0.986
 0.750
 5.796
 2.088
 1.517
 2.009

Set5fuzzy
 0.971
 0.735
 12.056
 3.189
 2.388
 3.162
RF
 Set1
 0.956
 0.766
 18.155
 4.225
 3.016
 4.012

Set2precise
 0.957
 0.743
 18.016
 4.231
 3.057
 4.053

Set2fuzzy
 0.956
 0.747
 18.125
 4.227
 3.108
 4.136

Set3precise
 0.953
 0.740
 19.498
 4.382
 3.173
 4.211

Set3fuzzy
 0.954
 0.746
 19.075
 4.326
 3.152
 4.198

Set4precise
 0.956
 0.741
 18.314
 4.255
 3.102
 4.122

Set4fuzzy
 0.952
 0.747
 19.918
 4.437
 3.247
 4.325

Set5precise
 0.956
 0.741
 18.403
 4.261
 3.092
 4.101

Set5fuzzy
 0.955
 0.744
 18.502
 4.271
 3.128
 4.161
AB
 Set1
 0.969
 0.770
 12.857
 3.481
 2.871
 4.105

Set2precise
 0.973
 0.752
 10.958
 3.199
 2.673
 3.873

Set2fuzzy
 0.968
 0.758
 13.404
 3.558
 2.994
 4.289

Set3precise
 0.980
 0.755
 8.175
 2.647
 2.186
 3.210

Set3fuzzy
 0.974
 0.760
 10.820
 3.157
 2.664
 3.851

Set4precise
 0.977
 0.747
 9.492
 2.996
 2.541
 3.702

Set4fuzzy
 0.977
 0.749
 9.524
 2.962
 2.484
 3.578

Set5precise
 0.983
 0.748
 6.868
 2.445
 2.005
 2.945

Set5fuzzy
 0.971
 0.752
 12.050
 3.405
 2.911
 4.181
GB
 Set1
 0.965
 0.786
 14.509
 3.538
 2.597
 3.507

Set2precise
 0.962
 0.784
 15.864
 3.689
 2.868
 3.907

Set2fuzzy
 0.963
 0.780
 15.468
 3.513
 2.763
 3.749

Set3precise
 0.971
 0.770
 11.917
 3.111
 2.384
 3.226

Set3fuzzy
 0.963
 0.780
 15.292
 3.572
 2.725
 3.693

Set4precise
 0.968
 0.776
 13.322
 3.271
 2.530
 3.425

Set4fuzzy
 0.968
 0.778
 13.396
 3.319
 2.549
 3.451

Set5precise
 0.962
 0.771
 16.035
 3.730
 2.902
 3.958

Set5fuzzy
 0.950
 0.771
 20.910
 4.247
 3.327
 4.513
XG
 Set1
 0.966
 0.786
 14.223
 3.620
 2.692
 3.641

Set2precise
 0.957
 0.785
 17.661
 3.806
 2.941
 4.004

Set2fuzzy
 0.945
 0.786
 22.931
 4.633
 3.606
 4.878

Set3precise
 0.959
 0.771
 17.299
 3.835
 2.890
 3.902

Set3fuzzy
 0.966
 0.776
 13.923
 3.361
 2.538
 3.412

Set4precise
 0.958
 0.770
 17.405
 3.889
 2.959
 3.993

Set4fuzzy
 0.955
 0.774
 18.740
 4.036
 3.066
 4.127

Set5precise
 0.957
 0.773
 17.877
 3.837
 2.946
 4.005

Set5fuzzy
 0.940
 0.777
 24.886
 4.800
 3.711
 5.024
LB
 Set1
 0.951
 0.773
 20.401
 4.334
 3.285
 4.472

Set2precise
 0.951
 0.768
 20.215
 4.252
 3.275
 4.467

Set2fuzzy
 0.936
 0.772
 26.454
 4.902
 3.810
 5.175

Set3precise
 0.963
 0.754
 15.520
 3.514
 2.682
 3.646

Set3fuzzy
 0.951
 0.762
 20.246
 4.209
 3.275
 4.443

Set4precise
 0.942
 0.758
 24.155
 4.587
 3.520
 4.790

Set4fuzzy
 0.936
 0.768
 26.469
 4.900
 3.800
 5.151

Set5precise
 0.962
 0.752
 15.655
 3.592
 2.706
 3.679

Set5fuzzy
 0.956
 0.751
 18.155
 3.893
 2.959
 4.023
SVM
 Set1
 0.838
 0.748
 67.236
 8.175
 5.625
 7.308

Set2precise
 0.846
 0.766
 63.819
 7.962
 5.661
 7.464

Set2fuzzy
 0.832
 0.754
 69.485
 8.311
 5.956
 7.829

Set3precise
 0.843
 0.767
 65.144
 8.045
 5.755
 7.629

Set3fuzzy
 0.832
 0.760
 69.588
 8.322
 5.960
 7.862

Set4precise
 0.840
 0.765
 66.027
 8.104
 5.765
 7.603

Set4fuzzy
 0.828
 0.762
 71.019
 8.420
 5.973
 7.859

Set5precise
 0.844
 0.767
 64.564
 8.020
 5.739
 7.570

Set5fuzzy
 0.825
 0.766
 72.178
 8.491
 6.051
 7.957
ANN
 Set1
 0.851
 0.740
 61.550
 7.798
 5.849
 7.715

Set2precise
 0.851
 0.768
 61.489
 7.821
 5.883
 7.791

Set2fuzzy
 0.847
 0.759
 63.370
 7.935
 6.000
 7.927

Set3precise
 0.859
 0.772
 58.184
 7.599
 5.750
 7.603

Set3fuzzy
 0.846
 0.768
 63.903
 7.977
 6.043
 7.967

Set4precise
 0.852
 0.773
 61.205
 7.803
 5.883
 7.760

Set4fuzzy
 0.849
 0.760
 62.489
 7.871
 5.952
 7.852

Set5precise
 0.875
 0.759
 51.893
 7.155
 5.453
 7.254

Set5fuzzy
 0.863
 0.758
 56.786
 7.496
 5.712
 7.557
Ridge
 Set1
 0.758
 0.729
 100.434
 10.018
 7.588
 10.192

Set2precise
 0.762
 0.736
 98.605
 9.927
 7.566
 10.137
(continued on next column)
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Table A6 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
25
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set2fuzzy
 0.758
 0.734
 99.954
 9.994
 7.577
 10.120

Set3precise
 0.775
 0.745
 93.218
 9.652
 7.454
 9.977

Set3fuzzy
 0.772
 0.743
 94.465
 9.716
 7.434
 9.927

Set4precise
 0.774
 0.744
 93.718
 9.678
 7.439
 9.949

Set4fuzzy
 0.770
 0.743
 95.067
 9.747
 7.424
 9.909

Set5precise
 0.768
 0.742
 95.854
 9.788
 7.559
 10.138

Set5fuzzy
 0.764
 0.739
 97.477
 9.870
 7.573
 10.120
LASSO
 Set1
 0.753
 0.724
 102.272
 10.109
 7.629
 10.199

Set2precise
 0.762
 0.736
 98.666
 9.930
 7.562
 10.136

Set2fuzzy
 0.758
 0.733
 99.969
 9.995
 7.573
 10.118

Set3precise
 0.774
 0.744
 93.502
 9.667
 7.443
 9.960

Set3fuzzy
 0.771
 0.745
 94.691
 9.728
 7.429
 9.920

Set4precise
 0.774
 0.743
 93.686
 9.676
 7.435
 9.942

Set4fuzzy
 0.770
 0.743
 95.199
 9.754
 7.411
 9.879

Set5precise
 0.768
 0.742
 95.856
 9.788
 7.560
 10.146

Set5fuzzy
 0.764
 0.739
 97.494
 9.871
 7.573
 10.120
Table A7
The fit performance of eleven machine learning models for ship S7.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.828
 0.680
 69.472
 8.260
 6.302
 8.155

Set2precise
 0.857
 0.682
 57.167
 7.500
 5.712
 7.424

Set2fuzzy
 0.849
 0.660
 60.603
 7.737
 5.932
 7.752

Set3precise
 0.880
 0.683
 48.319
 6.903
 5.173
 6.749

Set3fuzzy
 0.869
 0.690
 52.514
 7.183
 5.401
 7.043

Set4precise
 0.875
 0.656
 50.042
 7.032
 5.307
 6.936

Set4fuzzy
 0.861
 0.667
 55.626
 7.387
 5.599
 7.303

Set5precise
 0.881
 0.694
 47.827
 6.863
 5.127
 6.665

Set5fuzzy
 0.867
 0.700
 53.253
 7.244
 5.425
 7.077
ET
 Set1
 0.956
 0.806
 17.780
 3.880
 2.884
 3.713

Set2precise
 0.972
 0.801
 11.382
 3.040
 2.178
 2.834

Set2fuzzy
 0.963
 0.790
 14.758
 3.560
 2.603
 3.391

Set3precise
 0.987
 0.805
 5.176
 1.848
 1.259
 1.639

Set3fuzzy
 0.978
 0.798
 8.693
 2.379
 1.664
 2.155

Set4precise
 0.985
 0.801
 6.087
 2.040
 1.419
 1.851

Set4fuzzy
 0.983
 0.793
 6.706
 2.149
 1.522
 1.983

Set5precise
 0.989
 0.804
 4.334
 1.623
 1.156
 1.507

Set5fuzzy
 0.979
 0.799
 8.329
 2.549
 1.855
 2.405
RF
 Set1
 0.964
 0.793
 14.369
 3.774
 2.813
 3.649

Set2precise
 0.962
 0.791
 15.123
 3.842
 2.826
 3.694

Set2fuzzy
 0.962
 0.788
 15.442
 3.899
 2.887
 3.800

Set3precise
 0.961
 0.794
 15.501
 3.920
 2.867
 3.740

Set3fuzzy
 0.960
 0.793
 15.963
 3.978
 2.931
 3.838

Set4precise
 0.961
 0.791
 15.742
 3.947
 2.898
 3.795

Set4fuzzy
 0.963
 0.789
 14.852
 3.828
 2.850
 3.746

Set5precise
 0.966
 0.796
 13.853
 3.691
 2.705
 3.528

Set5fuzzy
 0.967
 0.797
 13.384
 3.644
 2.715
 3.551
AB
 Set1
 0.964
 0.790
 14.672
 3.464
 2.781
 3.712

Set2precise
 0.975
 0.770
 10.014
 2.848
 2.207
 2.964

Set2fuzzy
 0.975
 0.777
 10.055
 2.981
 2.462
 3.326

Set3precise
 0.982
 0.777
 7.272
 2.415
 1.888
 2.558

Set3fuzzy
 0.980
 0.782
 7.977
 2.604
 2.149
 2.934

Set4precise
 0.982
 0.776
 7.209
 2.516
 2.080
 2.838

Set4fuzzy
 0.986
 0.775
 5.620
 2.132
 1.717
 2.345

Set5precise
 0.984
 0.783
 6.493
 2.337
 1.897
 2.589

Set5fuzzy
 0.987
 0.783
 5.343
 2.100
 1.752
 2.417
GB
 Set1
 0.962
 0.803
 15.408
 3.756
 2.777
 3.605

Set2precise
 0.966
 0.777
 13.669
 3.347
 2.513
 3.299

Set2fuzzy
 0.967
 0.782
 13.148
 3.471
 2.602
 3.411

Set3precise
 0.986
 0.785
 5.466
 2.156
 1.442
 1.880

Set3fuzzy
 0.978
 0.782
 9.078
 2.764
 1.973
 2.582

Set4precise
 0.979
 0.781
 8.487
 2.562
 1.839
 2.398

Set4fuzzy
 0.977
 0.780
 9.243
 2.751
 2.065
 2.709

Set5precise
 0.974
 0.786
 10.452
 2.955
 2.139
 2.784

Set5fuzzy
 0.977
 0.791
 9.274
 2.812
 2.038
 2.663
XG
 Set1
 0.972
 0.813
 11.021
 3.022
 2.222
 2.865

Set2precise
 0.972
 0.777
 11.392
 3.120
 2.269
 2.926

Set2fuzzy
 0.966
 0.784
 13.695
 3.461
 2.551
 3.314

Set3precise
 0.986
 0.784
 5.731
 2.093
 1.424
 1.808

Set3fuzzy
 0.980
 0.791
 8.192
 2.475
 1.677
 2.138

Set4precise
 0.979
 0.784
 8.576
 2.711
 1.867
 2.394

Set4fuzzy
 0.975
 0.781
 10.191
 2.769
 1.988
 2.568

Set5precise
 0.978
 0.792
 8.680
 2.772
 1.971
 2.532
(continued on next column)
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Table A7 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
26
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set5fuzzy
 0.973
 0.798
 11.025
 3.167
 2.272
 2.932

LB
 Set1
 0.957
 0.789
 17.547
 4.044
 3.053
 3.968
Set2precise
 0.978
 0.766
 8.892
 2.744
 2.051
 2.693

Set2fuzzy
 0.967
 0.781
 13.285
 3.426
 2.603
 3.407

Set3precise
 0.982
 0.785
 7.152
 2.366
 1.742
 2.283

Set3fuzzy
 0.975
 0.779
 10.039
 2.861
 2.175
 2.840

Set4precise
 0.981
 0.775
 7.814
 2.542
 1.865
 2.427

Set4fuzzy
 0.961
 0.774
 15.690
 3.755
 2.837
 3.692

Set5precise
 0.979
 0.781
 8.598
 2.522
 1.855
 2.431

Set5fuzzy
 0.979
 0.787
 8.541
 2.673
 1.945
 2.545
SVM
 Set1
 0.906
 0.786
 38.185
 6.078
 4.323
 5.574

Set2precise
 0.870
 0.744
 52.317
 7.160
 5.243
 6.699

Set2fuzzy
 0.873
 0.744
 50.939
 7.070
 5.115
 6.582

Set3precise
 0.871
 0.748
 51.533
 7.113
 5.173
 6.591

Set3fuzzy
 0.866
 0.746
 53.727
 7.249
 5.261
 6.730

Set4precise
 0.873
 0.745
 50.841
 7.045
 5.125
 6.552

Set4fuzzy
 0.876
 0.745
 49.716
 6.983
 5.055
 6.504

Set5precise
 0.867
 0.752
 53.427
 7.236
 5.264
 6.699

Set5fuzzy
 0.863
 0.750
 54.999
 7.343
 5.366
 6.862
ANN
 Set1
 0.863
 0.786
 55.639
 7.392
 5.651
 7.274

Set2precise
 0.902
 0.770
 39.097
 6.203
 4.856
 6.310

Set2fuzzy
 0.888
 0.764
 45.229
 6.656
 5.210
 6.807

Set3precise
 0.892
 0.771
 43.321
 6.515
 5.071
 6.587

Set3fuzzy
 0.896
 0.760
 41.782
 6.386
 4.981
 6.481

Set4precise
 0.897
 0.767
 41.488
 6.373
 4.959
 6.441

Set4fuzzy
 0.891
 0.765
 43.762
 6.559
 5.110
 6.643

Set5precise
 0.895
 0.756
 42.257
 6.425
 5.003
 6.480

Set5fuzzy
 0.884
 0.755
 46.486
 6.748
 5.244
 6.798
Ridge
 Set1
 0.790
 0.781
 85.163
 9.224
 6.955
 8.817

Set2precise
 0.817
 0.761
 73.490
 8.564
 6.612
 8.463

Set2fuzzy
 0.816
 0.761
 74.035
 8.596
 6.669
 8.578

Set3precise
 0.820
 0.758
 72.381
 8.498
 6.520
 8.315

Set3fuzzy
 0.818
 0.756
 72.910
 8.530
 6.596
 8.451

Set4precise
 0.819
 0.759
 72.799
 8.523
 6.552
 8.361

Set4fuzzy
 0.818
 0.758
 73.098
 8.541
 6.609
 8.473

Set5precise
 0.818
 0.761
 73.217
 8.547
 6.587
 8.422

Set5fuzzy
 0.816
 0.760
 73.809
 8.583
 6.660
 8.550
LASSO
 Set1
 0.789
 0.781
 85.405
 9.238
 6.961
 8.819

Set2precise
 0.816
 0.760
 73.729
 8.577
 6.627
 8.498

Set2fuzzy
 0.815
 0.760
 74.215
 8.606
 6.673
 8.595

Set3precise
 0.819
 0.758
 72.827
 8.524
 6.550
 8.374

Set3fuzzy
 0.816
 0.759
 73.644
 8.573
 6.627
 8.498

Set4precise
 0.817
 0.758
 73.386
 8.557
 6.591
 8.435

Set4fuzzy
 0.817
 0.759
 73.478
 8.563
 6.620
 8.500

Set5precise
 0.817
 0.761
 73.504
 8.564
 6.606
 8.462

Set5fuzzy
 0.815
 0.761
 74.089
 8.599
 6.666
 8.564
Table A8
The fit performance of eleven machine learning models for ship S8.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.916
 0.774
 54.181
 7.305
 5.213
 6.441

Set2precise
 0.912
 0.759
 52.806
 7.194
 5.129
 6.172

Set2fuzzy
 0.905
 0.766
 57.141
 7.487
 5.353
 6.419

Set3precise
 0.916
 0.769
 50.649
 6.985
 4.922
 5.949

Set3fuzzy
 0.919
 0.764
 48.884
 6.889
 4.885
 5.920

Set4precise
 0.912
 0.746
 52.752
 7.168
 5.070
 6.092

Set4fuzzy
 0.904
 0.759
 57.557
 7.549
 5.362
 6.450

Set5precise
 0.914
 0.759
 51.752
 7.105
 5.020
 6.054

Set5fuzzy
 0.909
 0.770
 54.614
 7.268
 5.163
 6.237
ET
 Set1
 0.998
 0.882
 1.556
 0.811
 0.551
 0.679

Set2precise
 0.997
 0.872
 1.552
 0.879
 0.565
 0.694

Set2fuzzy
 0.998
 0.866
 1.288
 0.841
 0.540
 0.661

Set3precise
 0.995
 0.876
 2.783
 1.404
 0.907
 1.120

Set3fuzzy
 0.997
 0.872
 1.940
 1.024
 0.652
 0.801

Set4precise
 0.996
 0.871
 2.382
 1.227
 0.799
 0.993

Set4fuzzy
 0.995
 0.865
 2.894
 1.392
 0.879
 1.077

Set5precise
 0.999
 0.883
 0.612
 0.629
 0.398
 0.486

Set5fuzzy
 0.996
 0.877
 2.216
 1.169
 0.771
 0.947
RF
 Set1
 0.978
 0.859
 13.895
 3.707
 2.535
 3.124

Set2precise
 0.974
 0.846
 15.712
 3.941
 2.668
 3.233

Set2fuzzy
 0.977
 0.846
 14.095
 3.740
 2.546
 3.081

Set3precise
 0.976
 0.855
 14.566
 3.798
 2.624
 3.187

Set3fuzzy
 0.975
 0.854
 15.158
 3.868
 2.676
 3.254
(continued on next column)
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Table A8 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
27
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
Set4precise
 0.976
 0.847
 14.789
 3.811
 2.615
 3.173

Set4fuzzy
 0.977
 0.848
 13.912
 3.714
 2.561
 3.109

Set5precise
 0.978
 0.864
 13.567
 3.653
 2.490
 3.026

Set5fuzzy
 0.976
 0.861
 14.658
 3.788
 2.569
 3.128
AB
 Set1
 0.982
 0.870
 11.601
 3.288
 2.747
 3.479

Set2precise
 0.989
 0.860
 6.723
 2.470
 2.032
 2.565

Set2fuzzy
 0.990
 0.863
 5.990
 2.329
 1.896
 2.390

Set3precise
 0.991
 0.863
 5.365
 2.114
 1.693
 2.148

Set3fuzzy
 0.991
 0.864
 5.138
 2.093
 1.673
 2.127

Set4precise
 0.992
 0.859
 5.046
 2.111
 1.705
 2.162

Set4fuzzy
 0.992
 0.861
 4.835
 2.069
 1.654
 2.102

Set5precise
 0.993
 0.870
 4.374
 1.789
 1.402
 1.780

Set5fuzzy
 0.997
 0.874
 1.966
 1.273
 0.931
 1.189
GB
 Set1
 0.983
 0.875
 10.771
 3.062
 2.188
 2.750

Set2precise
 0.978
 0.855
 13.587
 3.035
 2.111
 2.607

Set2fuzzy
 0.983
 0.857
 10.329
 2.874
 2.021
 2.498

Set3precise
 0.985
 0.860
 9.102
 2.427
 1.670
 2.075

Set3fuzzy
 0.995
 0.857
 3.004
 1.287
 0.842
 1.048

Set4precise
 0.988
 0.852
 7.318
 2.176
 1.474
 1.838

Set4fuzzy
 0.986
 0.851
 8.424
 2.377
 1.660
 2.048

Set5precise
 0.986
 0.862
 8.808
 2.254
 1.584
 1.944

Set5fuzzy
 0.988
 0.866
 7.600
 2.117
 1.463
 1.809
XG
 Set1
 0.991
 0.877
 5.538
 1.956
 1.429
 1.791

Set2precise
 0.984
 0.855
 9.630
 2.793
 1.927
 2.356

Set2fuzzy
 0.986
 0.856
 8.638
 2.520
 1.735
 2.124

Set3precise
 0.979
 0.856
 12.821
 2.974
 2.114
 2.589

Set3fuzzy
 0.996
 0.850
 2.393
 1.247
 0.855
 1.037

Set4precise
 0.987
 0.850
 7.927
 2.477
 1.690
 2.090

Set4fuzzy
 0.989
 0.844
 6.722
 2.123
 1.467
 1.806

Set5precise
 0.975
 0.862
 15.510
 3.650
 2.627
 3.198

Set5fuzzy
 0.984
 0.865
 9.919
 2.722
 1.919
 2.340
LB
 Set1
 0.979
 0.871
 13.718
 3.540
 2.601
 3.309

Set2precise
 0.976
 0.841
 14.612
 3.308
 2.379
 2.931

Set2fuzzy
 0.984
 0.847
 9.763
 2.672
 1.913
 2.391

Set3precise
 0.976
 0.852
 14.749
 3.261
 2.338
 2.882

Set3fuzzy
 0.982
 0.853
 10.653
 2.726
 1.918
 2.392

Set4precise
 0.972
 0.846
 16.669
 3.865
 2.817
 3.487

Set4fuzzy
 0.976
 0.844
 14.589
 3.543
 2.518
 3.129

Set5precise
 0.981
 0.857
 11.529
 2.914
 2.067
 2.566

Set5fuzzy
 0.968
 0.855
 19.211
 3.849
 2.753
 3.397
SVM
 Set1
 0.900
 0.862
 64.371
 8.014
 5.742
 6.905

Set2precise
 0.903
 0.862
 58.473
 7.635
 5.275
 6.257

Set2fuzzy
 0.895
 0.851
 63.089
 7.936
 5.594
 6.596

Set3precise
 0.910
 0.869
 54.154
 7.349
 5.117
 6.123

Set3fuzzy
 0.901
 0.858
 59.486
 7.706
 5.436
 6.468

Set4precise
 0.910
 0.870
 54.276
 7.358
 5.123
 6.137

Set4fuzzy
 0.901
 0.859
 59.951
 7.737
 5.479
 6.524

Set5precise
 0.905
 0.870
 57.155
 7.549
 5.309
 6.301

Set5fuzzy
 0.898
 0.860
 61.411
 7.828
 5.547
 6.547
ANN
 Set1
 0.914
 0.857
 55.217
 7.398
 5.605
 6.809

Set2precise
 0.916
 0.849
 50.726
 7.075
 5.203
 6.214

Set2fuzzy
 0.912
 0.842
 53.036
 7.247
 5.382
 6.405

Set3precise
 0.924
 0.862
 46.222
 6.733
 4.964
 5.959

Set3fuzzy
 0.910
 0.858
 54.260
 7.342
 5.454
 6.491

Set4precise
 0.920
 0.862
 48.397
 6.914
 5.080
 6.086

Set4fuzzy
 0.916
 0.854
 50.805
 7.090
 5.262
 6.283

Set5precise
 0.915
 0.860
 51.212
 7.114
 5.213
 6.234

Set5fuzzy
 0.910
 0.856
 54.312
 7.342
 5.411
 6.426
Ridge
 Set1
 0.866
 0.842
 86.315
 9.288
 7.004
 8.561

Set2precise
 0.870
 0.844
 78.603
 8.861
 6.746
 8.191

Set2fuzzy
 0.865
 0.839
 81.580
 9.027
 6.944
 8.384

Set3precise
 0.879
 0.853
 72.818
 8.529
 6.512
 7.959

Set3fuzzy
 0.874
 0.847
 76.048
 8.716
 6.690
 8.141

Set4precise
 0.878
 0.851
 73.870
 8.591
 6.541
 7.997

Set4fuzzy
 0.872
 0.846
 76.952
 8.768
 6.731
 8.177

Set5precise
 0.879
 0.855
 73.221
 8.552
 6.522
 7.973

Set5fuzzy
 0.873
 0.850
 76.678
 8.752
 6.703
 8.148
LASSO
 Set1
 0.865
 0.842
 87.140
 9.332
 7.023
 8.576

Set2precise
 0.869
 0.843
 78.883
 8.876
 6.752
 8.189

Set2fuzzy
 0.864
 0.838
 81.756
 9.037
 6.950
 8.384

Set3precise
 0.878
 0.852
 73.581
 8.573
 6.525
 7.966

Set3fuzzy
 0.872
 0.848
 77.013
 8.771
 6.702
 8.135

Set4precise
 0.877
 0.850
 74.067
 8.602
 6.544
 7.999

Set4fuzzy
 0.872
 0.845
 77.229
 8.784
 6.740
 8.181

Set5precise
 0.878
 0.854
 73.626
 8.576
 6.533
 7.981

Set5fuzzy
 0.872
 0.849
 77.215
 8.782
 6.711
 8.148
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