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A B S T R A C T

When voyage report data is utilized as the main data source for ship fuel efficiency analysis, its information on
weather and sea conditions is often regarded as unreliable. To solve this issue, this study approaches AIS data to
obtain the ship's actual detailed geographical positions along its sailing trajectory and then further retrieve the
weather and sea condition information from publicly accessible meteorological data sources. These more reliable
data about weather and sea conditions the ship sails through is fused into voyage report data in order to improve
the accuracy of ship fuel consumption rate models. Eight 8100-TEU to 14,000-TEU containerships from a global
shipping company were used in experiments. For each ship, nine datasets were constructed based on data fusion
and eleven widely-adopted machine learning models were tested. Experimental results revealed the benefits of
fusing voyage report data, AIS data, and meteorological data in improving the fit performances of machine
learning models of forecasting ship fuel consumption rate. Over the best datasets, the performances of several
decision tree-based models are promising, including Extremely randomized trees (ET), AdaBoost (AB), Gradient
Tree Boosting (GB) and XGBoost (XG). With the best datasets, their R2 values over the training sets are all above
0.96 and mostly reach the level of 0.99–1.00, while their R2 values over the test sets are in the range from 0.75 to
0.90. Fit errors of ET, AB, GB, and XG on daily bunker fuel consumption, measured by RMSE and MAE, are usually
between 0.8 and 4.5 ton/day. These results are slightly better than our previous study, which confirms the
benefits of adopting the actual geographical positions of the ship recorded by AIS data, compared with the
estimated geographical positions derived from the great circle route, in retrieving weather and sea conditions the
ship sails through.
1. Introduction

The International Maritime Organization (IMO, 2020) has been pro-
moting energy-efficient operational measures in voyage management to
save bunker fuel and mitigate ship emissions, including sailing speed
optimization, trim optimization, weather routing, and virtual (jus-
t-in-time) arrival. These measures are preferred by shipping companies
because of their cost effectiveness compared to technical solutions (Wan
et al., 2018; Merkel et al., 2022). The shipping industry has been facing
some frustrations during the process of implementing these
energy-efficient measures owing to the inability to accurately quantify
howmuch bunker fuel a ship will consume in one day or hour in different
speed, displacement/draft, trim, weather, and sea conditions. Therefore,
.
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to advance these energy-efficient measures in the shipping industry, it is
paramount to lay a solid theoretical foundation by developing models
that can accurately quantify the relationship between fuel consumption
rate (MT/day, or MT/h) and its determinants, including sailing speed,
displacement/draft, trim, weather conditions, and sea conditions.

According to Yan et al. (2021), machine learning (ML) models are
emerging in recent years as an effective approach for ship fuel efficiency
analysis. Multiple data sources can assist shipping companies to develop
ML models of ship fuel efficiency to be used in energy-efficient opera-
tional measures in voyage management, including voyage report data,
sensor data, automatic identification system (AIS) data, and meteoro-
logical data. The systematic literature review of Yan et al. (2021) and a
literature review conducted in our previous study (“Data fusion and
2022
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machine learning for ship fuel efficiency modeling: Part I – voyage report data
and meteorological data”, referred to as “Li et al. (2022)” hereinafter)
show that few existing studies explore the complementary advantages of
different data sources and combine multiple data sources for the sake of
improving data quality for ML ship fuel efficiency models. Therefore, Li
et al. (2022) propose the following research questions regarding fusion of
different data sources that interest both academics and industry
professionals:

� RQ1. Is it possible to combine/fuse different but complementary data
sources for the sake of modeling accuracy for ship fuel efficiency
analysis? And how these data sources can be fused?

� RQ2. Compared to a single data source, what are the benefits of
fusing different data sources in terms of modeling accuracy and
generalization?

� RQ3. Selection of datasets and choice of models are two different
decision dimensions but they rely on each other. When these two
decisions are interwoven, how can we select the best datasets and best
models?

In our previous study, Li et al. (2022) noticed the data quality issue of
voyage report caused by the deck officers’ practice of snapshotting and
eye inspecting weather and sea conditions. To remedy this issue, Li et al.
(2022) developed a solution of fusing voyage report data and publicly
accessible meteorological data by replacing the information of snap-
shotted weather and sea conditions in voyage report with accurate hourly
weather and sea conditions retrieved from meteorological data. Over the
nine datasets from data fusion for eight 8,100-TEU to 14,000-TEU con-
tainerships, several ship-specific ML models of forecasting ship fuel
consumption rate achieve high fit performances with R2 values all above
0.96 and even reaching 0.99 to 1.00 for training sets, while their R2

values for test sets are also promising between 0.74 and 0.90.
In Li et al. (2022), a key step before retrieving exact information of

weather and sea conditions from meteorological data is calculating the
ship's hourly geographical positions (< Timestamp, latitude, longitude
>) along its sailing trajectory. Li et al. (2022) assumed the ship follows
the great circle route approximated by the widely adopted rhumb line
and adopted the rhumb line formulas (Bennett, 1996; Weintrit and
Kopacz, 2011) to calculate the geographical locations the ship passes in a
day. Several ship captains we consulted commented that the great circle
route may not be followed in sailing for several reasons and using the
geographical positions derived from the great circle route or the rhumb
line may introduce inaccuracy when weather and sea conditions are
retrieved from meteorological data. This is a prominent limitation of Li
et al. (2022).

To address this limitation, we approached MarineTraffic head-
quartered in Greece and purchased the AIS data of the eight container-
ships experimented with by Li et al. (2022), because AIS data provides
the detailed geographical positions of the ship forming its actual sailing
trajectory. Meanwhile, AIS data also provides the information of the
ship's heading at each geographical position, and this may make the
calculation of the directions of wind/waves/sea currents relative to the
ship's heading more reliable. The objective of this study is to investigate
whether the introduction of actual geographical positions in AIS data will
improve the information quality of weather and sea conditions retrieved
from meteorological data and therefore further improve the fit perfor-
mances of ML models when meteorological data and voyage report data
are combined.

The rest of the paper is organized as follows. Section 2 describes AIS
data, introduces the approach of fusing voyage report data, AIS data, and
meteorological data, and constructs several datasets based on data
fusion. Over these datasets of eight containerships, Section 3 experiments
with eleven ML models and makes informed decisions about dataset
choice and ML model selection. Section 4 draws concluding remarks.
2

2. Fusion of voyage report data, AIS data and meteorological
data

The same eight mega containerships as those in Li et al. (2022) are
considered in this study. Data sources of voyage report and meteoro-
logical data are also same to Li et al. (2022): a global shipping company
provides the voyage report data of these eight ships and the sailing period
recorded by the voyage report data spans from February 2014 to March
2016; Centre for Medium-range Weather Forecasts (ECMWF) (Hersbach
et al., 2018) provides the data of wind, waves, and sea water temperature
in the finest granularity of 0.25� (longitude) � 0.25� (latitude) � 1 h
(time); Copernicus Marine Service (CMEMS, also a.k.a. “Copernicus”)
(Rio et al., 2014) provides the data of sea currents in the finest granu-
larity of 0.25� (longitude) � 0.25� (latitude) � 3 h (time).

The purchased AIS data from MarineTraffic has 15 columns. Apart
from the identification and particulars of the ship (MMSI, Call Sign, Ship
Name, Flag Country, Draft Designed, Length) and the information about the
voyage (ETA, Destination Port), AIS data contains the detailed navigation
data including “Timestamp (UTC)”, “Navigation Status”, “Longitude Posi-
tion”, “Latitude Position”, “Ship Course”, “Ship Heading”, and “Sailing
Speed”. There is a data entry every 3–5 min. “Sailing Speed” appears to be
useful in our study. However, this study considers voyage report as the
main data source of ship fuel consumption which records information on
a daily basis. Therefore, “Sailing Speed” information in the time interval of
3–5 min from AIS data does not help in this study.

The information about “Timestamp (UTC)”, “Longitude Position”, and
“Latitude Position” could be quite useful in that it helps us find the actual
geographical positions of the ship in a day and recover its actual sailing
trajectory on that day. Further, accurate detailed information of weather
and sea conditions the ship sails through can be retrieved from meteo-
rological data, according to the actual sailing trajectory. “Ship Heading”
information could also be useful because it helps convert the (absolute)
directions of wind, waves, and sea currents reported by meteorological
data to relative directions of wind, waves, and sea currents against the
ship's heading, which is desired in ship fuel efficiency modeling. Li et al.
(2022) had to utilize “True Course” information in voyage report in the
calculation of relative directions of wind, waves, and sea currents as a
workaround because voyage report does not record the heading of the
ship.

The approach of fusing voyage report data, AIS data, and meteoro-
logical data is illustrated in Fig. 1. First, for a given day recorded by
voyage report, the ship's hourly geographical positions are retrieved from
AIS data. Specifically, the ship's positions at the times of {00:00 h, 01:00
h, 02:00 h, …, 23:00 h} are selected. If a data entry does not exist cor-
responding to e.g. 05:00 h, the entry in AIS data whose timestamp is
closest to this time point is used as the substitute. Second, according to
these geographical positions, the hourly weather and sea condition in-
formation are queried and obtained from meteorological data including
ECMWF (wind, waves, sea water temperature) and Copernicus (sea
currents). Then the directions of wind, waves, and sea currents are
converted to the relative directions to the ship's heading. Third, these
hourly weather and sea conditions are aggregated and produce their
daily averages. At last, daily average conditions of wind, waves, sea water
temperature, and sea currents are used to replace the meteorological
record in the voyage report.

In this data fusion approach, the noises of AIS data are not a concern
because only hourly geographical positions of the ship are needed for the
sake of retrieval of weather and sea conditions. Finer positions of the ship
from AIS data are meaningless because our target in this study is the daily
average weather and sea conditions the ship sails through for each day in
the voyage report. Even if there were noises in sampling the ship's hourly
geographical positions from AIS data, they would not cause a problem in
calculating the daily average weather and sea conditions confronting the
ship. Meanwhile, hourly positions of the ship already enable us to
retrieve the weather and sea conditions in the resolution of 15–28
nautical miles (corresponding to the sailing speeds of 15–28 knots),



Fig. 1. Approach of fusing voyage report data, AIS data, and meteorological data.

Y. Du et al. Communications in Transportation Research 2 (2022) 100073
which is sufficient for our research purpose. Finer positions of the ship,
say half-hourly positions, will break the daily trajectory into too short
segments (say each segment with 7–14 nautical miles) that do not make
sense and might be even shorter than the geographical granularity of the
finest meteorological dataset.

Similar to Li et al. (2022), this study also allows the conversion of the
precise values representing wind speed and relative directions of wind,
waves, and sea currents to fuzzy values. See Tables 2 and 3 and Fig. 1 of Li
et al. (2022). This is because voyage reports usually adopt fuzzy values
and our preliminary experiments show that fuzzy values sometimes
overcome data noises/inaccuracy and improve fit performance of ML
models. Overall, nine datasets are constructed from this data fusion
approach, and the features of each dataset are listed in Table 1. “Set1” in
Table 1 is exactly the same “Set1” in Li et al. (2022), which represents the
voyage report.

3. Experimental results and discussion

The eight containerships, voyage report data and meteorological
data, ML models, performance metrics of models, and experimental set-
tings are all the same as our previous study Li et al. (2022), which allows
experimental comparison with Li et al. (2022). ElevenMLmodels that are
experimented with include artificial neural network (ANN) (Haykin,
2008), support vector machine (SVM) (Boser et al., 1992), ridge regres-
sion (Ridge) (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996), basic
decision tree (DT) (Breiman et al., 1984), Extremely randomized trees
(ET) (Geurts et al., 2006), random forest (RF) (Breiman, 2001), AdaBoost
(AB) (Freund and Schapire, 1997; Drucker, 1997), gradient tree boosting
(GB) (Friedman, 2001), XGBoost (XG) (Chen and Guestrin, 2016), and
LightGBM (LB) (Ke et al., 2017).
3.1. Performances of eleven ML models over nine datasets and selection of
the best datasets

Same as Li et al. (2022), for each dataset in Table 1, we randomly
divided it to a training set (80% of data entries) and test set (20% of data
entries), which results in a split of the dataset. For each split of the
dataset, we experimented with a given ML model involving a process of
five-fold cross-validation based hyperparameter optimization with the
3

Bayesian Optimization method using the tree-structured Parzen Estima-
tors of hyperopt 0.2.2 library (Hyperopt) (Bergstra et al., 2013), which is
called a run. For each ML model over each dataset, we have 20 random
splits of the dataset and thus 20 runs of experiments. Each performance
metric (R2, MSE, RMSE, MAE and MAPE for training set, R2 (test) for test
set, see definition in Li et al. (2022)) takes the average of 20 runs to
overcome the influence of random splitting of the dataset. Experimental
results of ship S1 are reported in Table 2, while the results of ships S2 to
S8 can be found in Tables A1 to A7 in Appendix. Note that the perfor-
mances over the best datasets found by Li et al. (2022), including Set1
and Set3precise, are also reported in Tables 2 and A1 to A7, for the con-
venience of comparison with Li et al. (2022).

When quality of datasets and performance of ML models are inter-
woven, shown in Tables 2 and A1 to A7, a voting scheme same as Li et al.
(2022) is adopted. Each ML model acts as a voter and votes for the best
datasets (candidates) by considering R2 (with two decimal places) as the
first priority and R2 (test) (with two decimal places) as the secondary
performance metric. The voting result is collated in Table 3 in which the
last column is the votes of the correspondingMLmodels (voters). Fig. 2 is
the Tally sheet that counts the votes received by each dataset: Fig. 2(a)
considers all the models as voters; Fig. 2(b) does not consider DT, SVM,
ANN, Ridge, and LASSO as voters, because their fit performances are
significantly worse than ET, RF, AB, GB, XG and LB and thus they will not
be preferred by industry applications; Fig. 2(c) further removes RF, GB
and LB from the voter list because they are dominated by ET, AB, and XG
against both R2 and R2 (test).

It can be seen from Fig. 2 that AIS5precise receives the largest number of
votes, followed by Set3precise and Set1. AIS5precise receives 18 votes from
ET, RF, AB, GB, XG and LB, according to Fig. 2(b), and 9 votes from ET,
AB, and XG according to Fig. 2(c). This reveals that when AIS data is
available for ship fuel efficiency analysis, AIS5precise is the best, and this
dataset is better than Set1 and Set3precise from Li et al. (2022) which is the
Part I of this series of studies. This demonstrates the benefits of further
fusing AIS data to voyage report data and meteorological data considered
in Li et al. (2022). Therefore, we recommend using AIS5precise in practice
by fusing voyage report data, AIS data and meteorological data. When
AIS data is not available, we can combine voyage report data and
meteorological data and utilize Set3precise, or even adopt voyage report
data Set1 directly.



Table 1
Features contained in each dataset.

Original datasets Data source Features Dataset

Set1 AIS2preciseb AIS2fuzzyc AIS3preciseb AIS3fuzzyc AIS4preciseb AIS4fuzzyc AIS5preciseb AIS5fuzzyc

Voyage report
data

Shipping company Fuel
consumption
rate

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sailing speed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Displacement ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trim ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wind speed ✓

Wind direction
(Rel.)

✓

Swell height ✓

Swell direction
(Rel.)

✓

Sea currents
speed

✓

Sea currents
direction (Rel.)

✓

Sea water
temperature

✓

AIS þ
Meteorological
data

AISþ
European Centre for
Medium-range
Weather Forecasts
(ECMWF)

Wind speed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wind direction
(Rel.)a

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Swell height ✓ ✓ ✓ ✓ ✓ ✓

Swell direction
(Rel.)a

✓ ✓ ✓ ✓ ✓ ✓

Swell period
Wind wave
height

✓ ✓ ✓ ✓

Wind wave
direction (Rel.)a

✓ ✓ ✓ ✓

Wind wave
period
Combined wave
height

✓ ✓ ✓ ✓

Combined wave
direction (Rel.)a

✓ ✓ ✓ ✓

Combined wave
period
Sea water
temperature

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AIS þ Copernicus
Marine Service

Sea current
speed

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sea current
direction (Rel.)a

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note:

a Relative directions of wind/waves/sea currents are calculated based on ship's “heading” information from AIS data.
b The subscript “precise” means the directions of wind/waves/sea currents are calculated as the angles relative to ship's heading measured by degrees.
c The subscript “fuzzy”means the precise information of directions of wind/waves/sea currents is converted to fuzzy data as per Table 2 and Fig. 1 of Li et al. (2022),

and wind speed is represented by Beaufort scale numbers as per Table 3 of Li et al. (2022).
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Looking at the results here, one may ask why other datasets in Table 1
combine voyage report data, meteorological data, and AIS data but are
not competitive with the original voyage report data Set1, and even the
best dataset AIS5precise cannot always win the original voyage report
dataset Set1. Similarly, regarding the results reported in our previous
study (Li et al., 2022), one may ask why many datasets in Li et al. (2022)
combine voyage report data and meteorological data but are not
competitive with the original voyage report data Set1, and even the best
dataset Set3precise in Li et al. (2022) cannot always win the original voyage
report dataset Set1. Our deep investigation into the data reveals the
following possible reasons. First, as reported by ECMWF and CMEMS in
their websites, their meteorological data cannot avoid inaccuracy and
errors, because these data relies on many types of collection equipment
and the calculation of many models. As the evidence, we will see in Part
III of this series of studies that the wind conditions contained in ECMWF
are quite different from the actual wind conditions captured by the
sensors on board the ships.

Second, the power of “average” calculation plays a critical role in
reducing the quality of data used for model training. Specifically, the
4

weather condition for a given day (corresponding to a voyage report data
entry) is estimated by taking the average of the weather conditions at 24
waypoints (hourly waypoints) during the day. However, even accurate
weather conditions at these waypoints cannot guarantee their daily
average is closer to the actual weather condition (the reality). To provide
an analogy for the sake of understanding, consider a situation in which
we are estimating the actual average/mean value of a random variable
through several observations. Assume the actual average value of this
random variable is 10. Consider two different samples of observations:
Sample 1¼ {9.5, 9.5, 9.5, 11, 12, 13} and Sample 2¼ {9, 7, 5, 11, 13, 15}.
The deviation of data in Sample 1 from the real average ({0.5, 0.5, 0.5, 1,
2, 3}) is much smaller than that of Sample 2 ({1, 3, 5, 1, 3, 5}). However,
the average value estimated through Sample 1 is 10.75, which is worse
than that estimated from Sample 2 (i.e., 10, the same as the actual
average).

Third, the quality of voyage report data might already be good
enough. Specifically, when it turns to the snapshotted weather and sea
condition data, a ship captain we consulted pointed out “though the
snapshotted weather and sea condition data is not desired, if you



Table 2
The fit performance of eleven machine learning models for ship S1.

Model Dataset R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)

DT Set1 0.846 0.643 81.022 8.934 6.851 7.995
AIS2precise 0.840 0.630 77.176 8.694 6.705 7.959
AIS2fuzzy 0.822 0.623 85.984 9.211 7.093 8.448
AIS3precise 0.827 0.624 83.223 9.057 6.908 8.190
AIS3fuzzy 0.837 0.630 78.690 8.719 6.714 7.970
AIS4precise 0.841 0.641 76.360 8.633 6.604 7.779
AIS4fuzzy 0.841 0.625 76.849 8.681 6.688 7.928
AIS5precise 0.838 0.618 78.187 8.788 6.765 7.982
AIS5fuzzy 0.835 0.635 79.655 8.869 6.857 8.166
Set3precise a 0.847 0.617 73.848 8.532 6.522 7.697

ET Set1 0.992 0.781 4.001 1.525 1.090 1.255
AIS2precise 0.958 0.773 20.546 4.176 3.152 3.765
AIS2fuzzy 0.955 0.766 21.556 4.174 3.164 3.797
AIS3precise 0.960 0.767 19.295 4.067 3.079 3.691
AIS3fuzzy 0.945 0.772 26.555 4.972 3.829 4.610
AIS4precise 0.959 0.768 19.646 4.095 3.091 3.719
AIS4fuzzy 0.966 0.769 16.417 3.578 2.716 3.266
AIS5precise 0.951 0.773 23.833 4.511 3.428 4.084
AIS5fuzzy 0.952 0.771 23.140 4.393 3.374 4.034
Set3precise a 0.965 0.762 17.043 3.524 2.699 3.245

RF Set1 0.964 0.761 18.837 4.321 3.194 3.721
AIS2precise 0.940 0.757 29.138 5.322 3.997 4.760
AIS2fuzzy 0.934 0.757 31.834 5.575 4.183 4.994
AIS3precise 0.932 0.753 32.837 5.657 4.221 5.028
AIS3fuzzy 0.943 0.756 27.491 5.186 3.895 4.635
AIS4precise 0.932 0.754 32.987 5.663 4.216 5.041
AIS4fuzzy 0.940 0.758 29.145 5.335 3.985 4.762
AIS5precise 0.938 0.751 30.021 5.416 4.040 4.798
AIS5fuzzy 0.949 0.766 24.816 4.914 3.678 4.368
Set3precise a 0.936 0.756 30.736 5.506 4.112 4.911

AB Set1 0.955 0.758 23.482 4.687 4.036 4.940
AIS2precise 0.956 0.762 21.288 4.333 3.661 4.495
AIS2fuzzy 0.947 0.759 25.519 4.648 3.801 4.620
AIS3precise 0.947 0.755 25.740 4.879 4.148 5.082
AIS3fuzzy 0.958 0.759 20.443 4.176 3.395 4.129
AIS4precise 0.946 0.761 26.012 4.816 4.091 5.023
AIS4fuzzy 0.951 0.751 23.966 4.460 3.733 4.568
AIS5precise 0.950 0.763 24.422 4.732 3.966 4.854
AIS5fuzzy 0.963 0.765 17.825 3.861 3.142 3.804
Set3precise a 0.938 0.752 29.988 5.180 4.370 5.371

GB Set1 0.987 0.764 6.570 2.238 1.633 1.893
AIS2precise 0.958 0.740 20.367 4.158 3.130 3.722
AIS2fuzzy 0.943 0.756 27.321 5.079 3.867 4.574
AIS3precise 0.961 0.749 19.024 3.972 2.993 3.552
AIS3fuzzy 0.955 0.759 21.837 4.113 3.167 3.757
AIS4precise 0.952 0.746 23.273 4.533 3.398 4.068
AIS4fuzzy 0.957 0.752 20.695 4.328 3.319 3.954
AIS5precise 0.941 0.738 28.137 4.950 3.745 4.445
AIS5fuzzy 0.955 0.754 21.469 4.385 3.360 3.967
Set3precise a 0.962 0.743 18.367 3.776 2.825 3.330

XG Set1 0.995 0.771 2.805 1.392 1.008 1.168
AIS2precise 0.964 0.755 17.318 3.687 2.753 3.217
AIS2fuzzy 0.951 0.759 23.599 4.375 3.297 3.850
AIS3precise 0.955 0.753 21.321 4.017 2.952 3.439
AIS3fuzzy 0.951 0.766 23.136 4.388 3.304 3.850
AIS4precise 0.959 0.757 19.655 4.101 3.045 3.564
AIS4fuzzy 0.945 0.756 26.670 4.796 3.626 4.259
AIS5precise 0.940 0.755 28.831 5.231 3.827 4.389
AIS5fuzzy 0.957 0.759 20.713 4.086 3.018 3.475
Set3precise a 0.953 0.734 22.403 4.236 3.177 3.695

LB Set1 0.989 0.755 5.857 2.183 1.652 1.924
AIS2precise 0.941 0.732 28.704 4.895 3.705 4.403
AIS2fuzzy 0.927 0.737 34.903 5.699 4.347 5.157
AIS3precise 0.931 0.742 33.072 5.560 4.152 4.962
AIS3fuzzy 0.922 0.739 37.613 5.982 4.551 5.421
AIS4precise 0.929 0.723 34.023 5.658 4.281 5.131
AIS4fuzzy 0.914 0.723 41.501 6.174 4.671 5.577
AIS5precise 0.927 0.731 34.888 5.579 4.095 4.907
AIS5fuzzy 0.938 0.736 29.667 5.060 3.760 4.486
Set3precise a 0.943 0.723 27.467 4.806 3.609 4.272

SVM Set1 0.861 0.784 73.082 8.540 6.365 7.156
AIS2precise 0.868 0.795 63.462 7.956 5.915 6.810

Table 2 (continued )

Model Dataset R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)

AIS2fuzzy 0.865 0.796 64.961 8.047 6.059 6.973
AIS3precise 0.864 0.794 65.598 8.088 6.076 7.012
AIS3fuzzy 0.876 0.796 59.629 7.692 5.732 6.604
AIS4precise 0.865 0.793 64.842 8.037 6.034 6.961
AIS4fuzzy 0.870 0.786 62.681 7.882 5.928 6.838
AIS5precise 0.863 0.799 65.964 8.114 6.080 6.999
AIS5fuzzy 0.867 0.798 64.071 7.994 5.977 6.866
Set3precise a 0.858 0.786 68.382 8.263 6.143 7.059

ANN Set1 0.869 0.781 68.911 8.290 6.391 7.296
AIS2precise 0.876 0.773 59.980 7.662 5.914 6.866
AIS2fuzzy 0.901 0.778 48.121 6.838 5.360 6.232
AIS3precise 0.865 0.784 65.208 8.036 6.231 7.285
AIS3fuzzy 0.864 0.781 66.001 8.030 6.270 7.379
AIS4precise 0.859 0.758 68.527 7.974 6.165 7.174
AIS4fuzzy 0.878 0.775 58.615 7.552 5.914 6.949
AIS5precise 0.871 0.780 62.329 7.848 6.054 7.041
AIS5fuzzy 0.868 0.773 63.823 7.814 6.053 7.071
Set3precise a 0.854 0.778 70.184 8.366 6.437 7.518

Ridge Set1 0.814 0.774 97.422 9.868 7.725 8.932
AIS2precise 0.826 0.786 83.624 9.143 7.097 8.337
AIS2fuzzy 0.823 0.783 85.424 9.241 7.252 8.528
AIS3precise 0.835 0.792 79.647 8.923 6.999 8.239
AIS3fuzzy 0.833 0.793 80.613 8.977 7.083 8.330
AIS4precise 0.832 0.790 80.693 8.981 7.014 8.239
AIS4fuzzy 0.828 0.788 82.842 9.100 7.205 8.459
AIS5precise 0.828 0.788 82.760 9.096 7.029 8.250
AIS5fuzzy 0.825 0.786 84.246 9.177 7.121 8.359
Set3precise a 0.830 0.784 81.939 9.050 6.993 8.192

LASSO Set1 0.814 0.773 97.552 9.875 7.711 8.917
AIS2precise 0.826 0.784 83.984 9.162 7.109 8.353
AIS2fuzzy 0.822 0.782 85.539 9.247 7.256 8.536
AIS3precise 0.834 0.793 79.815 8.932 6.999 8.238
AIS3fuzzy 0.832 0.791 81.130 9.005 7.087 8.327
AIS4precise 0.832 0.792 80.977 8.997 7.027 8.257
AIS4fuzzy 0.828 0.789 83.030 9.110 7.212 8.473
AIS5precise 0.828 0.788 82.784 9.097 7.041 8.271
AIS5fuzzy 0.825 0.784 84.263 9.178 7.124 8.369
Set3precise a 0.829 0.786 82.204 9.064 6.997 8.191

Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series
of studies.
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snapshotted 8-m waves/swells, it is almost impossible that your ship
sailed through good weather and sea conditions on average on that
day”. This comment indicates that the snapshotted weather and sea
condition data might be representative, though to unknow degrees, for
the actual weather and sea conditions the ship sails through in a day.
3.2. Performance comparison of ML models

While Table 3 reveals the performances of different ML models, we
further report their performances over the best dataset AIS5precise of eight
ships in Table 4. Tables 3 and 4 both confirm that ET, RF, AB, GB, XG and
LB are good candidate models that can be adopted by the shipping in-
dustry. Their R2 values over the best datasets are all above 0.95 and even
reach the level of 0.99–1.00, while their R2 performance over the test sets
is in the range from 0.75 to 0.90. The remaining models, including DT,
SVM, ANN, Ridge, and LASSO, are not recommended for industry ap-
plications because their R2 values on the training sets are usually
comparatively low, while the values of R2 over the test sets have not
shown any advantages compared to ET, RF, AB, GB, XG and LB.

Further, the fit performances of RF and LB are usually slightly
dominated by ET, AB, GB, and XG, against both R2 and R2 (test), which
confirms the sufficiency of only installing ET, AB, GB and XG in industry
applications related to ship fuel efficiency analysis. GB can also be
removed from industry installation once XG has already be installed



Table 3
Best performance of each machine learning model from ten datasets and the
datasets that achieve the best performance. R2 (with two decimal places) is
considered as the first priority, and R2 (test) (with two decimal places) is the
secondary performance metric.

Ship Model Best
R2

Best R2

(test)
Datasets

S1 DT 0.85 0.64 Set1
ET 0.99 0.78 Set1
RF 0.96 0.76 Set1
AB 0.96 0.77 AIS5fuzzy
GB 0.99 0.76 Set1
XG 1.00 0.77 Set1
LB 0.99 0.76 Set1
SVM 0.88 0.80 AIS3fuzzy
ANN 0.90 0.78 AIS2fuzzy
Ridge 0.84 0.79 AIS3precise
LASSO 0.83 0.79 AIS3precise

S2 DT 0.85 0.65 AIS2precise
ET 0.98 0.78 AIS5precise
RF 0.96 0.77 Set1
AB 0.98 0.75 AIS2precise, AIS3precise, AIS3fuzzy, AIS4precise,

AIS5precise
GB 0.99 0.77 AIS4precise
XG 0.99 0.77 Set3precise
LB 0.98 0.75 Set3precise
SVM 0.88 0.82 AIS3precise, AIS4precise
ANN 0.91 0.79 Set3precise
Ridge 0.84 0.81 AIS3precise, AIS4precise
LASSO 0.84 0.81 AIS3precise, AIS4precise

S3 DT 0.87 0.71 AIS3precise
ET 0.99 0.82 AIS2precise, Set3precise
RF 0.96 0.81 AIS2precise, AIS5precise, AIS5fuzzy
AB 1.00 0.82 AIS5precise
GB 0.97 0.82 AIS2precise, AIS3precise, AIS5precise, AIS5fuzzy
XG 0.98 0.82 AIS5precise
LB 0.95 0.80 AIS2precise, AIS3precise, AIS3fuzzy, AIS5precise,

AIS5fuzzy, Set3precise
SVM 0.85 0.83 AIS4precise
ANN 0.87 0.80 AIS3precise, Set3precise
Ridge 0.80 0.80 AIS3precise, AIS3fuzzy, AIS4precise, AIS4fuzzy,

AIS5precise, Set3precise
LASSO 0.80 0.80 AIS3precise, AIS3fuzzy, AIS4precise, AIS4fuzzy,

AIS5precise, Set3precise
S4 DT 0.93 0.73 AIS3fuzzy

ET 1.00 0.87 AIS2precise, AIS3precise, AIS4precise, AIS5precise,
AIS5fuzzy, Set3precise

RF 0.98 0.86 AIS2precise, AIS5precise, AIS5fuzzy
AB 0.99 0.87 AIS2precise, AIS3precise, AIS3fuzzy, AIS5precise,

AIS5fuzzy, Set3precise
GB 1.00 0.87 AIS3precise
XG 1.00 0.87 AIS3fuzzy, Set3precise
LB 0.99 0.87 AIS3precise, AIS3fuzzy, AIS5precise, AIS5fuzzy
SVM 0.94 0.85 AIS2fuzzy
ANN 0.95 0.86 Set3precise
Ridge 0.83 0.82 Set1
LASSO 0.83 0.81 AIS3precise, AIS4precise, AIS5precise, Set3precise

S5 DT 0.95 0.83 AIS5fuzzy
ET 1.00 0.90 Set1, AIS2precise, AIS3precise, AIS4precise
RF 0.98 0.89 AIS3fuzzy, AIS4fuzzy, AIS5fuzzy
AB 1.00 0.90 AIS3fuzzy, AIS5fuzzy
GB 1.00 0.89 AIS2precise, AIS2fuzzy, AIS3precise, AIS3fuzzy,

AIS4precise, AIS5precise
XG 1.00 0.89 AIS3precise
LB 0.99 0.88 Set1, AIS2precise, AIS3precise, AIS3fuzzy,

AIS5precise
SVM 0.93 0.88 Set1
ANN 0.94 0.89 AIS2fuzzy
Ridge 0.89 0.88 AIS2precise, AIS5fuzzy
LASSO 0.89 0.88 AIS2precise

S6 DT 0.86 0.57 AIS4precise
ET 0.99 0.77 Set1, AIS2precise, AIS2fuzzy, AIS3fuzzy
RF 0.96 0.77 Set1
AB 0.99 0.75 AIS3precise
GB 0.97 0.79 Set1
XG 0.97 0.79 Set1
LB 0.97 0.77 AIS2fuzzy

Table 3 (continued )

Ship Model Best
R2

Best R2

(test)
Datasets

SVM 0.86 0.77 AIS2precise
ANN 0.88 0.76 AIS2precise
Ridge 0.79 0.75 AIS3precise, AIS3fuzzy, AIS4precise
LASSO 0.79 0.75 AIS3precise, AIS4precise

S7 DT 0.88 0.68 Set3precise
ET 0.99 0.81 Set3precise
RF 0.97 0.82 AIS5fuzzy
AB 0.99 0.83 AIS5precise
GB 0.99 0.79 Set3precise
XG 0.99 0.78 Set3precise
LB 0.98 0.81 AIS3precise, AIS3fuzzy
SVM 0.91 0.79 Set1
ANN 0.90 0.82 AIS4precise
Ridge 0.82 0.76 Set3precise
LASSO 0.82 0.76 Set3precise

S8 DT 0.93 0.78 AIS5fuzzy
ET 1.00 0.88 Set1, AIS5precise, Set3precise
RF 0.98 0.86 Set1, AIS5precise, AIS5fuzzy, Set3precise
AB 1.00 0.87 AIS5precise, AIS5fuzzy
GB 0.99 0.86 AIS5precise, AIS5fuzzy, Set3precise
XG 0.99 0.88 Set1
LB 0.98 0.87 Set1
SVM 0.91 0.87 Set3precise
ANN 0.92 0.86 Set3precise
Ridge 0.88 0.85 Set3precise
LASSO 0.88 0.85 Set3precise
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because GB and XG have close fit performances. Fit errors of ET, AB, GB,
and XG on daily bunker fuel consumption, measured by RMSE and MAE,
are usually between 0.8 and 4.5 ton/day, though fit errors might be over
4.5 ton/day occasionally if datasets are not carefully chosen.

The experimental results reported in Tables 3 and 4 also rank the
performances of eleven ML models into the following four different tiers.
The performances of the models in the same tier are quite close, while
those of the models in different tiers are significantly different. All the
experimental findings for fit performance of ML models are consistent
with those from our Part I of this series of studies (Li et al., 2022).

� Tier 1: ET, AB, GB, and XG;
� Tier 2: RF, LB;
� Tier 3: DT, SVM, ANN; and
� Tier 4: Ridge, LASSO.

3.3. The impact of wave period

We further added “combined waves period” to the best dataset
AIS5precise to see whether adding wave period information improves the
experimental result. The experimental results of three best models (ET,
AB, and XG) for ships S1, S3, S5, and S8 are shown in Fig. 3.

Fig. 3 reveals that including wave period information into models
might improve the fit performance of models (Ships S1 and S5) but this
improvement is often negligible. It might also slightly reduce the fit
performance of models. This indicates that the influence of wave period
on the fuel consumption rate of a mega conainership at sea is negligible
and could be explained by the noises associated with the training data. By
considering the consistent result in Part I of this series of studies (Li et al.,
2022), we do not recommend including wave period into models, if
voyage report data and meteriological data are combined, no matter
whether AIS data is involved.

3.4. An experimental summary of this study and Li et al. (2022)

This section summarizes the experimental findings in Li et al. (2022)
and this study. Fig. 4 illustrates the fit performances (R2 and RMSE) of
three best models (ET, AB and XG) over three best datasets: Set1 is the
original voyage report data, Set3precise represents the best dataset by



Fig. 2. Best datasets voted by machine learning models.

Table 4
The fit performance of eleven machine learning models over dataset AIS5precise.

Ship Model R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)

S1 DT 0.838 0.527 78.187 8.788 6.765 7.982
ET 0.951 0.719 23.833 4.511 3.428 4.084
RF 0.938 0.692 30.021 5.416 4.040 4.798
AB 0.950 0.706 24.422 4.732 3.966 4.854
GB 0.941 0.676 28.137 4.950 3.745 4.445
XG 0.940 0.696 28.831 5.231 3.827 4.389
LB 0.927 0.667 34.888 5.579 4.095 4.907
SVM 0.863 0.752 65.964 8.114 6.080 6.999
ANN 0.871 0.728 62.329 7.848 6.054 7.041
Ridge 0.828 0.738 82.760 9.096 7.029 8.250
LASSO 0.828 0.737 82.784 9.097 7.041 8.271

S2 DT 0.838 0.546 100.776 9.878 7.326 8.621
ET 0.979 0.717 13.486 3.239 2.390 2.760
RF 0.948 0.693 32.466 5.645 4.072 4.748
AB 0.975 0.690 15.834 3.830 3.227 3.765
GB 0.964 0.705 22.248 4.288 3.136 3.537
XG 0.965 0.700 21.869 4.287 2.959 3.263
LB 0.959 0.662 25.714 4.671 3.276 3.798
SVM 0.880 0.758 74.547 8.599 6.191 6.738
ANN 0.895 0.744 65.299 8.036 6.139 6.847
Ridge 0.829 0.760 106.864 10.332 7.780 8.791
LASSO 0.829 0.760 106.939 10.336 7.779 8.774

S3 DT 0.867 0.630 97.066 9.534 6.948 8.222
ET 0.982 0.799 13.029 3.188 1.858 2.364
RF 0.963 0.777 27.121 5.168 3.376 4.170
AB 0.995 0.789 3.588 1.728 1.292 1.513
GB 0.969 0.787 22.552 4.221 2.710 3.366
XG 0.976 0.789 17.745 3.884 2.439 2.960
LB 0.952 0.770 35.323 5.432 3.468 4.412
SVM 0.840 0.795 115.821 10.727 6.746 8.262
ANN 0.860 0.781 101.322 10.029 6.763 8.262
Ridge 0.796 0.771 147.564 12.133 8.425 10.745
LASSO 0.796 0.770 147.612 12.135 8.426 10.746

S4 DT 0.904 0.706 78.681 8.637 6.425 6.897
ET 0.998 0.849 1.642 0.927 0.651 0.696
RF 0.975 0.835 20.097 4.472 3.292 3.590
AB 0.988 0.847 9.701 2.956 2.466 2.774
GB 0.991 0.851 7.631 2.412 1.810 1.933
XG 0.992 0.848 6.441 2.074 1.548 1.640
LB 0.992 0.842 6.859 2.321 1.771 1.925
SVM 0.927 0.836 59.875 7.686 5.642 6.018
ANN 0.939 0.846 50.219 7.062 5.524 5.962
Ridge 0.827 0.775 141.409 11.888 9.244 9.534
LASSO 0.827 0.775 141.586 11.895 9.244 9.530

S5 DT 0.948 0.764 28.458 5.104 3.741 5.634
ET 0.997 0.875 1.475 0.901 0.652 0.988
RF 0.983 0.857 9.594 3.090 2.281 3.497
AB 0.995 0.869 2.723 1.476 1.172 2.123
GB 0.997 0.874 1.628 1.102 0.823 1.310
XG 0.991 0.871 4.860 1.909 1.382 2.183
LB 0.991 0.858 4.875 2.049 1.523 2.390
SVM 0.918 0.856 45.274 6.711 4.874 7.385
ANN 0.935 0.855 36.276 5.973 4.538 6.997
Ridge 0.887 0.851 62.515 7.903 5.941 9.040
LASSO 0.887 0.851 62.689 7.914 5.950 9.050

S6 DT 0.847 0.521 63.834 7.896 5.826 7.701
ET 0.984 0.729 6.604 2.439 1.780 2.368
RF 0.959 0.711 17.057 4.116 2.974 3.950
AB 0.983 0.714 6.959 2.393 1.958 2.888
GB 0.954 0.731 19.294 4.244 3.282 4.469
XG 0.948 0.731 21.685 4.533 3.501 4.755
LB 0.956 0.713 18.441 3.987 3.023 4.106
SVM 0.846 0.738 64.572 8.017 5.703 7.479
ANN 0.868 0.731 55.181 7.401 5.673 7.526
Ridge 0.778 0.707 92.805 9.631 7.393 9.895
LASSO 0.777 0.704 93.139 9.648 7.387 9.878

S7 DT 0.865 0.633 54.511 7.334 5.473 7.099
ET 0.978 0.811 8.811 2.497 1.753 2.266
RF 0.964 0.787 14.703 3.799 2.760 3.604
AB 0.988 0.802 4.812 2.046 1.675 2.298
GB 0.975 0.802 10.330 3.084 2.147 2.810
XG 0.973 0.803 10.967 3.204 2.208 2.823

(continued on next page)
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fusing voyage report data and meteorological data, and AIS5precise rep-
resents the best dataset by fusing voyage report data, meteorological
data, and AIS data. Overall, as shown in the Tally sheet in Fig. 2, AIS5-
precise is slightly better than Set3precisewhich in turn is slightly better than
Set1. The fit errors of ET, AB and XG over these datasets are normally
within 5 ton/day and can be as low as less than 1 ton/day.

Figs. 2 and 4 also reveal that the decision of selecting goodMLmodels
7



Table 4 (continued )

Ship Model R2 R2

(test)
MSE RMSE

(ton/
day)

MAE
(ton/
day)

MAPE
(%)

LB 0.981 0.775 7.624 2.614 1.804 2.364
SVM 0.854 0.789 58.893 7.641 5.411 6.831
ANN 0.879 0.778 48.929 6.903 5.287 6.805
Ridge 0.809 0.771 77.312 8.789 6.635 8.431
LASSO 0.808 0.769 77.734 8.813 6.664 8.483

S8 DT 0.908 0.738 55.429 7.369 5.275 6.362
ET 0.998 0.860 1.223 0.864 0.549 0.687
RF 0.975 0.835 15.054 3.848 2.645 3.229
AB 0.995 0.847 3.047 1.544 1.182 1.516
GB 0.988 0.839 7.367 2.097 1.438 1.781
XG 0.973 0.843 16.064 3.747 2.646 3.231
LB 0.973 0.827 16.500 3.523 2.521 3.138
SVM 0.897 0.838 62.015 7.865 5.503 6.604
ANN 0.911 0.824 53.888 7.282 5.345 6.458
Ridge 0.867 0.817 80.108 8.945 6.728 8.344
LASSO 0.867 0.818 80.433 8.963 6.737 8.348
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is interwoven with the decision of selecting good datasets. For instance,
in Fig. 4, when the model AB is adopted, AIS5precise demonstrates the
quality of the best dataset. However, when ET or XG is adopted, Set1 and
Set3precise have some chance to win.

4. Conclusions and discussion

This study, as the Part II of this series of studies, was motivated by a
limitation of our previous study (Part I) that weather and sea condition
information derived from the great circle sailing route (suggested by
industry professionals) might be inaccurate. In this study, AIS data is
further fused to voyage report data and meteorological data in that AIS
data provides actual geographical positions of the ship which further help
Fig. 3. Fit performance of three best models (ET, AB, XG) over d
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to retrieve more accurate weather and sea condition information from
meteorological data.

To summarize Part I (Li et al., 2022) and Part II (this study) of this
series of studies, when dataset choice is considered, the original voyage
report dataset Set1 has a decent quality for ship fuel efficiency modeling;
if more effort is paid to fuse voyage report data and meteorological data,
data quality improves slightly and Set3precise can be adopted. When AIS
data is available, further including AIS data might also be beneficial,
which suggests the adoption of the datasetAIS5precise. As far as MLmodel
choice is concerned, we recommend the installation of four decision-tree
based models including ET, AB, GB, and XG because they usually possess
the highest fit performance and good generalization performance. Their
performances are also quite robust against random splits of a dataset into
training and test sets.

Overall, the best datasets found, including Set1, Set3precise, and
AIS5precise, ensure accurate fit performances of best MLmodels: R2 on the
training set is above 0.96 and even reaches 0.99 to 1.00, and R2 on the
test set is between 0.74 and 0.90; the fit errors measured by RMSE and
MAE are between 0.5 and 4.5 ton/day. This accuracy is sufficient for
many industry applications and energy-efficient operational measures for
shipping companies, including sailing speed optimization, weather
routing, and virtual arrivals. Therefore, apart from shipping companies,
this research may also interest weather information service providers
(WISPs) that are innovating weather routing, sailing speed optimization,
and virtual (just-in-time) arrivals. International shipping associations
that are pioneering in virtual arrival policy (BIMCO, 2021) may also find
our studies useful, because a barrier to virtual arrival is the difficulty in
quantifying the bunker fuel savings in different speed, draft, weather,
and sea conditions (Merkel et al., 2022). Our studies also provide regu-
lators such as IMO and EU with more quantitative evidence on how
different data sources can be fully utilized for ship fuel efficiency analysis
and what level of accuracy the state-of-the-art ML models can achieve to
ataset AIS5precise, with and without wave period information.



Fig. 4. Fit performance (R2 and RMSE) of three best models (ET, AB, XG) on three best datasets (Set 1, Set3precise, AIS5precise).
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model a ship's bunker fuel consumption rate and the resultant emission
rate.

Our industry collaborator, a global container shipping company, has
been working with voyage report data as the main data source to clarify
the bunker fuel efficiency issues they encountered. Though they do not
have the research capacity of fusing different data sources and exper-
imenting with state-of-the-art ML models, the suggestions of additionally
using meteorological data and AIS data are all from them. Part I and Part
II of this series of studies turned these basic ideas to solid research out-
comes with intensive experiments with eight mega containerships. For
the first time, we provide a clear answer to several questions a container
shipping company may ask, including ‘does fusing voyage report data
and other data sources improve the quality of data for ship fuel efficiency
analysis?’, and ‘what level of accuracy can state-of-the-art ML models
achieve over these fused datasets?’.

The reported fit and generalization performances of ET, AB, GB and
XG are probably the highest level of accuracy we could achieve to model
a mega containership's fuel consumption rate, if voyage report data is
used as the main source of bunker fuel consumption. Section 3.1 dis-
cusses the main reasons why it is difficult, if not impossible, to further
9

improve the modeling accuracy. These reasons boil down to the fact that
voyage report data reports the “daily” bunker fuel consumption of a ship.
Therefore, it is natural to further ask whether a data source with a finer
granularity (sampling frequency) such as sensor data further improves
the accuracy of ship fuel consumption rate modeling. This will be
answered in a following study, referred to as “Part III” of this series of
studies.

Replication and data sharing

Computer code in Python in this study is published in GitHub as a
software infrastructure to reduce the exploration efforts of industry
professionals. Best trained machine learning models are also published in
GitHub, which enables maritime researchers to estimate the bunker fuel
consumption rates of different sizes of mega containerships in different
sailing speed, draft, trim and weather/sea conditions, though our raw
data is confidential. The machine learning models published are
completely black boxes, and one cannot conduct reverse engineering to
access the original datasets. Readers can find the computer code and
trained machine learning models in the URL: https://github.com/yuqua

https://github.com/yuquandu/Data-driven-Ship-Fuel-Efficiency-Modeling
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ndu/Data-driven-Ship-Fuel-Efficiency-Modeling.
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Appendix A
Table A1
The fit performance of eleven machine learning models for ship S2.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.833
 0.668
 113.854
 10.580
 7.934
 8.951

AIS2precise
 0.848
 0.647
 95.131
 9.497
 7.026
 8.169

AIS2fuzzy
 0.850
 0.635
 94.066
 9.585
 7.155
 8.275

AIS3precise
 0.832
 0.625
 105.279
 10.063
 7.466
 8.761

AIS3fuzzy
 0.835
 0.616
 103.114
 10.046
 7.495
 8.671

AIS4precise
 0.854
 0.634
 91.071
 9.389
 6.915
 8.058

AIS4fuzzy
 0.832
 0.638
 104.706
 10.121
 7.549
 8.763

AIS5precise
 0.838
 0.641
 100.776
 9.878
 7.326
 8.621

AIS5fuzzy
 0.844
 0.645
 98.151
 9.776
 7.276
 8.406

Set3precise a
 0.820
 0.589
 112.089
 10.461
 7.916
 9.230
ET
 Set1
 0.971
 0.786
 19.857
 4.055
 2.986
 3.306

AIS2precise
 0.966
 0.769
 21.080
 4.247
 3.184
 3.681

AIS2fuzzy
 0.958
 0.765
 26.376
 5.012
 3.869
 4.454

AIS3precise
 0.973
 0.775
 16.741
 3.697
 2.653
 3.048

AIS3fuzzy
 0.968
 0.769
 19.826
 4.047
 2.961
 3.398

AIS4precise
 0.969
 0.767
 19.271
 4.076
 3.015
 3.476

AIS4fuzzy
 0.962
 0.764
 23.481
 4.488
 3.310
 3.817

AIS5precise
 0.979
 0.776
 13.486
 3.239
 2.390
 2.760

AIS5fuzzy a
 0.952
 0.766
 29.638
 5.037
 3.783
 4.339

Set3precise
 0.974
 0.765
 15.842
 3.377
 2.445
 2.780
RF
 Set1
 0.959
 0.766
 27.622
 5.205
 3.750
 4.227

AIS2precise
 0.947
 0.753
 32.873
 5.683
 4.092
 4.765

AIS2fuzzy
 0.955
 0.751
 27.856
 5.237
 3.790
 4.396

AIS3precise
 0.955
 0.757
 28.055
 5.259
 3.774
 4.415

AIS3fuzzy
 0.945
 0.750
 34.278
 5.766
 4.051
 4.704

AIS4precise
 0.951
 0.753
 30.772
 5.477
 3.879
 4.491

AIS4fuzzy
 0.946
 0.748
 33.751
 5.721
 4.078
 4.720

AIS5precise
 0.948
 0.757
 32.466
 5.645
 4.072
 4.748

AIS5fuzzy
 0.949
 0.754
 31.822
 5.577
 3.975
 4.637

Set3precise a
 0.950
 0.740
 31.494
 5.541
 4.007
 4.662
AB
 Set1
 0.968
 0.762
 21.779
 4.305
 3.609
 4.143

AIS2precise
 0.980
 0.748
 12.278
 3.280
 2.750
 3.190

AIS2fuzzy
 0.973
 0.739
 16.514
 3.821
 3.216
 3.725

AIS3precise
 0.980
 0.749
 12.642
 3.279
 2.739
 3.205

AIS3fuzzy
 0.977
 0.746
 14.184
 3.472
 2.922
 3.409

AIS4precise
 0.980
 0.748
 12.489
 3.353
 2.804
 3.262

AIS4fuzzy
 0.976
 0.738
 14.841
 3.491
 2.913
 3.390

AIS5precise
 0.975
 0.754
 15.834
 3.830
 3.227
 3.765

AIS5fuzzy
 0.971
 0.754
 18.197
 4.128
 3.549
 4.162

Set3precise a
 0.961
 0.743
 24.755
 4.778
 4.073
 4.729
GB
 Set1
 0.964
 0.781
 24.457
 4.564
 3.429
 3.793

AIS2precise
 0.980
 0.764
 12.651
 3.166
 2.496
 2.842

AIS2fuzzy
 0.964
 0.749
 22.561
 4.354
 3.304
 3.719

AIS3precise
 0.979
 0.773
 12.602
 2.905
 2.149
 2.421

AIS3fuzzy
 0.980
 0.760
 12.341
 3.100
 2.236
 2.502

AIS4precise
 0.988
 0.772
 7.589
 2.274
 1.677
 1.884

AIS4fuzzy
 0.973
 0.763
 16.682
 3.628
 2.707
 3.057

AIS5precise
 0.964
 0.766
 22.248
 4.288
 3.136
 3.537

AIS5fuzzy
 0.967
 0.759
 20.448
 4.297
 3.300
 3.722

Set3precise a
 0.992
 0.760
 5.008
 1.817
 1.234
 1.378
(continued on next column)

https://github.com/yuquandu/Data-driven-Ship-Fuel-Efficiency-Modeling
https://doi.org/10.48670/moi-00050
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Table A1 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
11
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
XG
 Set1
 0.975
 0.781
 16.733
 3.503
 2.631
 2.868

AIS2precise
 0.959
 0.757
 25.467
 4.457
 3.004
 3.294

AIS2fuzzy
 0.962
 0.754
 23.570
 4.567
 3.274
 3.615

AIS3precise
 0.976
 0.772
 15.247
 3.278
 2.139
 2.359

AIS3fuzzy
 0.978
 0.768
 13.808
 3.206
 2.178
 2.390

AIS4precise
 0.966
 0.765
 20.767
 4.157
 2.743
 3.008

AIS4fuzzy
 0.960
 0.762
 24.749
 4.576
 3.229
 3.544

AIS5precise
 0.965
 0.763
 21.869
 4.287
 2.959
 3.263

AIS5fuzzy
 0.953
 0.758
 29.132
 5.014
 3.622
 3.995

Set3precise a
 0.991
 0.765
 5.421
 1.949
 1.186
 1.277
LB
 Set1
 0.946
 0.761
 36.850
 5.784
 4.429
 4.834

AIS2precise
 0.951
 0.738
 30.039
 5.172
 3.733
 4.200

AIS2fuzzy
 0.941
 0.727
 36.987
 5.955
 4.353
 4.919

AIS3precise
 0.972
 0.745
 17.363
 3.757
 2.709
 3.079

AIS3fuzzy
 0.961
 0.730
 24.200
 4.627
 3.333
 3.789

AIS4precise
 0.959
 0.683
 25.467
 4.524
 3.348
 3.862

AIS4fuzzy
 0.957
 0.716
 27.166
 4.917
 3.685
 4.188

AIS5precise
 0.959
 0.733
 25.714
 4.671
 3.276
 3.798

AIS5fuzzy
 0.941
 0.733
 36.457
 5.684
 4.108
 4.702

Set3precise a
 0.980
 0.748
 12.589
 3.053
 2.179
 2.442
SVM
 Set1
 0.848
 0.797
 103.306
 10.147
 7.260
 7.779

AIS2precise
 0.878
 0.812
 76.193
 8.710
 6.221
 6.788

AIS2fuzzy
 0.873
 0.808
 79.392
 8.896
 6.332
 6.952

AIS3precise
 0.875
 0.816
 78.296
 8.829
 6.359
 6.937

AIS3fuzzy
 0.871
 0.810
 80.452
 8.950
 6.470
 7.131

AIS4precise
 0.875
 0.815
 78.376
 8.834
 6.364
 6.962

AIS4fuzzy
 0.874
 0.808
 78.811
 8.862
 6.358
 7.007

AIS5precise
 0.880
 0.809
 74.547
 8.599
 6.191
 6.738

AIS5fuzzy
 0.869
 0.804
 81.630
 9.012
 6.541
 7.180

Set3precise a
 0.864
 0.812
 84.860
 9.176
 6.608
 7.210
ANN
 Set1
 0.876
 0.787
 84.367
 9.093
 6.935
 7.682

AIS2precise
 0.890
 0.805
 68.589
 8.223
 6.248
 6.993

AIS2fuzzy
 0.884
 0.803
 72.222
 8.473
 6.444
 7.232

AIS3precise
 0.893
 0.815
 66.528
 8.111
 6.172
 6.926

AIS3fuzzy
 0.891
 0.811
 67.646
 8.181
 6.182
 6.952

AIS4precise
 0.894
 0.818
 66.090
 8.068
 6.141
 6.914

AIS4fuzzy
 0.886
 0.817
 71.270
 8.405
 6.354
 7.172

AIS5precise
 0.895
 0.797
 65.299
 8.036
 6.139
 6.847

AIS5fuzzy
 0.887
 0.802
 70.576
 8.362
 6.365
 7.100

Set3precise a
 0.908
 0.791
 56.693
 7.365
 5.581
 6.171
Ridge
 Set1
 0.822
 0.786
 121.419
 11.016
 8.454
 9.312

AIS2precise
 0.829
 0.810
 107.128
 10.345
 7.775
 8.763

AIS2fuzzy
 0.822
 0.803
 110.983
 10.529
 7.876
 8.873

AIS3precise
 0.837
 0.810
 102.096
 10.100
 7.682
 8.732

AIS3fuzzy
 0.833
 0.808
 104.294
 10.208
 7.715
 8.787

AIS4precise
 0.836
 0.813
 102.598
 10.125
 7.695
 8.759

AIS4fuzzy
 0.833
 0.809
 104.538
 10.220
 7.723
 8.798

AIS5precise
 0.829
 0.810
 106.864
 10.332
 7.780
 8.791

AIS5fuzzy
 0.823
 0.803
 110.694
 10.515
 7.877
 8.895

Set3precise a
 0.826
 0.802
 108.847
 10.429
 8.011
 9.055
LASSO
 Set1
 0.822
 0.785
 121.508
 11.020
 8.471
 9.331

AIS2precise
 0.829
 0.810
 107.127
 10.344
 7.774
 8.748

AIS2fuzzy
 0.822
 0.802
 111.266
 10.542
 7.882
 8.861

AIS3precise
 0.836
 0.809
 102.493
 10.119
 7.676
 8.700

AIS3fuzzy
 0.831
 0.809
 105.332
 10.259
 7.719
 8.779

AIS4precise
 0.836
 0.812
 102.731
 10.131
 7.685
 8.720

AIS4fuzzy
 0.832
 0.809
 105.148
 10.250
 7.714
 8.765

AIS5precise
 0.829
 0.810
 106.939
 10.336
 7.779
 8.774

AIS5fuzzy
 0.823
 0.803
 110.874
 10.524
 7.884
 8.887

Set3precise a
 0.824
 0.796
 110.162
 10.492
 8.034
 9.042
Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A2
The fit performance of eleven machine learning models for ship S3.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.857
 0.684
 105.672
 10.125
 7.259
 8.643

AIS2precise
 0.854
 0.699
 106.123
 10.087
 7.292
 8.759

AIS2fuzzy
 0.850
 0.695
 108.384
 10.209
 7.427
 8.876

AIS3precise
 0.871
 0.706
 93.959
 9.334
 6.759
 8.074

AIS3fuzzy
 0.874
 0.681
 90.614
 9.273
 6.729
 7.972

AIS4precise
 0.867
 0.692
 97.233
 9.628
 6.941
 8.311

AIS4fuzzy
 0.869
 0.687
 94.625
 9.621
 7.005
 8.343
(continued on next column)
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Table A2 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
12
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS5precise
 0.867
 0.684
 97.066
 9.534
 6.948
 8.222

AIS5fuzzy
 0.853
 0.704
 106.927
 10.083
 7.267
 8.664

Set3precise a
 0.865
 0.684
 98.572
 9.705
 7.042
 8.343
ET
 Set1
 0.977
 0.800
 17.021
 3.911
 2.462
 2.964

AIS2precise
 0.986
 0.822
 10.267
 2.769
 1.681
 2.113

AIS2fuzzy
 0.977
 0.814
 16.566
 3.552
 2.175
 2.756

AIS3precise
 0.982
 0.818
 12.791
 3.030
 1.702
 2.189

AIS3fuzzy
 0.988
 0.813
 8.588
 2.438
 1.478
 1.867

AIS4precise
 0.981
 0.816
 13.605
 3.179
 1.861
 2.371

AIS4fuzzy
 0.981
 0.811
 13.638
 3.326
 2.026
 2.557

AIS5precise
 0.982
 0.828
 13.029
 3.188
 1.858
 2.364

AIS5fuzzy
 0.983
 0.826
 12.304
 2.986
 1.751
 2.218

Set3precise a
 0.985
 0.821
 10.758
 2.846
 1.716
 2.181
RF
 Set1
 0.960
 0.768
 29.573
 5.369
 3.497
 4.234

AIS2precise
 0.963
 0.807
 26.977
 5.153
 3.378
 4.167

AIS2fuzzy
 0.959
 0.803
 29.977
 5.426
 3.478
 4.315

AIS3precise
 0.951
 0.803
 35.971
 5.896
 3.790
 4.743

AIS3fuzzy
 0.948
 0.807
 37.592
 6.052
 3.787
 4.741

AIS4precise
 0.959
 0.797
 29.386
 5.381
 3.477
 4.317

AIS4fuzzy
 0.954
 0.802
 33.398
 5.680
 3.620
 4.511

AIS5precise
 0.963
 0.809
 27.121
 5.168
 3.376
 4.170

AIS5fuzzy
 0.960
 0.805
 29.142
 5.343
 3.415
 4.241

Set3precise a
 0.956
 0.802
 31.781
 5.576
 3.587
 4.463
AB
 Set1
 0.988
 0.798
 9.177
 2.942
 2.371
 2.718

AIS2precise
 0.990
 0.815
 7.319
 2.589
 2.060
 2.335

AIS2fuzzy
 0.989
 0.805
 7.569
 2.576
 1.975
 2.218

AIS3precise
 0.995
 0.813
 3.799
 1.682
 1.270
 1.480

AIS3fuzzy
 0.994
 0.803
 4.303
 1.839
 1.356
 1.568

AIS4precise
 0.992
 0.810
 5.579
 2.186
 1.699
 1.933

AIS4fuzzy
 0.989
 0.801
 7.743
 2.614
 2.101
 2.367

AIS5precise
 0.995
 0.820
 3.588
 1.728
 1.292
 1.513

AIS5fuzzy
 0.995
 0.802
 3.489
 1.623
 1.154
 1.330

Set3precise a
 0.991
 0.812
 6.328
 2.183
 1.712
 1.998
GB
 Set1
 0.962
 0.776
 28.220
 4.726
 3.221
 3.841

AIS2precise
 0.966
 0.815
 25.195
 4.467
 2.872
 3.617

AIS2fuzzy
 0.962
 0.798
 27.998
 4.806
 3.066
 3.870

AIS3precise
 0.974
 0.817
 18.985
 3.721
 2.311
 2.932

AIS3fuzzy
 0.968
 0.810
 23.467
 4.597
 2.809
 3.582

AIS4precise
 0.960
 0.813
 29.026
 4.863
 3.092
 3.881

AIS4fuzzy
 0.966
 0.811
 25.102
 4.373
 2.668
 3.431

AIS5precise
 0.969
 0.818
 22.552
 4.221
 2.710
 3.366

AIS5fuzzy
 0.971
 0.817
 21.037
 4.028
 2.586
 3.238

Set3precise a
 0.964
 0.819
 26.559
 4.694
 2.836
 3.642
XG
 Set1
 0.959
 0.778
 30.013
 4.738
 3.214
 3.744

AIS2precise
 0.961
 0.814
 28.566
 4.798
 2.995
 3.753

AIS2fuzzy
 0.942
 0.807
 42.158
 5.988
 3.915
 4.873

AIS3precise
 0.964
 0.809
 26.403
 4.516
 2.727
 3.416

AIS3fuzzy
 0.969
 0.806
 22.552
 4.331
 2.511
 3.237

AIS4precise
 0.954
 0.809
 33.595
 5.384
 3.366
 4.179

AIS4fuzzy
 0.961
 0.806
 28.229
 5.078
 3.093
 3.892

AIS5precise
 0.976
 0.819
 17.745
 3.884
 2.439
 2.960

AIS5fuzzy
 0.959
 0.808
 30.356
 4.995
 3.159
 3.921

Set3precise a
 0.961
 0.810
 28.714
 5.030
 3.052
 3.828
LB
 Set1
 0.935
 0.766
 48.608
 6.560
 4.506
 5.448

AIS2precise
 0.945
 0.802
 40.487
 5.912
 3.868
 4.848

AIS2fuzzy
 0.925
 0.802
 53.776
 7.068
 4.742
 5.928

AIS3precise
 0.954
 0.802
 33.337
 5.389
 3.474
 4.419

AIS3fuzzy
 0.952
 0.795
 34.420
 5.268
 3.534
 4.423

AIS4precise
 0.938
 0.801
 44.899
 6.546
 4.381
 5.462

AIS4fuzzy
 0.947
 0.784
 38.969
 5.866
 3.946
 4.969

AIS5precise
 0.952
 0.804
 35.323
 5.432
 3.468
 4.412

AIS5fuzzy
 0.953
 0.796
 34.216
 5.421
 3.563
 4.487

Set3precise a
 0.947
 0.804
 38.795
 5.845
 3.853
 4.853
SVM
 Set1
 0.812
 0.791
 138.669
 11.753
 7.557
 8.957

AIS2precise
 0.842
 0.825
 114.633
 10.675
 6.588
 8.092

AIS2fuzzy
 0.829
 0.817
 123.943
 11.116
 6.904
 8.485

AIS3precise
 0.847
 0.823
 110.536
 10.488
 6.537
 8.005

AIS3fuzzy
 0.842
 0.816
 114.255
 10.658
 6.761
 8.329

AIS4precise
 0.845
 0.828
 112.062
 10.563
 6.588
 8.077

AIS4fuzzy
 0.842
 0.822
 114.254
 10.668
 6.734
 8.244

AIS5precise
 0.840
 0.825
 115.821
 10.727
 6.746
 8.262

AIS5fuzzy
 0.840
 0.818
 115.603
 10.720
 6.657
 8.187

Set3precise a
 0.844
 0.820
 113.000
 10.591
 6.627
 8.167
ANN
 Set1
 0.829
 0.780
 126.769
 11.217
 7.780
 9.353

AIS2precise
 0.849
 0.812
 109.169
 10.413
 7.022
 8.680

AIS2fuzzy
 0.849
 0.813
 109.194
 10.415
 6.917
 8.561
(continued on next column)
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Table A2 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
13
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS3precise
 0.869
 0.800
 94.542
 9.681
 6.645
 8.156

AIS3fuzzy
 0.847
 0.799
 111.263
 10.484
 7.230
 8.936

AIS4precise
 0.860
 0.799
 101.451
 10.008
 6.840
 8.418

AIS4fuzzy
 0.847
 0.800
 110.709
 10.470
 7.192
 8.881

AIS5precise
 0.860
 0.813
 101.322
 10.029
 6.763
 8.262

AIS5fuzzy
 0.854
 0.810
 106.288
 10.265
 6.849
 8.413

Set3precise a
 0.874
 0.798
 91.583
 9.475
 6.480
 7.992
Ridge
 Set1
 0.780
 0.778
 162.676
 12.739
 9.007
 11.114

AIS2precise
 0.793
 0.801
 149.861
 12.227
 8.517
 10.890

AIS2fuzzy
 0.790
 0.799
 152.029
 12.316
 8.509
 10.860

AIS3precise
 0.801
 0.797
 143.924
 11.981
 8.319
 10.627

AIS3fuzzy
 0.802
 0.798
 143.536
 11.966
 8.330
 10.651

AIS4precise
 0.798
 0.799
 145.868
 12.062
 8.348
 10.695

AIS4fuzzy
 0.799
 0.800
 145.189
 12.035
 8.339
 10.671

AIS5precise
 0.796
 0.804
 147.564
 12.133
 8.425
 10.745

AIS5fuzzy
 0.793
 0.802
 149.516
 12.214
 8.459
 10.779

Set3precise a
 0.801
 0.796
 144.061
 11.987
 8.329
 10.615
LASSO
 Set1
 0.779
 0.778
 163.445
 12.769
 9.011
 11.128

AIS2precise
 0.793
 0.800
 149.869
 12.227
 8.508
 10.879

AIS2fuzzy
 0.790
 0.799
 152.048
 12.317
 8.502
 10.852

AIS3precise
 0.800
 0.798
 145.050
 12.028
 8.317
 10.627

AIS3fuzzy
 0.800
 0.798
 144.547
 12.007
 8.322
 10.641

AIS4precise
 0.798
 0.799
 146.172
 12.075
 8.346
 10.694

AIS4fuzzy
 0.799
 0.799
 145.246
 12.037
 8.329
 10.657

AIS5precise
 0.796
 0.804
 147.612
 12.135
 8.426
 10.746

AIS5fuzzy
 0.793
 0.802
 149.539
 12.215
 8.450
 10.765

Set3precise a
 0.799
 0.796
 145.425
 12.043
 8.323
 10.619
Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A3
The fit performance of eleven machine learning models for ship S4.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.906
 0.758
 81.312
 8.851
 6.363
 6.681

AIS2precise
 0.916
 0.736
 69.034
 8.033
 5.999
 6.463

AIS2fuzzy
 0.910
 0.730
 73.824
 8.275
 6.130
 6.586

AIS3precise
 0.916
 0.741
 68.065
 8.086
 6.006
 6.432

AIS3fuzzy
 0.926
 0.725
 60.675
 7.518
 5.564
 5.919

AIS4precise
 0.921
 0.745
 64.090
 7.807
 5.747
 6.160

AIS4fuzzy
 0.899
 0.741
 82.735
 8.913
 6.661
 7.152

AIS5precise
 0.904
 0.749
 78.681
 8.637
 6.425
 6.897

AIS5fuzzy
 0.912
 0.758
 72.400
 8.366
 6.185
 6.648

Set3precise a
 0.916
 0.746
 68.063
 8.094
 6.036
 6.523
ET
 Set1
 0.988
 0.858
 10.120
 2.625
 1.778
 1.862

AIS2precise
 0.999
 0.867
 0.705
 0.629
 0.394
 0.422

AIS2fuzzy
 0.999
 0.863
 0.811
 0.714
 0.462
 0.495

AIS3precise
 0.997
 0.869
 2.131
 1.151
 0.807
 0.876

AIS3fuzzy
 0.997
 0.864
 2.431
 1.115
 0.779
 0.846

AIS4precise
 0.997
 0.870
 2.521
 1.191
 0.845
 0.915

AIS4fuzzy
 0.998
 0.864
 1.826
 1.115
 0.768
 0.830

AIS5precise
 0.998
 0.871
 1.642
 0.927
 0.651
 0.696

AIS5fuzzy
 0.998
 0.866
 1.390
 0.973
 0.659
 0.716

Set3precise a
 0.998
 0.872
 1.434
 0.901
 0.627
 0.687
RF
 Set1
 0.974
 0.848
 22.794
 4.752
 3.335
 3.501

AIS2precise
 0.976
 0.856
 19.824
 4.444
 3.279
 3.600

AIS2fuzzy
 0.976
 0.854
 19.766
 4.429
 3.273
 3.607

AIS3precise
 0.972
 0.854
 22.477
 4.723
 3.464
 3.773

AIS3fuzzy
 0.973
 0.855
 21.949
 4.659
 3.424
 3.751

AIS4precise
 0.973
 0.855
 21.804
 4.644
 3.421
 3.742

AIS4fuzzy
 0.974
 0.858
 21.363
 4.599
 3.381
 3.708

AIS5precise
 0.975
 0.859
 20.097
 4.472
 3.292
 3.590

AIS5fuzzy
 0.975
 0.858
 20.309
 4.491
 3.298
 3.602

Set3precise a
 0.975
 0.853
 20.349
 4.497
 3.331
 3.618
AB
 Set1
 0.980
 0.843
 17.332
 3.939
 3.283
 3.654

AIS2precise
 0.987
 0.865
 10.568
 3.102
 2.595
 2.916

AIS2fuzzy
 0.985
 0.862
 11.992
 3.358
 2.790
 3.103

AIS3precise
 0.990
 0.867
 8.454
 2.664
 2.206
 2.484

AIS3fuzzy
 0.989
 0.867
 8.670
 2.766
 2.285
 2.560

AIS4precise
 0.988
 0.864
 9.894
 2.953
 2.477
 2.782

AIS4fuzzy
 0.987
 0.864
 10.576
 3.117
 2.607
 2.916

AIS5precise
 0.988
 0.869
 9.701
 2.956
 2.466
 2.774

AIS5fuzzy
 0.988
 0.868
 9.410
 2.864
 2.401
 2.674

Set3precise a
 0.986
 0.865
 11.021
 3.144
 2.591
 2.905
(continued on next column)
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Table A3 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
14
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
GB
 Set1
 0.977
 0.851
 19.591
 4.196
 3.176
 3.352

AIS2precise
 0.989
 0.868
 9.077
 2.587
 1.960
 2.099

AIS2fuzzy
 0.988
 0.868
 9.667
 2.653
 2.046
 2.189

AIS3precise
 0.995
 0.868
 4.407
 1.836
 1.343
 1.452

AIS3fuzzy
 0.991
 0.871
 7.288
 2.277
 1.677
 1.808

AIS4precise
 0.993
 0.866
 5.462
 1.884
 1.438
 1.531

AIS4fuzzy
 0.991
 0.863
 6.981
 2.207
 1.677
 1.803

AIS5precise
 0.991
 0.873
 7.631
 2.412
 1.810
 1.933

AIS5fuzzy
 0.990
 0.875
 8.437
 2.566
 1.943
 2.087

Set3precise a
 0.989
 0.866
 8.845
 2.500
 1.838
 1.957
XG
 Set1
 0.977
 0.858
 19.657
 4.126
 3.068
 3.185

AIS2precise
 0.991
 0.864
 7.508
 2.341
 1.721
 1.808

AIS2fuzzy
 0.992
 0.870
 6.889
 2.321
 1.715
 1.816

AIS3precise
 0.994
 0.868
 4.689
 1.591
 1.126
 1.196

AIS3fuzzy
 0.995
 0.873
 4.260
 1.605
 1.117
 1.188

AIS4precise
 0.993
 0.861
 5.846
 1.821
 1.344
 1.426

AIS4fuzzy
 0.989
 0.865
 8.965
 2.311
 1.733
 1.832

AIS5precise
 0.992
 0.870
 6.441
 2.074
 1.548
 1.640

AIS5fuzzy
 0.987
 0.878
 11.059
 2.835
 2.157
 2.299

Set3precise a
 0.995
 0.869
 3.758
 1.585
 1.140
 1.201
LB
 Set1
 0.968
 0.844
 28.153
 5.010
 3.861
 4.044

AIS2precise
 0.979
 0.851
 17.028
 3.711
 2.865
 3.064

AIS2fuzzy
 0.988
 0.854
 9.860
 2.778
 2.152
 2.313

AIS3precise
 0.989
 0.866
 9.039
 2.625
 2.009
 2.161

AIS3fuzzy
 0.986
 0.865
 11.633
 3.097
 2.388
 2.564

AIS4precise
 0.978
 0.855
 18.105
 3.969
 3.112
 3.336

AIS4fuzzy
 0.981
 0.846
 15.360
 3.672
 2.862
 3.083

AIS5precise
 0.992
 0.865
 6.859
 2.321
 1.771
 1.925

AIS5fuzzy
 0.987
 0.873
 10.530
 2.901
 2.250
 2.440

Set3precise a
 0.987
 0.855
 10.943
 2.871
 2.200
 2.340
SVM
 Set1
 0.906
 0.842
 81.874
 9.015
 6.318
 6.374

AIS2precise
 0.930
 0.848
 56.850
 7.333
 5.462
 5.814

AIS2fuzzy
 0.936
 0.845
 51.762
 6.893
 5.122
 5.485

AIS3precise
 0.929
 0.846
 57.822
 7.548
 5.488
 5.811

AIS3fuzzy
 0.917
 0.842
 68.045
 8.187
 5.956
 6.291

AIS4precise
 0.926
 0.850
 60.077
 7.704
 5.660
 5.977

AIS4fuzzy
 0.917
 0.846
 67.802
 8.170
 5.974
 6.346

AIS5precise
 0.927
 0.860
 59.875
 7.686
 5.642
 6.018

AIS5fuzzy
 0.919
 0.854
 66.517
 8.094
 5.967
 6.387

Set3precise a
 0.921
 0.857
 63.718
 7.972
 5.848
 6.146
ANN
 Set1
 0.925
 0.845
 65.521
 8.076
 6.102
 6.390

AIS2precise
 0.936
 0.862
 52.288
 7.217
 5.653
 6.104

AIS2fuzzy
 0.936
 0.842
 52.055
 7.184
 5.607
 6.059

AIS3precise
 0.944
 0.859
 46.191
 6.779
 5.331
 5.782

AIS3fuzzy
 0.941
 0.848
 48.047
 6.911
 5.366
 5.842

AIS4precise
 0.943
 0.856
 46.674
 6.812
 5.354
 5.803

AIS4fuzzy
 0.943
 0.852
 46.629
 6.809
 5.277
 5.720

AIS5precise
 0.939
 0.868
 50.219
 7.062
 5.524
 5.962

AIS5fuzzy
 0.930
 0.858
 57.295
 7.541
 5.889
 6.371

Set3precise a
 0.947
 0.856
 42.555
 6.513
 5.034
 5.502
Ridge
 Set1
 0.825
 0.821
 152.631
 12.351
 9.343
 9.548

AIS2precise
 0.822
 0.802
 145.669
 12.066
 9.341
 9.625

AIS2fuzzy
 0.816
 0.796
 150.467
 12.263
 9.500
 9.837

AIS3precise
 0.832
 0.807
 137.392
 11.717
 9.182
 9.497

AIS3fuzzy
 0.826
 0.802
 141.931
 11.909
 9.280
 9.647

AIS4precise
 0.831
 0.806
 138.025
 11.744
 9.187
 9.487

AIS4fuzzy
 0.826
 0.802
 142.348
 11.926
 9.279
 9.628

AIS5precise
 0.827
 0.808
 141.409
 11.888
 9.244
 9.534

AIS5fuzzy
 0.822
 0.803
 145.201
 12.046
 9.355
 9.690

Set3precise a
 0.833
 0.811
 135.334
 11.629
 9.033
 9.406
LASSO
 Set1
 0.824
 0.823
 153.402
 12.382
 9.347
 9.537

AIS2precise
 0.822
 0.803
 145.771
 12.070
 9.340
 9.620

AIS2fuzzy
 0.815
 0.797
 150.852
 12.279
 9.508
 9.835

AIS3precise
 0.831
 0.806
 137.956
 11.741
 9.191
 9.499

AIS3fuzzy
 0.824
 0.804
 143.555
 11.977
 9.303
 9.641

AIS4precise
 0.831
 0.806
 138.364
 11.759
 9.193
 9.489

AIS4fuzzy
 0.825
 0.802
 143.263
 11.964
 9.292
 9.626

AIS5precise
 0.827
 0.808
 141.586
 11.895
 9.244
 9.530

AIS5fuzzy
 0.822
 0.805
 145.687
 12.067
 9.364
 9.692

Set3precise a
 0.832
 0.809
 135.961
 11.656
 9.053
 9.417
Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series of studies.
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Table A4
The fit performance of eleven machine learning models for ship S5.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
15
DT
 Set1
 0.939
 0.821
 33.699
 5.588
 4.144
 6.259

AIS2precise
 0.947
 0.795
 29.259
 5.181
 3.809
 5.761

AIS2fuzzy
 0.946
 0.799
 30.200
 5.379
 3.954
 5.947

AIS3precise
 0.942
 0.793
 31.964
 5.502
 4.072
 6.137

AIS3fuzzy
 0.941
 0.812
 32.694
 5.643
 4.181
 6.328

AIS4precise
 0.940
 0.793
 33.054
 5.628
 4.130
 6.221

AIS4fuzzy
 0.941
 0.800
 32.814
 5.558
 4.121
 6.247

AIS5precise
 0.948
 0.800
 28.458
 5.104
 3.741
 5.634

AIS5fuzzy
 0.945
 0.826
 30.556
 5.217
 3.848
 5.813

Set3precise a
 0.947
 0.785
 29.488
 5.182
 3.764
 5.625
ET
 Set1
 0.998
 0.895
 1.057
 0.805
 0.569
 0.857

AIS2precise
 0.999
 0.896
 0.493
 0.529
 0.371
 0.559

AIS2fuzzy
 0.998
 0.893
 1.165
 0.835
 0.604
 0.914

AIS3precise
 0.998
 0.895
 0.890
 0.707
 0.495
 0.748

AIS3fuzzy
 0.997
 0.893
 1.963
 1.134
 0.815
 1.234

AIS4precise
 0.998
 0.895
 1.105
 0.768
 0.550
 0.842

AIS4fuzzy
 0.998
 0.893
 1.248
 0.820
 0.579
 0.879

AIS5precise
 0.997
 0.894
 1.475
 0.901
 0.652
 0.988

AIS5fuzzy
 0.998
 0.891
 1.055
 0.808
 0.584
 0.883

Set3precise a
 0.997
 0.892
 1.413
 0.854
 0.619
 0.935
RF
 Set1
 0.982
 0.884
 9.951
 3.140
 2.354
 3.594

AIS2precise
 0.982
 0.878
 9.753
 3.116
 2.290
 3.509

AIS2fuzzy
 0.983
 0.883
 9.496
 3.072
 2.249
 3.461

AIS3precise
 0.982
 0.879
 10.152
 3.168
 2.328
 3.562

AIS3fuzzy
 0.983
 0.887
 9.681
 3.103
 2.298
 3.538

AIS4precise
 0.981
 0.875
 10.565
 3.238
 2.356
 3.594

AIS4fuzzy
 0.983
 0.885
 9.200
 3.026
 2.224
 3.413

AIS5precise
 0.983
 0.879
 9.594
 3.090
 2.281
 3.497

AIS5fuzzy
 0.984
 0.887
 9.003
 2.996
 2.238
 3.464

Set3precise a
 0.981
 0.874
 10.498
 3.225
 2.390
 3.663
AB
 Set1
 0.990
 0.895
 5.408
 2.213
 1.830
 3.156

AIS2precise
 0.994
 0.886
 3.187
 1.671
 1.336
 2.365

AIS2fuzzy
 0.995
 0.893
 2.917
 1.577
 1.231
 2.199

AIS3precise
 0.996
 0.892
 2.337
 1.372
 1.073
 1.942

AIS3fuzzy
 0.997
 0.897
 1.684
 1.136
 0.841
 1.554

AIS4precise
 0.995
 0.888
 2.854
 1.584
 1.262
 2.249

AIS4fuzzy
 0.995
 0.894
 2.937
 1.618
 1.277
 2.286

AIS5precise
 0.995
 0.889
 2.723
 1.476
 1.172
 2.123

AIS5fuzzy
 0.996
 0.895
 2.299
 1.392
 1.081
 1.951

Set3precise a
 0.995
 0.886
 2.543
 1.525
 1.209
 2.217
GB
 Set1
 0.993
 0.895
 3.885
 1.743
 1.360
 2.158

AIS2precise
 0.996
 0.892
 2.273
 1.265
 0.946
 1.496

AIS2fuzzy
 0.997
 0.893
 1.801
 1.015
 0.782
 1.257

AIS3precise
 0.995
 0.890
 2.674
 1.204
 0.879
 1.397

AIS3fuzzy
 0.996
 0.894
 2.307
 1.143
 0.839
 1.335

AIS4precise
 0.997
 0.888
 1.936
 1.010
 0.720
 1.132

AIS4fuzzy
 0.994
 0.893
 3.367
 1.426
 1.047
 1.656

AIS5precise
 0.997
 0.893
 1.628
 1.102
 0.823
 1.310

AIS5fuzzy
 0.993
 0.892
 3.733
 1.665
 1.282
 2.046

Set3precise a
 0.993
 0.887
 3.519
 1.359
 1.021
 1.610
XG
 Set1
 0.990
 0.892
 5.361
 1.995
 1.520
 2.370

AIS2precise
 0.997
 0.884
 1.919
 1.190
 0.830
 1.304

AIS2fuzzy
 0.993
 0.886
 3.701
 1.539
 1.118
 1.750

AIS3precise
 0.996
 0.885
 2.079
 1.206
 0.857
 1.347

AIS3fuzzy
 0.991
 0.893
 4.859
 1.785
 1.314
 2.077

AIS4precise
 0.990
 0.884
 5.595
 2.020
 1.420
 2.218

AIS4fuzzy
 0.992
 0.888
 4.440
 1.860
 1.368
 2.169

AIS5precise
 0.991
 0.891
 4.860
 1.909
 1.382
 2.183

AIS5fuzzy
 0.992
 0.887
 4.417
 1.897
 1.403
 2.206

Set3precise a
 0.993
 0.878
 3.601
 1.605
 1.133
 1.749
LB
 Set1
 0.986
 0.879
 7.810
 2.636
 2.028
 3.173

AIS2precise
 0.987
 0.879
 7.311
 2.490
 1.883
 2.957

AIS2fuzzy
 0.984
 0.869
 9.040
 2.831
 2.115
 3.308

AIS3precise
 0.991
 0.882
 5.103
 2.066
 1.528
 2.380

AIS3fuzzy
 0.985
 0.884
 8.471
 2.658
 1.990
 3.143

AIS4precise
 0.987
 0.846
 7.256
 2.420
 1.848
 2.954

AIS4fuzzy
 0.984
 0.878
 9.032
 2.837
 2.146
 3.365

AIS5precise
 0.991
 0.880
 4.875
 2.049
 1.523
 2.390

AIS5fuzzy
 0.983
 0.879
 9.198
 2.795
 2.104
 3.278

Set3precise a
 0.987
 0.873
 7.382
 2.350
 1.758
 2.725
SVM
 Set1
 0.931
 0.884
 38.408
 6.173
 4.382
 6.630

AIS2precise
 0.916
 0.881
 46.567
 6.810
 4.916
 7.414

AIS2fuzzy
 0.912
 0.886
 48.618
 6.946
 4.984
 7.542

AIS3precise
 0.912
 0.880
 48.897
 6.986
 5.055
 7.619
(continued on next column)



Y. Du et al. Communications in Transportation Research 2 (2022) 100073
Table A4 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
16
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS3fuzzy
 0.913
 0.882
 48.270
 6.942
 5.017
 7.597

AIS4precise
 0.913
 0.878
 47.993
 6.918
 5.019
 7.549

AIS4fuzzy
 0.915
 0.881
 47.104
 6.851
 4.980
 7.544

AIS5precise
 0.918
 0.878
 45.274
 6.711
 4.874
 7.385

AIS5fuzzy
 0.920
 0.880
 44.342
 6.608
 4.801
 7.317

Set3precise a
 0.916
 0.873
 46.421
 6.785
 4.917
 7.472
ANN
 Set1
 0.926
 0.886
 40.737
 6.373
 4.900
 7.545

AIS2precise
 0.938
 0.876
 34.278
 5.776
 4.398
 6.845

AIS2fuzzy
 0.943
 0.885
 31.933
 5.592
 4.281
 6.685

AIS3precise
 0.942
 0.881
 32.259
 5.619
 4.257
 6.634

AIS3fuzzy
 0.935
 0.881
 35.988
 5.948
 4.524
 7.035

AIS4precise
 0.940
 0.880
 33.504
 5.733
 4.354
 6.741

AIS4fuzzy
 0.938
 0.878
 34.189
 5.806
 4.435
 6.882

AIS5precise
 0.935
 0.878
 36.276
 5.973
 4.538
 6.997

AIS5fuzzy
 0.939
 0.881
 33.836
 5.787
 4.393
 6.840

Set3precise a
 0.935
 0.879
 36.157
 5.956
 4.544
 7.075
Ridge
 Set1
 0.875
 0.868
 69.368
 8.325
 6.341
 9.937

AIS2precise
 0.886
 0.875
 63.247
 7.949
 5.972
 9.145

AIS2fuzzy
 0.884
 0.874
 64.133
 8.004
 5.987
 9.116

AIS3precise
 0.892
 0.868
 60.011
 7.743
 5.826
 8.883

AIS3fuzzy
 0.892
 0.871
 59.890
 7.735
 5.845
 8.893

AIS4precise
 0.890
 0.872
 60.879
 7.799
 5.867
 8.914

AIS4fuzzy
 0.890
 0.873
 60.924
 7.802
 5.897
 8.940

AIS5precise
 0.887
 0.874
 62.515
 7.903
 5.941
 9.040

AIS5fuzzy
 0.887
 0.875
 62.587
 7.907
 5.952
 9.027

Set3precise a
 0.889
 0.868
 61.610
 7.846
 5.934
 9.109
LASSO
 Set1
 0.874
 0.868
 69.799
 8.351
 6.357
 9.948

AIS2precise
 0.886
 0.875
 63.278
 7.951
 5.976
 9.156

AIS2fuzzy
 0.884
 0.874
 64.249
 8.012
 5.995
 9.128

AIS3precise
 0.891
 0.869
 60.385
 7.766
 5.839
 8.900

AIS3fuzzy
 0.891
 0.870
 60.464
 7.771
 5.876
 8.925

AIS4precise
 0.889
 0.869
 61.278
 7.824
 5.879
 8.934

AIS4fuzzy
 0.890
 0.873
 61.092
 7.813
 5.909
 8.957

AIS5precise
 0.887
 0.874
 62.689
 7.914
 5.950
 9.050

AIS5fuzzy
 0.887
 0.874
 62.829
 7.923
 5.967
 9.032

Set3precise a
 0.888
 0.868
 61.988
 7.870
 5.953
 9.129
Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A5
The fit performance of eleven machine learning models for ship S6.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.837
 0.636
 67.292
 8.143
 5.917
 7.777

AIS2precise
 0.823
 0.572
 73.999
 8.507
 6.292
 8.362

AIS2fuzzy
 0.839
 0.584
 67.435
 8.118
 5.944
 7.841

AIS3precise
 0.847
 0.568
 63.921
 7.913
 5.799
 7.668

AIS3fuzzy
 0.841
 0.581
 66.494
 8.095
 5.969
 7.923

AIS4precise
 0.855
 0.571
 60.340
 7.645
 5.580
 7.407

AIS4fuzzy
 0.833
 0.594
 69.924
 8.261
 6.086
 8.043

AIS5precise
 0.847
 0.581
 63.834
 7.896
 5.826
 7.701

AIS5fuzzy
 0.832
 0.591
 70.398
 8.318
 6.145
 8.148

Set3precise a
 0.832
 0.576
 69.684
 8.275
 6.119
 8.113
ET
 Set1
 0.985
 0.765
 6.050
 1.928
 1.359
 1.796

AIS2precise
 0.991
 0.767
 3.917
 1.699
 1.229
 1.633

AIS2fuzzy
 0.992
 0.765
 3.275
 1.519
 1.124
 1.491

AIS3precise
 0.988
 0.764
 4.917
 1.561
 1.136
 1.516

AIS3fuzzy
 0.986
 0.765
 5.657
 1.944
 1.414
 1.886

AIS4precise
 0.988
 0.762
 4.791
 1.801
 1.318
 1.760

AIS4fuzzy
 0.987
 0.763
 5.498
 1.871
 1.381
 1.838

AIS5precise
 0.984
 0.763
 6.604
 2.439
 1.780
 2.368

AIS5fuzzy
 0.989
 0.759
 4.566
 1.904
 1.413
 1.874

Set3precise a
 0.979
 0.752
 8.706
 2.743
 2.010
 2.678
RF
 Set1
 0.956
 0.766
 18.155
 4.225
 3.016
 4.012

AIS2precise
 0.956
 0.747
 18.527
 4.279
 3.106
 4.133

AIS2fuzzy
 0.961
 0.753
 16.394
 4.028
 2.959
 3.942

AIS3precise
 0.954
 0.746
 19.175
 4.366
 3.148
 4.187

AIS3fuzzy
 0.954
 0.752
 19.080
 4.337
 3.155
 4.211

AIS4precise
 0.956
 0.747
 18.285
 4.259
 3.068
 4.089

AIS4fuzzy
 0.958
 0.755
 17.786
 4.194
 3.069
 4.097

AIS5precise
 0.959
 0.747
 17.057
 4.116
 2.974
 3.950

AIS5fuzzy
 0.962
 0.751
 16.017
 3.985
 2.922
 3.886

Set3precise a
 0.953
 0.740
 19.498
 4.382
 3.173
 4.211
AB
 Set1
 0.969
 0.770
 12.857
 3.481
 2.871
 4.105
(continued on next column)
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Table A5 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
17
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS2precise
 0.984
 0.752
 6.749
 2.491
 2.043
 2.988

AIS2fuzzy
 0.980
 0.759
 8.310
 2.799
 2.346
 3.410

AIS3precise
 0.985
 0.752
 6.184
 2.309
 1.883
 2.810

AIS3fuzzy
 0.983
 0.766
 7.124
 2.537
 2.098
 3.091

AIS4precise
 0.983
 0.755
 6.924
 2.537
 2.113
 3.111

AIS4fuzzy
 0.975
 0.756
 10.579
 3.112
 2.619
 3.768

AIS5precise
 0.983
 0.750
 6.959
 2.393
 1.958
 2.888

AIS5fuzzy
 0.980
 0.759
 8.222
 2.643
 2.186
 3.192

Set3precise a
 0.980
 0.755
 8.175
 2.647
 2.186
 3.210
GB
 Set1
 0.965
 0.786
 14.509
 3.538
 2.597
 3.507

AIS2precise
 0.974
 0.774
 10.728
 2.915
 2.250
 3.046

AIS2fuzzy
 0.971
 0.778
 12.005
 3.246
 2.535
 3.453

AIS3precise
 0.968
 0.768
 13.413
 3.271
 2.531
 3.437

AIS3fuzzy
 0.974
 0.766
 10.865
 2.713
 2.076
 2.823

AIS4precise
 0.974
 0.768
 10.657
 3.097
 2.384
 3.237

AIS4fuzzy
 0.970
 0.775
 12.628
 3.386
 2.650
 3.600

AIS5precise
 0.954
 0.765
 19.294
 4.244
 3.282
 4.469

AIS5fuzzy
 0.960
 0.765
 16.628
 3.852
 2.995
 4.059

Set3precise a
 0.971
 0.770
 11.917
 3.111
 2.384
 3.226
XG
 Set1
 0.966
 0.786
 14.223
 3.620
 2.692
 3.641

AIS2precise
 0.971
 0.773
 11.988
 3.174
 2.438
 3.306

AIS2fuzzy
 0.964
 0.777
 15.126
 3.599
 2.766
 3.757

AIS3precise
 0.964
 0.762
 15.014
 3.485
 2.673
 3.639

AIS3fuzzy
 0.965
 0.774
 14.662
 3.570
 2.728
 3.697

AIS4precise
 0.971
 0.768
 12.290
 3.278
 2.516
 3.416

AIS4fuzzy
 0.972
 0.779
 11.539
 3.130
 2.381
 3.228

AIS5precise
 0.948
 0.765
 21.685
 4.533
 3.501
 4.755

AIS5fuzzy
 0.957
 0.758
 17.993
 3.859
 2.929
 3.955

Set3precise a
 0.959
 0.771
 17.299
 3.835
 2.890
 3.902
LB
 Set1
 0.951
 0.773
 20.401
 4.334
 3.285
 4.472

AIS2precise
 0.957
 0.769
 18.000
 4.086
 3.154
 4.284

AIS2fuzzy
 0.965
 0.774
 14.771
 3.662
 2.829
 3.877

AIS3precise
 0.965
 0.751
 14.716
 3.549
 2.709
 3.676

AIS3fuzzy
 0.961
 0.765
 16.089
 3.729
 2.875
 3.906

AIS4precise
 0.961
 0.756
 16.273
 3.800
 2.915
 3.961

AIS4fuzzy
 0.962
 0.764
 15.650
 3.683
 2.832
 3.853

AIS5precise
 0.956
 0.749
 18.441
 3.987
 3.023
 4.106

AIS5fuzzy
 0.963
 0.757
 15.608
 3.608
 2.754
 3.761

Set3precise a
 0.963
 0.754
 15.520
 3.514
 2.682
 3.646
SVM
 Set1
 0.838
 0.748
 67.236
 8.175
 5.625
 7.308

AIS2precise
 0.859
 0.768
 58.991
 7.655
 5.491
 7.220

AIS2fuzzy
 0.840
 0.762
 66.704
 8.154
 5.866
 7.724

AIS3precise
 0.849
 0.766
 63.237
 7.922
 5.687
 7.503

AIS3fuzzy
 0.835
 0.768
 68.880
 8.281
 5.903
 7.754

AIS4precise
 0.840
 0.769
 66.795
 8.150
 5.817
 7.656

AIS4fuzzy
 0.842
 0.766
 66.097
 8.114
 5.750
 7.527

AIS5precise
 0.846
 0.770
 64.572
 8.017
 5.703
 7.479

AIS5fuzzy
 0.826
 0.774
 72.707
 8.522
 6.072
 7.993

Set3precise a
 0.843
 0.767
 65.144
 8.045
 5.755
 7.629
ANN
 Set1
 0.851
 0.740
 61.550
 7.798
 5.849
 7.715

AIS2precise
 0.875
 0.763
 52.267
 7.189
 5.479
 7.270

AIS2fuzzy
 0.855
 0.767
 60.467
 7.758
 5.885
 7.788

AIS3precise
 0.865
 0.774
 56.395
 7.477
 5.698
 7.549

AIS3fuzzy
 0.854
 0.776
 61.192
 7.813
 5.943
 7.845

AIS4precise
 0.868
 0.775
 55.403
 7.419
 5.662
 7.506

AIS4fuzzy
 0.859
 0.769
 58.976
 7.652
 5.795
 7.653

AIS5precise
 0.868
 0.765
 55.181
 7.401
 5.673
 7.526

AIS5fuzzy
 0.854
 0.765
 60.861
 7.781
 5.944
 7.870

Set3precise a
 0.859
 0.772
 58.184
 7.599
 5.750
 7.603
Ridge
 Set1
 0.758
 0.729
 100.434
 10.018
 7.588
 10.192

AIS2precise
 0.773
 0.740
 94.924
 9.740
 7.360
 9.841

AIS2fuzzy
 0.771
 0.738
 95.615
 9.775
 7.376
 9.863

AIS3precise
 0.787
 0.749
 89.046
 9.434
 7.255
 9.691

AIS3fuzzy
 0.785
 0.747
 89.799
 9.473
 7.247
 9.679

AIS4precise
 0.786
 0.750
 89.615
 9.464
 7.237
 9.663

AIS4fuzzy
 0.784
 0.748
 90.306
 9.500
 7.233
 9.661

AIS5precise
 0.778
 0.743
 92.805
 9.631
 7.393
 9.895

AIS5fuzzy
 0.777
 0.741
 93.183
 9.651
 7.389
 9.899

Set3precise a
 0.775
 0.745
 93.218
 9.652
 7.454
 9.977
LASSO
 Set1
 0.753
 0.724
 102.272
 10.109
 7.629
 10.199

AIS2precise
 0.772
 0.738
 95.454
 9.767
 7.342
 9.801

AIS2fuzzy
 0.770
 0.735
 96.087
 9.799
 7.368
 9.835

AIS3precise
 0.786
 0.747
 89.527
 9.459
 7.238
 9.656

AIS3fuzzy
 0.784
 0.749
 90.435
 9.507
 7.231
 9.643

AIS4precise
 0.785
 0.747
 89.820
 9.475
 7.231
 9.647

AIS4fuzzy
 0.783
 0.749
 90.743
 9.523
 7.206
 9.600
(continued on next column)
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Table A5 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
18
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS5precise
 0.777
 0.741
 93.139
 9.648
 7.387
 9.878

AIS5fuzzy
 0.777
 0.741
 93.454
 9.665
 7.379
 9.870

Set3precise a
 0.774
 0.744
 93.502
 9.667
 7.443
 9.960
Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A6
The fit performance of eleven machine learning models for ship S7.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.828
 0.680
 69.472
 8.260
 6.302
 8.155

AIS2precise
 0.863
 0.680
 55.328
 7.389
 5.573
 7.264

AIS2fuzzy
 0.853
 0.670
 59.404
 7.669
 5.797
 7.542

AIS3precise
 0.856
 0.670
 58.237
 7.557
 5.694
 7.432

AIS3fuzzy
 0.850
 0.671
 60.824
 7.759
 5.896
 7.686

AIS4precise
 0.855
 0.667
 58.606
 7.606
 5.720
 7.432

AIS4fuzzy
 0.856
 0.671
 58.321
 7.622
 5.775
 7.511

AIS5precise
 0.865
 0.678
 54.511
 7.334
 5.473
 7.099

AIS5fuzzy
 0.867
 0.669
 53.839
 7.272
 5.433
 7.071

Set3precise a
 0.880
 0.683
 48.319
 6.903
 5.173
 6.749
ET
 Set1
 0.956
 0.806
 17.780
 3.880
 2.884
 3.713

AIS2precise
 0.983
 0.830
 6.818
 2.117
 1.487
 1.925

AIS2fuzzy
 0.971
 0.819
 11.791
 3.070
 2.178
 2.810

AIS3precise
 0.979
 0.830
 8.690
 2.410
 1.676
 2.170

AIS3fuzzy
 0.973
 0.826
 10.900
 2.886
 2.007
 2.593

AIS4precise
 0.983
 0.829
 6.702
 2.040
 1.405
 1.820

AIS4fuzzy
 0.976
 0.820
 9.693
 2.688
 1.894
 2.454

AIS5precise
 0.978
 0.834
 8.811
 2.497
 1.753
 2.266

AIS5fuzzy
 0.983
 0.828
 6.851
 2.236
 1.591
 2.050

Set3precise a
 0.987
 0.805
 5.176
 1.848
 1.259
 1.639
RF
 Set1
 0.964
 0.793
 14.369
 3.774
 2.813
 3.649

AIS2precise
 0.962
 0.808
 15.226
 3.874
 2.845
 3.726

AIS2fuzzy
 0.959
 0.806
 16.605
 4.019
 2.964
 3.884

AIS3precise
 0.958
 0.810
 16.981
 4.069
 2.963
 3.883

AIS3fuzzy
 0.958
 0.811
 17.018
 4.095
 2.979
 3.891

AIS4precise
 0.957
 0.809
 17.317
 4.118
 3.023
 3.958

AIS4fuzzy
 0.957
 0.806
 17.549
 4.147
 3.037
 3.972

AIS5precise
 0.964
 0.813
 14.703
 3.799
 2.760
 3.604

AIS5fuzzy
 0.966
 0.817
 13.809
 3.684
 2.693
 3.513

Set3precise a
 0.961
 0.794
 15.501
 3.920
 2.867
 3.740
AB
 Set1
 0.964
 0.790
 14.672
 3.464
 2.781
 3.712

AIS2precise
 0.984
 0.813
 6.382
 2.399
 1.970
 2.684

AIS2fuzzy
 0.986
 0.812
 5.520
 2.083
 1.663
 2.269

AIS3precise
 0.991
 0.813
 3.818
 1.747
 1.405
 1.959

AIS3fuzzy
 0.988
 0.816
 4.669
 1.917
 1.519
 2.098

AIS4precise
 0.987
 0.810
 5.060
 2.008
 1.642
 2.260

AIS4fuzzy
 0.984
 0.812
 6.476
 2.401
 2.023
 2.782

AIS5precise
 0.988
 0.826
 4.812
 2.046
 1.675
 2.298

AIS5fuzzy
 0.987
 0.820
 5.055
 2.014
 1.624
 2.245

Set3precise a
 0.982
 0.777
 7.272
 2.415
 1.888
 2.558
GB
 Set1
 0.962
 0.803
 15.408
 3.756
 2.777
 3.605

AIS2precise
 0.971
 0.815
 11.694
 3.275
 2.287
 2.984

AIS2fuzzy
 0.963
 0.811
 14.984
 3.741
 2.665
 3.503

AIS3precise
 0.978
 0.818
 8.854
 2.705
 1.774
 2.312

AIS3fuzzy
 0.973
 0.821
 10.691
 3.106
 2.141
 2.809

AIS4precise
 0.973
 0.811
 10.692
 3.036
 2.085
 2.729

AIS4fuzzy
 0.975
 0.814
 9.991
 2.994
 2.068
 2.705

AIS5precise
 0.975
 0.826
 10.330
 3.084
 2.147
 2.810

AIS5fuzzy
 0.977
 0.822
 9.116
 2.812
 1.991
 2.610

Set3precise a
 0.986
 0.785
 5.466
 2.156
 1.442
 1.880
XG
 Set1
 0.972
 0.813
 11.021
 3.022
 2.222
 2.865

AIS2precise
 0.972
 0.810
 11.116
 3.156
 2.168
 2.779

AIS2fuzzy
 0.968
 0.814
 12.937
 3.415
 2.437
 3.161

AIS3precise
 0.981
 0.816
 7.733
 2.613
 1.674
 2.122

AIS3fuzzy
 0.977
 0.822
 9.345
 2.859
 1.912
 2.453

AIS4precise
 0.973
 0.813
 10.730
 3.019
 2.111
 2.714

AIS4fuzzy
 0.972
 0.821
 11.364
 3.182
 2.236
 2.883

AIS5precise
 0.973
 0.827
 10.967
 3.204
 2.208
 2.823

AIS5fuzzy
 0.976
 0.831
 9.854
 2.981
 2.094
 2.702

Set3precise a
 0.986
 0.784
 5.731
 2.093
 1.424
 1.808
LB
 Set1
 0.957
 0.789
 17.547
 4.044
 3.053
 3.968

AIS2precise
 0.963
 0.796
 14.730
 3.673
 2.655
 3.489

AIS2fuzzy
 0.959
 0.794
 16.325
 3.769
 2.812
 3.691

AIS3precise
 0.976
 0.809
 9.713
 2.740
 1.932
 2.536
(continued on next column)
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Table A6 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
19
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS3fuzzy
 0.975
 0.805
 10.022
 3.034
 2.163
 2.840

AIS4precise
 0.963
 0.790
 15.034
 3.546
 2.604
 3.424

AIS4fuzzy
 0.976
 0.788
 9.920
 2.910
 2.171
 2.846

AIS5precise
 0.981
 0.803
 7.624
 2.614
 1.804
 2.364

AIS5fuzzy
 0.973
 0.813
 10.759
 2.940
 2.095
 2.762

Set3precise a
 0.982
 0.785
 7.152
 2.366
 1.742
 2.283
SVM
 Set1
 0.906
 0.786
 38.185
 6.078
 4.323
 5.574

AIS2precise
 0.867
 0.819
 53.666
 7.308
 5.142
 6.525

AIS2fuzzy
 0.855
 0.812
 58.832
 7.646
 5.481
 6.978

AIS3precise
 0.861
 0.820
 56.159
 7.463
 5.273
 6.678

AIS3fuzzy
 0.860
 0.820
 56.543
 7.490
 5.326
 6.747

AIS4precise
 0.860
 0.821
 56.451
 7.482
 5.268
 6.680

AIS4fuzzy
 0.868
 0.816
 53.522
 7.291
 5.227
 6.663

AIS5precise
 0.854
 0.815
 58.893
 7.641
 5.411
 6.831

AIS5fuzzy
 0.855
 0.811
 58.735
 7.637
 5.447
 6.893

Set3precise a
 0.871
 0.748
 51.533
 7.113
 5.173
 6.591
ANN
 Set1
 0.863
 0.786
 55.639
 7.392
 5.651
 7.274

AIS2precise
 0.877
 0.822
 49.757
 7.015
 5.388
 6.972

AIS2fuzzy
 0.880
 0.815
 48.398
 6.909
 5.348
 6.960

AIS3precise
 0.886
 0.818
 46.000
 6.707
 5.154
 6.669

AIS3fuzzy
 0.891
 0.816
 44.189
 6.596
 5.071
 6.574

AIS4precise
 0.895
 0.820
 42.238
 6.442
 4.942
 6.414

AIS4fuzzy
 0.886
 0.819
 46.178
 6.751
 5.216
 6.783

AIS5precise
 0.879
 0.805
 48.929
 6.903
 5.287
 6.805

AIS5fuzzy
 0.869
 0.806
 53.158
 7.238
 5.571
 7.180

Set3precise a
 0.892
 0.771
 43.321
 6.515
 5.071
 6.587
Ridge
 Set1
 0.790
 0.781
 85.163
 9.224
 6.955
 8.817

AIS2precise
 0.807
 0.797
 77.989
 8.828
 6.677
 8.485

AIS2fuzzy
 0.806
 0.793
 78.557
 8.860
 6.742
 8.596

AIS3precise
 0.813
 0.798
 75.843
 8.705
 6.551
 8.321

AIS3fuzzy
 0.813
 0.795
 75.785
 8.701
 6.614
 8.420

AIS4precise
 0.811
 0.800
 76.446
 8.740
 6.580
 8.334

AIS4fuzzy
 0.811
 0.797
 76.688
 8.754
 6.640
 8.432

AIS5precise
 0.809
 0.799
 77.312
 8.789
 6.635
 8.431

AIS5fuzzy
 0.809
 0.796
 77.344
 8.791
 6.707
 8.543

Set3precise a
 0.820
 0.758
 72.381
 8.498
 6.520
 8.315
LASSO
 Set1
 0.789
 0.781
 85.405
 9.238
 6.961
 8.819

AIS2precise
 0.807
 0.796
 78.356
 8.848
 6.703
 8.536

AIS2fuzzy
 0.806
 0.792
 78.750
 8.871
 6.753
 8.625

AIS3precise
 0.811
 0.796
 76.696
 8.753
 6.608
 8.410

AIS3fuzzy
 0.811
 0.796
 76.732
 8.756
 6.644
 8.459

AIS4precise
 0.809
 0.798
 77.292
 8.787
 6.634
 8.425

AIS4fuzzy
 0.809
 0.797
 77.165
 8.781
 6.659
 8.477

AIS5precise
 0.808
 0.798
 77.734
 8.813
 6.664
 8.483

AIS5fuzzy
 0.808
 0.796
 77.682
 8.811
 6.719
 8.568

Set3precise a
 0.819
 0.758
 72.827
 8.524
 6.550
 8.374
Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A7
The fit performance of eleven machine learning models for ship S8.

Model Dataset R2 R2 (test) MSE RMSE (ton/day) MAE (ton/day) MAPE (%)
DT
 Set1
 0.916
 0.774
 54.181
 7.305
 5.213
 6.441

AIS2precise
 0.910
 0.734
 54.413
 7.305
 5.175
 6.255

AIS2fuzzy
 0.909
 0.751
 55.016
 7.391
 5.225
 6.303

AIS3precise
 0.904
 0.764
 58.172
 7.506
 5.430
 6.557

AIS3fuzzy
 0.910
 0.757
 54.043
 7.255
 5.193
 6.272

AIS4precise
 0.910
 0.746
 54.031
 7.280
 5.178
 6.240

AIS4fuzzy
 0.907
 0.747
 56.211
 7.451
 5.288
 6.384

AIS5precise
 0.908
 0.771
 55.429
 7.369
 5.275
 6.362

AIS5fuzzy
 0.925
 0.777
 45.620
 6.622
 4.665
 5.687

Set3precise a
 0.916
 0.769
 50.649
 6.985
 4.922
 5.949
ET
 Set1
 0.998
 0.882
 1.556
 0.811
 0.551
 0.679

AIS2precise
 0.998
 0.866
 0.927
 0.774
 0.471
 0.588

AIS2fuzzy
 0.995
 0.862
 2.789
 1.167
 0.761
 0.941

AIS3precise
 0.997
 0.870
 2.074
 1.178
 0.744
 0.925

AIS3fuzzy
 0.997
 0.870
 1.736
 0.987
 0.628
 0.776

AIS4precise
 0.996
 0.865
 2.660
 1.228
 0.795
 0.986

AIS4fuzzy
 0.997
 0.863
 1.868
 1.000
 0.639
 0.791

AIS5precise
 0.998
 0.877
 1.223
 0.864
 0.549
 0.687

AIS5fuzzy
 0.998
 0.874
 1.459
 0.949
 0.616
 0.766

Set3precise a
 0.995
 0.876
 2.783
 1.404
 0.907
 1.120
RF
 Set1
 0.978
 0.859
 13.895
 3.707
 2.535
 3.124
(continued on next column)
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Table A7 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
20
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS2precise
 0.974
 0.840
 15.552
 3.918
 2.680
 3.274

AIS2fuzzy
 0.976
 0.840
 14.417
 3.782
 2.623
 3.196

AIS3precise
 0.970
 0.848
 17.980
 4.202
 2.858
 3.508

AIS3fuzzy
 0.975
 0.848
 15.355
 3.895
 2.688
 3.294

AIS4precise
 0.974
 0.839
 15.743
 3.948
 2.718
 3.318

AIS4fuzzy
 0.974
 0.840
 15.800
 3.958
 2.747
 3.356

AIS5precise
 0.975
 0.856
 15.054
 3.848
 2.645
 3.229

AIS5fuzzy
 0.976
 0.860
 14.471
 3.781
 2.619
 3.204

Set3precise a
 0.976
 0.855
 14.566
 3.798
 2.624
 3.187
AB
 Set1
 0.982
 0.870
 11.601
 3.288
 2.747
 3.479

AIS2precise
 0.993
 0.852
 4.466
 2.032
 1.640
 2.081

AIS2fuzzy
 0.990
 0.860
 6.002
 2.344
 1.935
 2.443

AIS3precise
 0.993
 0.857
 4.187
 1.850
 1.461
 1.869

AIS3fuzzy
 0.993
 0.859
 4.258
 1.782
 1.406
 1.799

AIS4precise
 0.992
 0.853
 4.887
 2.044
 1.651
 2.115

AIS4fuzzy
 0.994
 0.856
 3.765
 1.844
 1.442
 1.826

AIS5precise
 0.995
 0.866
 3.047
 1.544
 1.182
 1.516

AIS5fuzzy
 0.996
 0.874
 2.605
 1.432
 1.084
 1.388

Set3precise a
 0.991
 0.863
 5.365
 2.114
 1.693
 2.148
GB
 Set1
 0.983
 0.875
 10.771
 3.062
 2.188
 2.750

AIS2precise
 0.990
 0.845
 6.089
 1.946
 1.312
 1.638

AIS2fuzzy
 0.991
 0.842
 5.472
 1.961
 1.317
 1.636

AIS3precise
 0.989
 0.851
 6.797
 2.127
 1.416
 1.777

AIS3fuzzy
 0.985
 0.850
 9.273
 2.484
 1.694
 2.119

AIS4precise
 0.991
 0.849
 5.801
 1.838
 1.227
 1.539

AIS4fuzzy
 0.992
 0.846
 4.749
 1.968
 1.355
 1.695

AIS5precise
 0.988
 0.859
 7.367
 2.097
 1.438
 1.781

AIS5fuzzy
 0.986
 0.863
 8.510
 2.330
 1.622
 2.011

Set3precise a
 0.985
 0.860
 9.102
 2.427
 1.670
 2.075
XG
 Set1
 0.991
 0.877
 5.538
 1.956
 1.429
 1.791

AIS2precise
 0.979
 0.841
 12.914
 3.086
 2.202
 2.713

AIS2fuzzy
 0.989
 0.850
 6.647
 2.089
 1.460
 1.815

AIS3precise
 0.985
 0.842
 9.459
 2.492
 1.759
 2.163

AIS3fuzzy
 0.989
 0.850
 6.678
 2.185
 1.473
 1.824

AIS4precise
 0.982
 0.839
 11.047
 2.796
 1.970
 2.439

AIS4fuzzy
 0.987
 0.847
 7.669
 2.271
 1.552
 1.925

AIS5precise
 0.973
 0.863
 16.064
 3.747
 2.646
 3.231

AIS5fuzzy
 0.978
 0.861
 13.557
 3.275
 2.288
 2.797

Set3precise a
 0.979
 0.856
 12.821
 2.974
 2.114
 2.589
LB
 Set1
 0.979
 0.871
 13.718
 3.540
 2.601
 3.309

AIS2precise
 0.973
 0.832
 16.182
 3.417
 2.447
 3.043

AIS2fuzzy
 0.983
 0.837
 9.937
 2.763
 1.977
 2.484

AIS3precise
 0.982
 0.844
 10.828
 2.743
 1.936
 2.441

AIS3fuzzy
 0.979
 0.848
 12.946
 3.069
 2.203
 2.759

AIS4precise
 0.969
 0.824
 18.763
 4.017
 2.929
 3.677

AIS4fuzzy
 0.973
 0.835
 16.409
 3.765
 2.725
 3.415

AIS5precise
 0.973
 0.849
 16.500
 3.523
 2.521
 3.138

AIS5fuzzy
 0.978
 0.860
 13.784
 3.213
 2.262
 2.836

Set3precise a
 0.976
 0.852
 14.749
 3.261
 2.338
 2.882
SVM
 Set1
 0.900
 0.862
 64.371
 8.014
 5.742
 6.905

AIS2precise
 0.892
 0.846
 64.923
 8.048
 5.555
 6.624

AIS2fuzzy
 0.886
 0.841
 68.842
 8.289
 5.746
 6.819

AIS3precise
 0.906
 0.861
 56.735
 7.523
 5.223
 6.371

AIS3fuzzy
 0.901
 0.856
 59.608
 7.712
 5.314
 6.426

AIS4precise
 0.906
 0.862
 56.668
 7.517
 5.201
 6.343

AIS4fuzzy
 0.900
 0.856
 60.112
 7.746
 5.316
 6.423

AIS5precise
 0.897
 0.858
 62.015
 7.865
 5.503
 6.604

AIS5fuzzy
 0.892
 0.854
 65.006
 8.054
 5.607
 6.685

Set3precise a
 0.910
 0.869
 54.154
 7.349
 5.117
 6.123
ANN
 Set1
 0.914
 0.857
 55.217
 7.398
 5.605
 6.809

AIS2precise
 0.903
 0.834
 58.524
 7.590
 5.568
 6.678

AIS2fuzzy
 0.896
 0.830
 62.810
 7.876
 5.865
 7.024

AIS3precise
 0.913
 0.854
 52.371
 7.201
 5.280
 6.420

AIS3fuzzy
 0.910
 0.850
 54.338
 7.351
 5.383
 6.496

AIS4precise
 0.917
 0.849
 50.268
 7.033
 5.138
 6.252

AIS4fuzzy
 0.913
 0.847
 52.479
 7.207
 5.293
 6.397

AIS5precise
 0.911
 0.846
 53.888
 7.282
 5.345
 6.458

AIS5fuzzy
 0.912
 0.848
 53.388
 7.276
 5.335
 6.431

Set3precise a
 0.924
 0.862
 46.222
 6.733
 4.964
 5.959
Ridge
 Set1
 0.866
 0.842
 86.315
 9.288
 7.004
 8.561

AIS2precise
 0.858
 0.829
 85.639
 9.248
 7.008
 8.573

AIS2fuzzy
 0.856
 0.826
 87.056
 9.324
 7.077
 8.631

AIS3precise
 0.868
 0.839
 79.392
 8.905
 6.681
 8.300

AIS3fuzzy
 0.866
 0.836
 81.009
 8.996
 6.756
 8.358

AIS4precise
 0.867
 0.838
 79.957
 8.936
 6.693
 8.299

AIS4fuzzy
 0.864
 0.835
 81.764
 9.037
 6.780
 8.364
(continued on next column)
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Table A7 (continued )
Model
 Dataset
 R2
 R2 (test)
 MSE
21
RMSE (ton/day)
 MAE (ton/day)
 MAPE (%)
AIS5precise
 0.867
 0.840
 80.108
 8.945
 6.728
 8.344

AIS5fuzzy
 0.865
 0.838
 81.568
 9.026
 6.771
 8.361

Set3precise a
 0.879
 0.853
 72.818
 8.529
 6.512
 7.959
LASSO
 Set1
 0.865
 0.842
 87.140
 9.332
 7.023
 8.576

AIS2precise
 0.857
 0.828
 85.994
 9.267
 7.011
 8.567

AIS2fuzzy
 0.855
 0.826
 87.359
 9.340
 7.076
 8.621

AIS3precise
 0.867
 0.839
 80.087
 8.944
 6.729
 8.334

AIS3fuzzy
 0.864
 0.837
 81.870
 9.043
 6.794
 8.365

AIS4precise
 0.867
 0.838
 80.157
 8.948
 6.700
 8.306

AIS4fuzzy
 0.864
 0.834
 81.947
 9.047
 6.787
 8.369

AIS5precise
 0.867
 0.840
 80.433
 8.963
 6.737
 8.348

AIS5fuzzy
 0.864
 0.838
 82.001
 9.050
 6.782
 8.359

Set3precise a
 0.878
 0.852
 73.581
 8.573
 6.525
 7.966
Note:

a Set3precise is the best dataset in Li et al. (2022) which is the Part I of this series of studies.
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