ELSEVIER

Contents lists available at ScienceDirect

Communications in Transportation Research

journal homepage: www.journals.elsevier.com/communications-in-transportation-research

Full Length Article

Data fusion and machine learning for ship fuel efficiency modeling: Part II – Voyage report data, AIS data and meteorological data

Yuquan Du^{a,*}, Yanyu Chen^{a,b}, Xiaohe Li^{a,c}, Alessandro Schönborn^d, Zhuo Sun^e

^a Centre for Maritime and Logistics Management, Australian Maritime College, University of Tasmania, Launceston, TAS 7250, Australia

^b Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Taroona, TAS 7053, Australia

^c College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, China

^d Maritime Energy Management, World Maritime University, Fiskehamnsgatan 1, 201 24 Malmö, Sweden

^e College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China

ARTICLE INFO

Keywords: Ship fuel efficiency Fuel consumption rate Voyage report AIS Data fusion Machine learning

ABSTRACT

When voyage report data is utilized as the main data source for ship fuel efficiency analysis, its information on weather and sea conditions is often regarded as unreliable. To solve this issue, this study approaches AIS data to obtain the ship's actual detailed geographical positions along its sailing trajectory and then further retrieve the weather and sea condition information from publicly accessible meteorological data sources. These more reliable data about weather and sea conditions the ship sails through is fused into voyage report data in order to improve the accuracy of ship fuel consumption rate models. Eight 8100-TEU to 14.000-TEU containerships from a global shipping company were used in experiments. For each ship, nine datasets were constructed based on data fusion and eleven widely-adopted machine learning models were tested. Experimental results revealed the benefits of fusing voyage report data, AIS data, and meteorological data in improving the fit performances of machine learning models of forecasting ship fuel consumption rate. Over the best datasets, the performances of several decision tree-based models are promising, including Extremely randomized trees (ET), AdaBoost (AB), Gradient Tree Boosting (GB) and XGBoost (XG). With the best datasets, their R^2 values over the training sets are all above 0.96 and mostly reach the level of 0.99–1.00, while their R^2 values over the test sets are in the range from 0.75 to 0.90. Fit errors of ET, AB, GB, and XG on daily bunker fuel consumption, measured by RMSE and MAE, are usually between 0.8 and 4.5 ton/day. These results are slightly better than our previous study, which confirms the benefits of adopting the actual geographical positions of the ship recorded by AIS data, compared with the estimated geographical positions derived from the great circle route, in retrieving weather and sea conditions the ship sails through.

1. Introduction

The International Maritime Organization (IMO, 2020) has been promoting energy-efficient operational measures in voyage management to save bunker fuel and mitigate ship emissions, including sailing speed optimization, trim optimization, weather routing, and virtual (just-in-time) arrival. These measures are preferred by shipping companies because of their cost effectiveness compared to technical solutions (Wan et al., 2018; Merkel et al., 2022). The shipping industry has been facing some frustrations during the process of implementing these energy-efficient measures owing to the inability to accurately quantify how much bunker fuel a ship will consume in one day or hour in different speed, displacement/draft, trim, weather, and sea conditions. Therefore, to advance these energy-efficient measures in the shipping industry, it is paramount to lay a solid theoretical foundation by developing models that can accurately quantify the relationship between fuel consumption rate (MT/day, or MT/h) and its determinants, including sailing speed, displacement/draft, trim, weather conditions, and sea conditions.

According to Yan et al. (2021), machine learning (ML) models are emerging in recent years as an effective approach for ship fuel efficiency analysis. Multiple data sources can assist shipping companies to develop ML models of ship fuel efficiency to be used in energy-efficient operational measures in voyage management, including voyage report data, sensor data, automatic identification system (AIS) data, and meteorological data. The systematic literature review of Yan et al. (2021) and a literature review conducted in our previous study ("Data fusion and

https://doi.org/10.1016/j.commtr.2022.100073

Received 30 April 2022; Received in revised form 18 June 2022; Accepted 19 June 2022 Available online xxxx

2772-4247/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Tsinghua University Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author. E-mail address: yuquan.du@utas.edu.au (Y. Du).

machine learning for ship fuel efficiency modeling: Part I – voyage report data and meteorological data", referred to as "Li et al. (2022)" hereinafter) show that few existing studies explore the complementary advantages of different data sources and combine multiple data sources for the sake of improving data quality for ML ship fuel efficiency models. Therefore, Li et al. (2022) propose the following research questions regarding fusion of different data sources that interest both academics and industry professionals:

- **RQ1.** Is it possible to combine/fuse different but complementary data sources for the sake of modeling accuracy for ship fuel efficiency analysis? And how these data sources can be fused?
- **RQ2.** Compared to a single data source, what are the benefits of fusing different data sources in terms of modeling accuracy and generalization?
- **RQ3.** Selection of datasets and choice of models are two different decision dimensions but they rely on each other. When these two decisions are interwoven, how can we select the best datasets and best models?

In our previous study, Li et al. (2022) noticed the data quality issue of voyage report caused by the deck officers' practice of snapshotting and eye inspecting weather and sea conditions. To remedy this issue, Li et al. (2022) developed a solution of fusing voyage report data and publicly accessible meteorological data by replacing the information of snapshotted weather and sea conditions in voyage report with accurate hourly weather and sea conditions for eight 8,100-TEU to 14,000-TEU containerships, several ship-specific ML models of forecasting ship fuel consumption rate achieve high fit performances with R^2 values all above 0.96 and even reaching 0.99 to 1.00 for training sets, while their R^2 values for test sets are also promising between 0.74 and 0.90.

In Li et al. (2022), a key step before retrieving exact information of weather and sea conditions from meteorological data is calculating the ship's hourly geographical positions (< Timestamp, latitude, longitude >) along its sailing trajectory. Li et al. (2022) assumed the ship follows the great circle route approximated by the widely adopted rhumb line and adopted the rhumb line formulas (Bennett, 1996; Weintrit and Kopacz, 2011) to calculate the geographical locations the ship passes in a day. Several ship captains we consulted commented that the great circle route may not be followed in sailing for several reasons and using the geographical positions derived from the great circle route or the rhumb line may introduce inaccuracy when weather and sea conditions are retrieved from meteorological data. This is a prominent limitation of Li et al. (2022).

To address this limitation, we approached *MarineTraffic* headquartered in Greece and purchased the AIS data of the eight containerships experimented with by Li et al. (2022), because AIS data provides the detailed geographical positions of the ship forming its actual sailing trajectory. Meanwhile, AIS data also provides the information of the ship's heading at each geographical position, and this may make the calculation of the directions of wind/waves/sea currents relative to the ship's heading more reliable. The objective of this study is to investigate whether the introduction of actual geographical positions in AIS data will improve the information quality of weather and sea conditions retrieved from meteorological data and therefore further improve the fit performances of ML models when meteorological data and voyage report data are combined.

The rest of the paper is organized as follows. Section 2 describes AIS data, introduces the approach of fusing voyage report data, AIS data, and meteorological data, and constructs several datasets based on data fusion. Over these datasets of eight containerships, Section 3 experiments with eleven ML models and makes informed decisions about dataset choice and ML model selection. Section 4 draws concluding remarks.

2. Fusion of voyage report data, AIS data and meteorological data

The same eight mega containerships as those in Li et al. (2022) are considered in this study. Data sources of voyage report and meteorological data are also same to Li et al. (2022): a global shipping company provides the voyage report data of these eight ships and the sailing period recorded by the voyage report data spans from February 2014 to March 2016; Centre for Medium-range Weather Forecasts (ECMWF) (Hersbach et al., 2018) provides the data of wind, waves, and sea water temperature in the finest granularity of 0.25° (longitude) \times 0.25° (latitude) \times 1 h (time); Copernicus Marine Service (CMEMS, also a.k.a. "Copernicus") (Rio et al., 2014) provides the data of sea currents in the finest granularity of 0.25° (latitude) \times 3 h (time).

The purchased AIS data from *MarineTraffic* has 15 columns. Apart from the identification and particulars of the ship (*MMSI*, *Call Sign*, *Ship Name*, *Flag Country*, *Draft Designed*, *Length*) and the information about the voyage (*ETA*, *Destination Port*), AIS data contains the detailed navigation data including "Timestamp (UTC)", "Navigation Status", "Longitude Position", "Latitude Position", "Ship Course", "Ship Heading", and "Sailing Speed". There is a data entry every 3–5 min. "Sailing Speed" appears to be useful in our study. However, this study considers voyage report as the main data source of ship fuel consumption which records information on a daily basis. Therefore, "Sailing Speed" information in the time interval of 3–5 min from AIS data does not help in this study.

The information about "*Timestamp (UTC)*", "Longitude Position", and "Latitude Position" could be quite useful in that it helps us find the actual geographical positions of the ship in a day and recover its actual sailing trajectory on that day. Further, accurate detailed information of weather and sea conditions the ship sails through can be retrieved from meteorological data, according to the actual sailing trajectory. "Ship Heading" information could also be useful because it helps convert the (absolute) directions of wind, waves, and sea currents reported by meteorological data to relative directions of wind, waves, and sea currents against the ship's heading, which is desired in ship fuel efficiency modeling. Li et al. (2022) had to utilize "True Course" information in voyage report in the calculation of relative directions of wind, waves, and sea currents as a workaround because voyage report does not record the heading of the ship.

The approach of fusing voyage report data, AIS data, and meteorological data is illustrated in Fig. 1. First, for a given day recorded by voyage report, the ship's hourly geographical positions are retrieved from AIS data. Specifically, the ship's positions at the times of {00:00 h, 01:00 h, 02:00 h, ..., 23:00 h} are selected. If a data entry does not exist corresponding to e.g. 05:00 h, the entry in AIS data whose timestamp is closest to this time point is used as the substitute. Second, according to these geographical positions, the hourly weather and sea condition information are queried and obtained from meteorological data including ECMWF (wind, waves, sea water temperature) and Copernicus (sea currents). Then the directions of wind, waves, and sea currents are converted to the relative directions to the ship's heading. Third, these hourly weather and sea conditions are aggregated and produce their daily averages. At last, daily average conditions of wind, waves, sea water temperature, and sea currents are used to replace the meteorological record in the voyage report.

In this data fusion approach, the noises of AIS data are not a concern because only hourly geographical positions of the ship are needed for the sake of retrieval of weather and sea conditions. Finer positions of the ship from AIS data are meaningless because our target in this study is the daily average weather and sea conditions the ship sails through for each day in the voyage report. Even if there were noises in sampling the ship's hourly geographical positions from AIS data, they would not cause a problem in calculating the daily average weather and sea conditions confronting the ship. Meanwhile, hourly positions of the ship already enable us to retrieve the weather and sea conditions in the resolution of 15–28 nautical miles (corresponding to the sailing speeds of 15–28 knots),

Fig. 1. Approach of fusing voyage report data, AIS data, and meteorological data.

which is sufficient for our research purpose. Finer positions of the ship, say half-hourly positions, will break the daily trajectory into too short segments (say each segment with 7–14 nautical miles) that do not make sense and might be even shorter than the geographical granularity of the finest meteorological dataset.

Similar to Li et al. (2022), this study also allows the conversion of the precise values representing wind speed and relative directions of wind, waves, and sea currents to fuzzy values. See Tables 2 and 3 and Fig. 1 of Li et al. (2022). This is because voyage reports usually adopt fuzzy values and our preliminary experiments show that fuzzy values sometimes overcome data noises/inaccuracy and improve fit performance of ML models. Overall, nine datasets are constructed from this data fusion approach, and the features of each dataset are listed in Table 1. "Set1" in Table 1 is exactly the same "Set1" in Li et al. (2022), which represents the voyage report.

3. Experimental results and discussion

The eight containerships, voyage report data and meteorological data, ML models, performance metrics of models, and experimental settings are all the same as our previous study Li et al. (2022), which allows experimental comparison with Li et al. (2022). Eleven ML models that are experimented with include artificial neural network (ANN) (Haykin, 2008), support vector machine (SVM) (Boser et al., 1992), ridge regression (Ridge) (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996), basic decision tree (DT) (Breiman et al., 1984), Extremely randomized trees (ET) (Geurts et al., 2006), random forest (RF) (Breiman, 2001), AdaBoost (AB) (Freund and Schapire, 1997; Drucker, 1997), gradient tree boosting (GB) (Friedman, 2001), XGBoost (XG) (Chen and Guestrin, 2016), and LightGBM (LB) (Ke et al., 2017).

3.1. Performances of eleven ML models over nine datasets and selection of the best datasets

Same as Li et al. (2022), for each dataset in Table 1, we randomly divided it to a training set (80% of data entries) and test set (20% of data entries), which results in a *split* of the dataset. For each split of the dataset, we experimented with a given ML model involving a process of *five-fold cross-validation* based hyperparameter optimization with the

Bayesian Optimization method using the tree-structured Parzen Estimators of hyperopt 0.2.2 library (*Hyperopt*) (Bergstra et al., 2013), which is called a *run*. For each ML model over each dataset, we have 20 random splits of the dataset and thus 20 runs of experiments. Each performance metric (R^2 , *MSE*, *RMSE*, *MAE* and *MAPE* for training set, R^2 (*test*) for test set, see definition in Li et al. (2022)) takes the average of 20 runs to overcome the influence of random splitting of the dataset. Experimental results of ship S1 are reported in Table 2, while the results of ships S2 to S8 can be found in Tables A1 to A7 in Appendix. Note that the performances over the best datasets found by Li et al. (2022), including *Set1* and *Set3*_{precise}, are also reported in Tables 2 and A1 to A7, for the convenience of comparison with Li et al. (2022).

When quality of datasets and performance of ML models are interwoven, shown in Tables 2 and A1 to A7, a voting scheme same as Li et al. (2022) is adopted. Each ML model acts as a voter and votes for the best datasets (candidates) by considering R^2 (with two decimal places) as the first priority and R^2 (test) (with two decimal places) as the secondary performance metric. The voting result is collated in Table 3 in which the last column is the votes of the corresponding ML models (voters). Fig. 2 is the Tally sheet that counts the votes received by each dataset: Fig. 2(a) considers all the models as voters; Fig. 2(b) does not consider DT, SVM, ANN, Ridge, and LASSO as voters, because their fit performances are significantly worse than ET, RF, AB, GB, XG and LB and thus they will not be preferred by industry applications; Fig. 2(c) further removes RF, GB and LB from the voter list because they are dominated by ET, AB, and XG against both R^2 and R^2 (test).

It can be seen from Fig. 2 that $AIS5_{precise}$ receives the largest number of votes, followed by $Set3_{precise}$ and Set1. $AIS5_{precise}$ receives 18 votes from ET, RF, AB, GB, XG and LB, according to Fig. 2(b), and 9 votes from ET, AB, and XG according to Fig. 2(c). This reveals that when AIS data is available for ship fuel efficiency analysis, $AIS5_{precise}$ is the best, and this dataset is better than Set1 and $Set3_{precise}$ from Li et al. (2022) which is the Part I of this series of studies. This demonstrates the benefits of further fusing AIS data to voyage report data and meteorological data considered in Li et al. (2022). Therefore, we recommend using $AIS5_{precise}$ in practice by fusing voyage report data, AIS data and meteorological data. When AIS data is not available, we can combine voyage report data and meteorological data and meteorological data and meteorological data and meteorological data.

Table 1

Features contained in each dataset.

Original datasets	Data source	Features	Dataset								
			Set1	AIS2 _{precise} ^b	AIS2 _{fuzzy} ^c	AIS3precise ^b	AIS3 _{fuzzy} ^c	AIS4 _{precise} ^b	AIS4 _{fuzzy} ^c	AIS5 _{precise} ^b	AIS5 _{fuzzy} ^c
Voyage report	Shipping company	Fuel	1	1	1	1	1	1	1	1	1
data	consumption										
	rate										
		Sailing speed	1	1	1	~	1	1	~	1	1
		Displacement	1	1	1	1	~	1	~	1	1
		Trim	1	1	1	1	~	1	~	1	1
		Wind speed	1								
		Wind direction	1								
		(Rel.)									
		Swell height	1								
		Swell direction	1								
		(Rel.)									
		Sea currents	1								
		speed									
		Sea currents	1								
		direction (Rel.)									
		Sea water	1								
		temperature									
AIS +	AIS+	Wind speed		1	1	1	1	1	1	1	1
Meteorological	European Centre for	Wind direction		1	1	1	1	1	1	1	1
data	Medium-range	(Rel.) ^a									
	Weather Forecasts	Swell height		/		<i>✓</i>	<i>_</i>	/	<i>_</i>		
	(ECMWF)	Swell direction		1	1	1	1	1	1		
		(Rel.)"									
		Swell period									
		Wind wave				<i>✓</i>	1	1	1		
		height				,	,	,	,		
		Wind wave				<i>,</i>	<i>,</i>	<i>,</i>	<i>,</i>		
		direction (Rel.)									
		wind wave									
		Combined wave				/	,			,	,
		Loindined wave				~	~			v	~
		Combined were				/	/			/	/
		direction (Bol.) ^a				•	•			v	v
		Combined wave									
		combined wave									
		Sea water		1	1	1	1	1	1	1	1
		temperature		•	•	•	•	•	•	•	•
	AIS + Copernicus	Sea current		1	1	1	1	1	1	1	1
	Marine Service	speed		•	•	•	•	•	•	•	•
	manie beivice	Sea current		1	1	1	1	1	1	1	1
		direction (Rel.) ^a				-	-				

Note

^a Relative directions of wind/waves/sea currents are calculated based on ship's "heading" information from AIS data.

^b The subscript "precise" means the directions of wind/waves/sea currents are calculated as the angles relative to ship's heading measured by degrees.

^c The subscript "fuzzy" means the precise information of directions of wind/waves/sea currents is converted to fuzzy data as per Table 2 and Fig. 1 of Li et al. (2022), and wind speed is represented by Beaufort scale numbers as per Table 3 of Li et al. (2022).

Looking at the results here, one may ask why other datasets in Table 1 combine voyage report data, meteorological data, and AIS data but are not competitive with the original voyage report data Set1, and even the best dataset AIS5_{precise} cannot always win the original voyage report dataset Set1. Similarly, regarding the results reported in our previous study (Li et al., 2022), one may ask why many datasets in Li et al. (2022) combine voyage report data and meteorological data but are not competitive with the original voyage report data Set1, and even the best dataset Set3precise in Li et al. (2022) cannot always win the original voyage report dataset Set1. Our deep investigation into the data reveals the following possible reasons. First, as reported by ECMWF and CMEMS in their websites, their meteorological data cannot avoid inaccuracy and errors, because these data relies on many types of collection equipment and the calculation of many models. As the evidence, we will see in Part III of this series of studies that the wind conditions contained in ECMWF are quite different from the actual wind conditions captured by the sensors on board the ships.

Second, the power of "average" calculation plays a critical role in reducing the quality of data used for model training. Specifically, the weather condition for a given day (corresponding to a voyage report data entry) is estimated by taking the average of the weather conditions at 24 waypoints (hourly waypoints) during the day. However, even accurate weather conditions at these waypoints cannot guarantee their daily average is closer to the actual weather condition (the reality). To provide an analogy for the sake of understanding, consider a situation in which we are estimating the actual average/mean value of a random variable through several observations. Assume the actual average value of this random variable is 10. Consider two different samples of observations: *Sample 1* = $\{9.5, 9.5, 9.5, 11, 12, 13\}$ and *Sample 2* = $\{9, 7, 5, 11, 13, 15\}$. The deviation of data in *Sample 1* from the real average ($\{0.5, 0.5, 0.5, 1, 2, 3\}$) is much smaller than that of *Sample 2* ($\{1, 3, 5, 1, 3, 5\}$). However, the average value estimated through *Sample 1* is 10.75, which is worse than that estimated from *Sample 2* (i.e., 10, the same as the actual average).

Third, the quality of voyage report data might already be good enough. Specifically, when it turns to the snapshotted weather and sea condition data, a ship captain we consulted pointed out "though the snapshotted weather and sea condition data is not desired, if you

Communications in Transportation Research 2 (2022) 100073

Table 2	
The fit performance of eleven machine learning models for ship S1.	

Moc	lel	Dataset	R^2	R^2	MSE	RMSE	MAE	MAPE
				(test)		(ton/	(ton/	(%)
						day)	day)	
DT	_	01	0.046	0.640	01.000	0.004	6.051	7.005
DI		Seti	0.846	0.643	81.022	8.934	0.851	7.995
		AIS2 _{precise}	0.840	0.630	77.176	8.694	6.705	7.959
		$AIS2_{fuzzy}$	0.822	0.623	85.984	9.211	7.093	8.448
		AIS3 _{precise}	0.827	0.624	83.223	9.057	6.908	8.190
		AIS3 _{fuzzy}	0.837	0.630	78.690	8.719	6.714	7.970
		AIS4 _{precise}	0.841	0.641	76.360	8.633	6.604	7.779
		AIS4 _{fuzzy}	0.841	0.625	76.849	8.681	6.688	7.928
		AIS5 _{precise}	0.838	0.618	78.187	8.788	6.765	7.982
		AIS5 _{fuzzy}	0.835	0.635	79.655	8.869	6.857	8.166
		Set3 _{precise} ^a	0.847	0.617	73.848	8.532	6.522	7.697
ET		Set1	0.992	0.781	4.001	1.525	1.090	1.255
		AIS2	0.958	0.773	20.546	4.176	3.152	3.765
		AIS26	0.955	0 766	21 556	4 174	3 164	3 797
		AIS3	0.960	0 767	19 295	4 067	3 079	3 691
		AIS3	0.945	0 772	26 555	4 972	3 829	4 610
		AISA .	0.959	0.768	19 646	4 095	3 001	3 710
		AISA.	0.959	0.760	16 /17	2 579	2 716	3.715
		AIG-	0.900	0.709	10.417	3.378	2.710	4.004
		AISSprecise	0.951	0.773	23.633	4.311	0.074	4.004
		AISS _{fuzzy}	0.952	0.771	23.140	4.393	3.3/4	4.034
		Set3 _{precise}	0.965	0.762	17.043	3.524	2.699	3.245
RF		Set1	0.964	0.761	18.837	4.321	3.194	3.721
		AIS2 _{precise}	0.940	0.757	29.138	5.322	3.997	4.760
		AIS2 _{fuzzy}	0.934	0.757	31.834	5.575	4.183	4.994
		AIS3 _{precise}	0.932	0.753	32.837	5.657	4.221	5.028
		AIS3 _{fuzzy}	0.943	0.756	27.491	5.186	3.895	4.635
		AIS4 _{precise}	0.932	0.754	32.987	5.663	4.216	5.041
		AIS4 _{fuzzy}	0.940	0.758	29.145	5.335	3.985	4.762
		AIS5 _{precise}	0.938	0.751	30.021	5.416	4.040	4.798
		$AIS5_{fuzzy}$	0.949	0.766	24.816	4.914	3.678	4.368
		Set3 _{precise} ^a	0.936	0.756	30.736	5.506	4.112	4.911
AB		Set1	0.955	0.758	23.482	4.687	4.036	4.940
		AIS2 _{precise}	0.956	0.762	21.288	4.333	3.661	4.495
		$AIS2_{fuzzy}$	0.947	0.759	25.519	4.648	3.801	4.620
		AIS3 _{precise}	0.947	0.755	25.740	4.879	4.148	5.082
		AIS3 _{fuzzy}	0.958	0.759	20.443	4.176	3.395	4.129
		AIS4 _{precise}	0.946	0.761	26.012	4.816	4.091	5.023
		AIS4 _{fuzzy}	0.951	0.751	23.966	4.460	3.733	4.568
		AIS5 _{precise}	0.950	0.763	24.422	4.732	3.966	4.854
		AIS5 _{fuzzy}	0.963	0.765	17.825	3.861	3.142	3.804
		Set3 _{precise} ^a	0.938	0.752	29.988	5.180	4.370	5.371
GB		Set1	0.987	0.764	6.570	2.238	1.633	1.893
		AIS2 _{precise}	0.958	0.740	20.367	4.158	3.130	3.722
		AIS2 _{fuzzy}	0.943	0.756	27.321	5.079	3.867	4.574
		AIS3 _{precise}	0.961	0.749	19.024	3.972	2.993	3.552
		AIS3 _{fuzzy}	0.955	0.759	21.837	4.113	3.167	3.757
		AIS4 _{precise}	0.952	0.746	23.273	4.533	3.398	4.068
		AIS4 _{fuzzy}	0.957	0.752	20.695	4.328	3.319	3.954
		AIS5 _{nrecise}	0.941	0.738	28.137	4.950	3.745	4.445
		AIS5 furry	0.955	0.754	21.469	4.385	3.360	3.967
		Set3precise a	0.962	0.743	18.367	3.776	2.825	3.330
XG		Set1	0.995	0.771	2.805	1.392	1.008	1.168
		AIS2	0.964	0.755	17.318	3.687	2.753	3.217
		AIS2 furme	0.951	0.759	23,599	4.375	3.297	3.850
		AIS3	0.955	0.753	21.321	4.017	2.952	3.439
		AIS3 furme	0.951	0.766	23.136	4.388	3.304	3.850
		AIS4	0.959	0.757	19,655	4.101	3.045	3.564
		AIS4	0.945	0.756	26.670	4.796	3.626	4.259
		AIS5	0.940	0.755	28.831	5.231	3.827	4.389
		AIS5	0.957	0.759	20 713	4 086	3.018	3 475
		Set3macin a	0.953	0.734	22 403	4 236	3 177	3 695
IB		Set1	0.980	0.755	5 857	2.183	1 652	1 924
цр		AIS2	0.941	0.732	28 704	4 895	3 705	4 403
		AIS2	0.927	0.737	34 903	5 699	4 347	5 157
		AIS3	0.021	0.742	33 070	5 560	4 152	4 962
		AIS3	0.931	0.730	37 612	5.082	4 551	5 491
		AISA	0.944	0.739	34 022	5.502	4 201	5 1 2 1
		AISA	0.929	0.723	37.023 41 501	5.030 6.174	7.201 1.671	5.131
		AISE	0.914	0.723	41.301	0.1/4	4.005	3.3//
		AIS5	0.92/	0.731	34.000 20.667	5.5/9	4.095	4.90/
		Cat2 a	0.938	0.730	49.00/ 97 167	1 804	3.700	4 979
C175	л	Set1	0.943	0.723	47.40/ 72.000	+.000 9 E 40	5.009	7156
2010	1	30LI A IC 2	0.001	0.784	13.082	0.040 7.056	0.303	/.100 6.010
		MI∂∠ _{precise}	0.808	0.795	03.402	1.930	9.912	0.810

Model	Dataset	R^2	R ²	MSE	RMSE	MAE	MAPE
			(test)		(ton/	(ton/	(%)
					uay)	uay)	
	$AIS2_{fuzzy}$	0.865	0.796	64.961	8.047	6.059	6.973
	AIS3 _{precise}	0.864	0.794	65.598	8.088	6.076	7.012
	AIS3 _{fuzzy}	0.876	0.796	59.629	7.692	5.732	6.604
	AIS4 _{precise}	0.865	0.793	64.842	8.037	6.034	6.961
	$AIS4_{fuzzy}$	0.870	0.786	62.681	7.882	5.928	6.838
	AIS5 _{precise}	0.863	0.799	65.964	8.114	6.080	6.999
	$AIS5_{fuzzy}$	0.867	0.798	64.071	7.994	5.977	6.866
	Set3 _{precise} ^a	0.858	0.786	68.382	8.263	6.143	7.059
ANN	Set1	0.869	0.781	68.911	8.290	6.391	7.296
	AIS2 _{precise}	0.876	0.773	59.980	7.662	5.914	6.866
	$AIS2_{fuzzy}$	0.901	0.778	48.121	6.838	5.360	6.232
	AIS3 _{precise}	0.865	0.784	65.208	8.036	6.231	7.285
	$AIS3_{fuzzy}$	0.864	0.781	66.001	8.030	6.270	7.379
	AIS4 _{precise}	0.859	0.758	68.527	7.974	6.165	7.174
	AIS4 _{fuzzy}	0.878	0.775	58.615	7.552	5.914	6.949
	AIS5 _{precise}	0.871	0.780	62.329	7.848	6.054	7.041
	$AIS5_{fuzzy}$	0.868	0.773	63.823	7.814	6.053	7.071
	Set3 _{precise} ^a	0.854	0.778	70.184	8.366	6.437	7.518
Ridge	Set1	0.814	0.774	97.422	9.868	7.725	8.932
	AIS2 _{precise}	0.826	0.786	83.624	9.143	7.097	8.337
	$AIS2_{fuzzy}$	0.823	0.783	85.424	9.241	7.252	8.528
	AIS3 _{precise}	0.835	0.792	79.647	8.923	6.999	8.239
	$AIS3_{fuzzy}$	0.833	0.793	80.613	8.977	7.083	8.330
	AIS4 _{precise}	0.832	0.790	80.693	8.981	7.014	8.239
	$AIS4_{fuzzy}$	0.828	0.788	82.842	9.100	7.205	8.459
	AIS5 _{precise}	0.828	0.788	82.760	9.096	7.029	8.250
	$AIS5_{fuzzy}$	0.825	0.786	84.246	9.177	7.121	8.359
	Set3 _{precise} ^a	0.830	0.784	81.939	9.050	6.993	8.192
LASSO	Set1	0.814	0.773	97.552	9.875	7.711	8.917
	AIS2 _{precise}	0.826	0.784	83.984	9.162	7.109	8.353
	AIS2 _{fuzzy}	0.822	0.782	85.539	9.247	7.256	8.536
	AIS3 _{precise}	0.834	0.793	79.815	8.932	6.999	8.238
	AIS3 _{fuzzy}	0.832	0.791	81.130	9.005	7.087	8.327
	AIS4 _{precise}	0.832	0.792	80.977	8.997	7.027	8.257
	AIS4 _{fuzzy}	0.828	0.789	83.030	9.110	7.212	8.473
	AIS5 _{precise}	0.828	0.788	82.784	9.097	7.041	8.271
	AIS5 _{fuzzy}	0.825	0.784	84.263	9.178	7.124	8.369
	Set3precise a	0.829	0.786	82.204	9.064	6.997	8.191

ote:

 a Set3 $_{precise}$ is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

snapshotted 8-m waves/swells, it is almost impossible that your ship sailed through good weather and sea conditions on average on that day". This comment indicates that the snapshotted weather and sea condition data might be representative, though to unknow degrees, for the actual weather and sea conditions the ship sails through in a day.

3.2. Performance comparison of ML models

While Table 3 reveals the performances of different ML models, we further report their performances over the best dataset $AIS5_{precise}$ of eight ships in Table 4. Tables 3 and 4 both confirm that ET, RF, AB, GB, XG and LB are good candidate models that can be adopted by the shipping industry. Their R^2 values over the best datasets are all above 0.95 and even reach the level of 0.99–1.00, while their R^2 performance over the test sets is in the range from 0.75 to 0.90. The remaining models, including DT, SVM, ANN, Ridge, and LASSO, are not recommended for industry applications because their R^2 values on the training sets are usually comparatively low, while the values of R^2 over the test sets have not shown any advantages compared to ET, RF, AB, GB, XG and LB.

Further, the fit performances of RF and LB are usually slightly dominated by ET, AB, GB, and XG, against both R^2 and R^2 (test), which confirms the sufficiency of only installing ET, AB, GB and XG in industry applications related to ship fuel efficiency analysis. GB can also be removed from industry installation once XG has already be installed

Table 3

Communications in Transportation Research 2 (2022) 100073

Best performance of each machine learning model from ten datasets and the datasets that achieve the best performance. R^2 (with two decimal places) is considered as the first priority, and R^2 (test) (with two decimal places) is the secondary performance metric.

Ship	Model	Best R ²	Best R ² (test)	Datasets
C1	DT	0.85	0.64	Çot1
51	DI	0.65	0.04	Sel1
	EI	0.99	0.78	Sell
	RF	0.96	0.76	Seti
	AB	0.96	0.77	AIS5 _{fuzzy}
	GB	0.99	0.76	Set1
	XG	1.00	0.77	Set1
	LB	0.99	0.76	Set1
	SVM	0.88	0.80	AIS3 _{fuzzy}
	ANN	0.90	0.78	AIS2 _{fuzzy}
	Ridge	0.84	0.79	AIS3 _{precise}
	LASSO	0.83	0.79	AIS3 _{precise}
S2	DT	0.85	0.65	AIS2 _{precise}
	ET	0.98	0.78	AIS5 _{precise}
	RF	0.96	0.77	Set1
	AB	0.98	0.75	AIS2 _{precise} , AIS3 _{precise} , AIS3 _{fuzzy} , AIS4 _{precise} ,
				AIS5 _{precise}
	GB	0.99	0.77	AIS4 _{precise}
	XG	0.99	0.77	Set3 _{precise}
	LB	0.98	0.75	Set3 _{precise}
	SVM	0.88	0.82	AIS3 precise, AIS4 precise
	ANN	0.91	0.79	Set3 _{nrecise}
	Ridge	0.84	0.81	AIS3 precise, AIS4 precise
	LASSO	0.84	0.81	AIS3
\$3	DT	0.87	0.71	AIS3
00	FT	0.07	0.82	$\Delta IS2 \cdot Sot3 \cdot$
	RF	0.96	0.81	AIS2 · AIS5 · AIS5
	ΔR	1.00	0.82	AIS5
	CB	0.07	0.82	AIS2 AIS2 AIS5 AIS5
	VC	0.97	0.82	AISZ precise, AISS precise, AISS precise, AISS fuzzy
	AG LD	0.96	0.82	AISSprecise
	LD	0.95	0.80	AIS2 _{precise} , AIS3 _{precise} , AIS3 _{fuzzy} , AIS5 _{precise} , AIS5 _{fuzzy} , Set3 _{precise}
	SVM	0.85	0.83	AIS4 _{precise}
	ANN	0.87	0.80	AIS3 _{precise} , Set3 _{precise}
	Ridge	0.80	0.80	AIS3 _{precise} , AIS3 _{fuzzy} , AIS4 _{precise} , AIS4 _{fuzzy} ,
				AIS5 _{precise} , Set3 _{precise}
	LASSO	0.80	0.80	AIS3precise, AIS3fuzzy, AIS4precise, AIS4fuzzy,
				AIS5 _{precise} , Set3 _{precise}
S4	DT	0.93	0.73	AIS3 _{fuzzy}
	ET	1.00	0.87	AIS2precise, AIS3precise, AIS4precise, AIS5precise,
				AIS5 _{fuzzy} , Set3 _{precise}
	RF	0.98	0.86	AIS2 _{precise} , AIS5 _{precise} , AIS5 _{firery}
	AB	0.99	0.87	AIS2 _{precise} , AIS3 _{precise} , AIS3 _{fuzzy} , AIS5 _{precise} ,
				AIS5 _{furmu} Set3 _{maging}
	GB	1.00	0.87	AIS3
	XG	1.00	0.87	AIS3 from Set3marica
	LB	0.99	0.87	AIS3
	SVM	0.94	0.85	AIS2
	ANN	0.91	0.86	Set3
	Didgo	0.93	0.82	Set 1
	IASSO	0.83	0.81	AIS3 AISA AIS5 Cot2
CE.	DT	0.05	0.81	AISSprecise, AISSprecise, AISSprecise, Stuppecise
35	DI	1.00	0.85	AISS _{fuzzy}
	EI DE	1.00	0.90	AIC2 AICA AICE
		1.00	0.89	AISS _{fuzzy} , AIS 4_{fuzzy} , AISS _{fuzzy}
	AD	1.00	0.90	$AIS3_{fuzzy}, AIS3_{fuzzy}$
	GB	1.00	0.89	AIS2 _{precise} , AIS2 _{fuzzy} , AIS3 _{precise} , AIS3 _{fuzzy} ,
	WO	1 00	0.00	AIS4 _{precise} , AIS5 _{precise}
	XG	1.00	0.89	AIS3 _{precise}
	LB	0.99	0.88	Set1, AIS2 _{precise} , AIS3 _{precise} , AIS3 _{fuzzy} ,
	010-	0.02	0.00	AIS5 _{precise}
	SVM	0.93	0.88	Set1
	ANN	0.94	0.89	AIS2 _{fuzzy}
	Ridge	0.89	0.88	$AIS2_{precise}, AIS5_{fuzzy}$
	LASSO	0.89	0.88	AIS2 _{precise}
S6	DT	0.86	0.57	AIS4 _{precise}
	ET	0.99	0.77	Set1, AIS2 _{precise} , AIS2 _{fuzzy} , AIS3 _{fuzzy}
	RF	0.96	0.77	Set1
	AB	0.99	0.75	AIS3 _{precise}
	GB	0.97	0.79	Set1
	XG	0.97	0.79	Set1
	LB	0.97	0.77	AIS2 _{fuzzy}

Ship	Model	Best R ²	Best R ² (test)	Datasets
	SVM	0.86	0.77	AIS2 _{precise}
	ANN	0.88	0.76	AIS2 _{precise}
	Ridge	0.79	0.75	AIS3 _{precise} , AIS3 _{fuzzy} , AIS4 _{precise}
	LASSO	0.79	0.75	AIS3 _{precise} , AIS4 _{precise}
S7	DT	0.88	0.68	Set3 _{precise}
	ET	0.99	0.81	Set3 _{precise}
	RF	0.97	0.82	AIS5 _{fuzzy}
	AB	0.99	0.83	AIS5 _{precise}
	GB	0.99	0.79	Set3 _{precise}
	XG	0.99	0.78	Set3 _{precise}
	LB	0.98	0.81	AIS3 _{precise} , AIS3 _{fuzzy}
	SVM	0.91	0.79	Set1
	ANN	0.90	0.82	AIS4 _{precise}
	Ridge	0.82	0.76	Set3 _{precise}
	LASSO	0.82	0.76	Set3 _{precise}
S8	DT	0.93	0.78	AIS5 _{fuzzy}
	ET	1.00	0.88	Set1, AIS5 _{precise} , Set3 _{precise}
	RF	0.98	0.86	Set1, AIS5 _{precise} , AIS5 _{fuzzy} , Set3 _{precise}
	AB	1.00	0.87	AIS5 _{precise} , AIS5 _{fuzzy}
	GB	0.99	0.86	AIS5 _{precise} , AIS5 _{fuzzy} , Set3 _{precise}
	XG	0.99	0.88	Set1
	LB	0.98	0.87	Set1
	SVM	0.91	0.87	Set3 _{precise}
	ANN	0.92	0.86	Set3 _{precise}
	Ridge	0.88	0.85	Set3 _{precise}
	LASSO	0.88	0.85	Set3 _{precise}

because GB and XG have close fit performances. Fit errors of ET, AB, GB, and XG on daily bunker fuel consumption, measured by RMSE and MAE, are usually between 0.8 and 4.5 ton/day, though fit errors might be over 4.5 ton/day occasionally if datasets are not carefully chosen.

The experimental results reported in Tables 3 and 4 also rank the performances of eleven ML models into the following four different tiers. The performances of the models in the same tier are quite close, while those of the models in different tiers are significantly different. All the experimental findings for fit performance of ML models are consistent with those from our Part I of this series of studies (Li et al., 2022).

 Tier 1: ET, AB, GB, and X 	۲G;
• Tier 2: RF, LB;	
 Tier 3: DT, SVM, ANN; a 	nd

• Tier 4: Ridge, LASSO.

Table 3 (continued)

3.3. The impact of wave period

We further added "combined waves period" to the best dataset *AIS5*_{precise} to see whether adding wave period information improves the experimental result. The experimental results of three best models (ET, AB, and XG) for ships S1, S3, S5, and S8 are shown in Fig. 3.

Fig. 3 reveals that including wave period information into models might improve the fit performance of models (Ships S1 and S5) but this improvement is often negligible. It might also slightly reduce the fit performance of models. This indicates that the influence of wave period on the fuel consumption rate of a mega conainership at sea is negligible and could be explained by the noises associated with the training data. By considering the consistent result in Part I of this series of studies (Li et al., 2022), we do not recommend including wave period into models, if voyage report data and meteriological data are combined, no matter whether AIS data is involved.

3.4. An experimental summary of this study and Li et al. (2022)

This section summarizes the experimental findings in Li et al. (2022) and this study. Fig. 4 illustrates the fit performances (R^2 and RMSE) of three best models (ET, AB and XG) over three best datasets: *Set1* is the original voyage report data, *Set3*_{precise} represents the best dataset by

(a) Best dataset counts (voted by all models)

(b) Best dataset counts (voted by ET, RF, AB, GB, XG and LB)

(c) Best dataset counts (voted by ET, AB, and XG)

Fig. 2. Best datasets voted by machine learning models.

fusing voyage report data and meteorological data, and *AIS5*_{precise} represents the best dataset by fusing voyage report data, meteorological data, and AIS data. Overall, as shown in the Tally sheet in Fig. 2, *AIS5*-*precise* is slightly better than *Set3*_{precise} which in turn is slightly better than *Set1*. The fit errors of ET, AB and XG over these datasets are normally within 5 ton/day and can be as low as less than 1 ton/day.

Figs. 2 and 4 also reveal that the decision of selecting good ML models

Table 4

The fit performance of eleven machine learning models over dataset AIS5_{precise}.

Ship	Model	R^2	R^2	MSE	RMSE	MAE	MAPE
			(test)		(ton/	(ton/	(%)
					day)	day)	
S1	DT	0.838	0.527	78.187	8.788	6.765	7.982
	ET	0.951	0.719	23.833	4.511	3.428	4.084
	RF	0.938	0.692	30.021	5.416	4.040	4.798
	AB	0.950	0.706	24.422	4.732	3.966	4.854
	GB	0.941	0.676	28.137	4.950	3.745	4.445
	AG I B	0.940	0.690	28.831	5.231	3.827 4.095	4.389
	SVM	0.927	0.752	65.964	8.114	6.080	6.999
	ANN	0.871	0.728	62.329	7.848	6.054	7.041
	Ridge	0.828	0.738	82.760	9.096	7.029	8.250
	LASSO	0.828	0.737	82.784	9.097	7.041	8.271
S2	DT	0.838	0.546	100.776	9.878	7.326	8.621
	ET	0.979	0.717	13.486	3.239	2.390	2.760
	RF	0.948	0.693	32.466	5.645	4.072	4.748
	AB	0.975	0.690	15.834	3.830	3.227	3.765
	GB	0.964	0.705	22.248	4.288	3.136	3.537
	IB	0.905	0.700	21.009	4.207	2.939	3.203
	SVM	0.939	0.758	74 547	8 599	6 1 9 1	6.738
	ANN	0.895	0.744	65.299	8.036	6.139	6.847
	Ridge	0.829	0.760	106.864	10.332	7.780	8.791
	LASSO	0.829	0.760	106.939	10.336	7.779	8.774
S3	DT	0.867	0.630	97.066	9.534	6.948	8.222
	ET	0.982	0.799	13.029	3.188	1.858	2.364
	RF	0.963	0.777	27.121	5.168	3.376	4.170
	AB	0.995	0.789	3.588	1.728	1.292	1.513
	GB	0.969	0.787	22.552	4.221	2.710	3.366
	AG I R	0.976	0.789	25 222	3.884 5.422	2.439	2.900
	SVM	0.932	0.770	115 821	10 727	6 746	8 262
	ANN	0.860	0.781	101.322	10.029	6.763	8.262
	Ridge	0.796	0.771	147.564	12.133	8.425	10.745
	LASSO	0.796	0.770	147.612	12.135	8.426	10.746
S4	DT	0.904	0.706	78.681	8.637	6.425	6.897
	ET	0.998	0.849	1.642	0.927	0.651	0.696
	RF	0.975	0.835	20.097	4.472	3.292	3.590
	AB	0.988	0.847	9.701	2.956	2.466	2.774
	GB	0.991	0.851	7.631	2.412	1.810	1.933
	IB	0.992	0.842	6 859	2.074	1.546	1.040
	SVM	0.927	0.836	59.875	7.686	5.642	6.018
	ANN	0.939	0.846	50.219	7.062	5.524	5.962
	Ridge	0.827	0.775	141.409	11.888	9.244	9.534
	LASSO	0.827	0.775	141.586	11.895	9.244	9.530
S5	DT	0.948	0.764	28.458	5.104	3.741	5.634
	ET	0.997	0.875	1.475	0.901	0.652	0.988
	RF	0.983	0.857	9.594	3.090	2.281	3.497
	AB CB	0.995	0.809	2.723	1.470	1.1/2	2.123
	XG	0.997	0.874	4 860	1.102	1.382	2.183
	LB	0.991	0.858	4.875	2.049	1.523	2.390
	SVM	0.918	0.856	45.274	6.711	4.874	7.385
	ANN	0.935	0.855	36.276	5.973	4.538	6.997
	Ridge	0.887	0.851	62.515	7.903	5.941	9.040
	LASSO	0.887	0.851	62.689	7.914	5.950	9.050
S6	DT	0.847	0.521	63.834	7.896	5.826	7.701
	ET	0.984	0.729	6.604	2.439	1.780	2.368
	AP	0.959	0.711	17.057 6.050	4.110	2.9/4	3.950
	GB	0.963	0.714	10.939	2.393	3 282	2.000 4 460
	XG	0.948	0.731	21.685	4.533	3.501	4,755
	LB	0.956	0.713	18.441	3.987	3.023	4.106
	SVM	0.846	0.738	64.572	8.017	5.703	7.479
	ANN	0.868	0.731	55.181	7.401	5.673	7.526
	Ridge	0.778	0.707	92.805	9.631	7.393	9.895
	LASSO	0.777	0.704	93.139	9.648	7.387	9.878
S7	DT	0.865	0.633	54.511	7.334	5.473	7.099
	ET	0.978	0.811	8.811	2.497	1.753	2.266
	AB	0.904	0.787	4 812	3.799 2.046	2.700	2 202
	GB	0.975	0.802	10.330	3.084	2.147	2.810
	XG	0.973	0.803	10.967	3.204	2.208	2.823

(continued on next page)

Table 4 (continued)

Ship	Model	R ²	R ² (test)	MSE	RMSE (ton/ day)	MAE (ton/ day)	MAPE (%)
	LB	0.981	0.775	7.624	2.614	1.804	2.364
	SVM	0.854	0.789	58.893	7.641	5.411	6.831
	ANN	0.879	0.778	48.929	6.903	5.287	6.805
	Ridge	0.809	0.771	77.312	8.789	6.635	8.431
	LASSO	0.808	0.769	77.734	8.813	6.664	8.483
S8	DT	0.908	0.738	55.429	7.369	5.275	6.362
	ET	0.998	0.860	1.223	0.864	0.549	0.687
	RF	0.975	0.835	15.054	3.848	2.645	3.229
	AB	0.995	0.847	3.047	1.544	1.182	1.516
	GB	0.988	0.839	7.367	2.097	1.438	1.781
	XG	0.973	0.843	16.064	3.747	2.646	3.231
	LB	0.973	0.827	16.500	3.523	2.521	3.138
	SVM	0.897	0.838	62.015	7.865	5.503	6.604
	ANN	0.911	0.824	53.888	7.282	5.345	6.458
	Ridge	0.867	0.817	80.108	8.945	6.728	8.344
	LASSO	0.867	0.818	80.433	8.963	6.737	8.348

is interwoven with the decision of selecting good datasets. For instance, in Fig. 4, when the model AB is adopted, *AIS5_{precise}* demonstrates the quality of the best dataset. However, when ET or XG is adopted, *Set1* and *Set3_{precise}* have some chance to win.

4. Conclusions and discussion

This study, as the Part II of this series of studies, was motivated by a limitation of our previous study (Part I) that weather and sea condition information derived from the great circle sailing route (suggested by industry professionals) might be inaccurate. In this study, AIS data is further fused to voyage report data and meteorological data in that AIS data provides actual geographical positions of the ship which further help

to retrieve more accurate weather and sea condition information from meteorological data.

To summarize Part I (Li et al., 2022) and Part II (this study) of this series of studies, when dataset choice is considered, the original voyage report dataset *Set1* has a decent quality for ship fuel efficiency modeling; if more effort is paid to fuse voyage report data and meteorological data, data quality improves slightly and *Set3_{precise}* can be adopted. When AIS data is available, further including AIS data might also be beneficial, which suggests the adoption of the dataset *AIS5_{precise}*. As far as ML model choice is concerned, we recommend the installation of four decision-tree based models including ET, AB, GB, and XG because they usually possess the highest fit performance and good generalization performance. Their performances are also quite robust against random splits of a dataset into training and test sets.

Overall, the best datasets found, including Set1, Set3precise, and AIS5_{precise}, ensure accurate fit performances of best ML models: R^2 on the training set is above 0.96 and even reaches 0.99 to 1.00, and R^2 on the test set is between 0.74 and 0.90: the fit errors measured by RMSE and MAE are between 0.5 and 4.5 ton/day. This accuracy is sufficient for many industry applications and energy-efficient operational measures for shipping companies, including sailing speed optimization, weather routing, and virtual arrivals. Therefore, apart from shipping companies, this research may also interest weather information service providers (WISPs) that are innovating weather routing, sailing speed optimization, and virtual (just-in-time) arrivals. International shipping associations that are pioneering in virtual arrival policy (BIMCO, 2021) may also find our studies useful, because a barrier to virtual arrival is the difficulty in quantifying the bunker fuel savings in different speed, draft, weather, and sea conditions (Merkel et al., 2022). Our studies also provide regulators such as IMO and EU with more quantitative evidence on how different data sources can be fully utilized for ship fuel efficiency analysis and what level of accuracy the state-of-the-art ML models can achieve to

Fig. 3. Fit performance of three best models (ET, AB, XG) over dataset AIS5_{precise}, with and without wave period information.

(c) Model: AB; Performance metric: R^2

Performance of different sets using XG on different ships

(e) Model: XG; Performance metric: R^2

Performance of different sets using ET on different ships

(b) Model: ET; Performance metric: RMSE

Performance of different sets using AB on different ships

⁽d) Model: AB; Performance metric: RMSE

(f) Model: XG; Performance metric: RMSE

Fig. 4. Fit performance (R² and RMSE) of three best models (ET, AB, XG) on three best datasets (Set 1, Set3_{precise}). AIS5_{precise}).

model a ship's bunker fuel consumption rate and the resultant emission rate.

Our industry collaborator, a global container shipping company, has been working with voyage report data as the main data source to clarify the bunker fuel efficiency issues they encountered. Though they do not have the research capacity of fusing different data sources and experimenting with state-of-the-art ML models, the suggestions of additionally using meteorological data and AIS data are all from them. Part I and Part II of this series of studies turned these basic ideas to solid research outcomes with intensive experiments with eight mega containerships. For the first time, we provide a clear answer to several questions a container shipping company may ask, including 'does fusing voyage report data and other data sources improve the quality of data for ship fuel efficiency analysis?', and 'what level of accuracy can state-of-the-art ML models achieve over these fused datasets?'.

The reported fit and generalization performances of ET, AB, GB and XG are probably the highest level of accuracy we could achieve to model a mega containership's fuel consumption rate, if voyage report data is used as the main source of bunker fuel consumption. Section 3.1 discusses the main reasons why it is difficult, if not impossible, to further

improve the modeling accuracy. These reasons boil down to the fact that voyage report data reports the "daily" bunker fuel consumption of a ship. Therefore, it is natural to further ask whether a data source with a finer granularity (sampling frequency) such as sensor data further improves the accuracy of ship fuel consumption rate modeling. This will be answered in a following study, referred to as "Part III" of this series of studies.

Replication and data sharing

Computer code in Python in this study is published in GitHub as a software infrastructure to reduce the exploration efforts of industry professionals. Best trained machine learning models are also published in GitHub, which enables maritime researchers to estimate the bunker fuel consumption rates of different sizes of mega containerships in different sailing speed, draft, trim and weather/sea conditions, though our raw data is confidential. The machine learning models published are completely black boxes, and one cannot conduct reverse engineering to access the original datasets. Readers can find the computer code and trained machine learning models in the URL: https://github.com/yuqua

ndu/Data-driven-Ship-Fuel-Efficiency-Modeling.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is a part of the IAMU (International Association of Maritime Universities) research project titled "Data fusion and machine learning for ship fuel efficiency analysis: a small but essential step towards green shipping through data analytics" (Research Project No.

Appendix A

 Table A1

 The fit performance of eleven machine learning models for ship S2.

20210205_AMC). The materials and data in this publication have been obtained through the support of IAMU and The in Japan. Jean-Louis Bertholier developed the Python code of collecting meteorological data for ships during his Assistant Engineer internship at World Maritime University. This study has been conducted using E.U. Copernicus Marine Service Information; https://doi.org/10.48670/moi-00050. Hersbach et al. (2018) was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store. The results of this study and trained machine learning models published contain modified Copernicus Climate Change Service information 2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it contains. We thank the two anonymous reviewers for their time spent on this series of three papers and their constructive comments.

Model	Dataset	R ²	R ² (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
DT	Set1	0.833	0.668	113.854	10.580	7.934	8.951
	AIS2 _{precise}	0.848	0.647	95.131	9.497	7.026	8.169
	AIS2 _{fuzzy}	0.850	0.635	94.066	9.585	7.155	8.275
	AIS3 _{precise}	0.832	0.625	105.279	10.063	7.466	8.761
	AIS3 _{fuzzy}	0.835	0.616	103.114	10.046	7.495	8.671
	AIS4 _{precise}	0.854	0.634	91.071	9.389	6.915	8.058
	AIS4 _{fuzzy}	0.832	0.638	104.706	10.121	7.549	8.763
	AIS5 _{precise}	0.838	0.641	100.776	9.878	7.326	8.621
	AIS5 _{fuzzy}	0.844	0.645	98.151	9.776	7.276	8.406
	Set3 _{precise} ^a	0.820	0.589	112.089	10.461	7.916	9.230
ET	Set1	0.971	0.786	19.857	4.055	2.986	3.306
	AIS2 _{precise}	0.966	0.769	21.080	4.247	3.184	3.681
	AIS2 _{fuzzy}	0.958	0.765	26.376	5.012	3.869	4.454
	AIS3 _{precise}	0.973	0.775	16.741	3.697	2.653	3.048
	AIS3 _{fuzzy}	0.968	0.769	19.826	4.047	2.961	3.398
	AIS4 _{precise}	0.969	0.767	19.271	4.076	3.015	3.476
	AIS4 _{fuzzy}	0.962	0.764	23.481	4.488	3.310	3.817
	AIS5 _{precise}	0.979	0.776	13.486	3.239	2.390	2.760
	AIS5 _{fuzzy} ^a	0.952	0.766	29.638	5.037	3.783	4.339
	Set3 _{precise}	0.974	0.765	15.842	3.377	2.445	2.780
RF	Set1	0.959	0.766	27.622	5.205	3.750	4.227
	AIS2 _{precise}	0.947	0.753	32.873	5.683	4.092	4.765
	AIS2 _{fuzzy}	0.955	0.751	27.856	5.237	3.790	4.396
	AIS3 _{precise}	0.955	0.757	28.055	5.259	3.774	4.415
	AIS3 _{fuzzy}	0.945	0.750	34.278	5.766	4.051	4.704
	AIS4 _{precise}	0.951	0.753	30.772	5.477	3.879	4.491
	AIS4 _{fuzzy}	0.946	0.748	33.751	5.721	4.078	4.720
	AIS5 _{precise}	0.948	0.757	32.466	5.645	4.072	4.748
	AIS5 _{fuzzy}	0.949	0.754	31.822	5.577	3.975	4.637
	Set3 _{precise}	0.950	0.740	31.494	5.541	4.007	4.662
AB	Set1	0.968	0.762	21.779	4.305	3.609	4.143
	AIS2 _{precise}	0.980	0.748	12.278	3.280	2.750	3.190
	AIS2 _{fuzzy}	0.973	0.739	16.514	3.821	3.216	3.725
	AIS3 _{precise}	0.980	0.749	12.642	3.279	2.739	3.205
	AIS3 _{fuzzy}	0.977	0.746	14.184	3.472	2.922	3.409
	AIS4 _{precise}	0.980	0.748	12.489	3.353	2.804	3.262
	AIS4 _{fuzzy}	0.976	0.738	14.841	3.491	2.913	3.390
	AIS5 _{precise}	0.975	0.754	15.834	3.830	3.22/	3./65
	AISS _{fuzzy}	0.9/1	0.754	18.197	4.128	3.549	4.102
CD	Set5 _{precise}	0.961	0.743	24./55	4.778	4.073	4.729
GB	Sell	0.964	0.781	24.457	4.504	3.429	3./93
	AIS2 _{precise}	0.980	0.764	12.051	3.100	2.490	2.842
	AIS2 _{fuzzy}	0.964	0.749	22.301	4.354	3.304	3./19
	AIS3 _{precise}	0.979	0.773	12.002	2.905	2.149	2.421
	AISA	0.980	0.700	12.341 7 580	3.100 2.274	2.230	2.302 1.884
	AIS4 precise	0.900	0.772	16 682	2.2/7	2 707	3.057
	AIS5	0.973	0.766	22 248	4 288	2.707	3 537
	AIS5 c	0.967	0.750	20.240	4 207	3 300	3 722
	Set 3 a	0.907	0.759	5 008	1 817	1 224	1 378
	SetSprecise	0.794	0.700	5.000	1.01/	1.207	1.3/0

Table A1 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
XG	Set1	0.975	0.781	16.733	3.503	2.631	2.868
	AIS2 _{precise}	0.959	0.757	25.467	4.457	3.004	3.294
	AIS2 _{fuzzy}	0.962	0.754	23.570	4.567	3.274	3.615
	AIS3 _{precise}	0.976	0.772	15.247	3.278	2.139	2.359
	AIS3 fuzzy	0.978	0.768	13.808	3.206	2.178	2.390
	AIS4 _{precise}	0.966	0.765	20.767	4.157	2.743	3.008
	AIS4 _{fuzzy}	0.960	0.762	24.749	4.576	3.229	3.544
	AIS5 precise	0.965	0.763	21.869	4.287	2.959	3.263
	AIS5 fuzzy	0.953	0.758	29.132	5.014	3.622	3.995
	Set3precise a	0.991	0.765	5.421	1.949	1.186	1.277
LB	Set1	0.946	0.761	36.850	5.784	4.429	4.834
	AIS2 _{precise}	0.951	0.738	30.039	5.172	3.733	4.200
	AIS2 furry	0.941	0.727	36.987	5.955	4.353	4.919
	AIS3	0.972	0.745	17.363	3.757	2.709	3.079
	AIS36	0.961	0.730	24 200	4 627	3 333	3 789
	AIS4	0.959	0.683	25 467	4 524	3 348	3 862
	AIS4	0.957	0.716	27 166	4 917	3 685	4 188
	AIS5	0.959	0.733	25 714	4 671	3 276	3 798
	AIS5	0.935	0.733	36 457	5 684	4 108	4 702
	Sat2 a	0.941	0.733	12 580	3.053	2 170	7.702
SVM	Set3 Set1	0.980	0.748	102 206	3.033	2.179	2.442
3 V IVI	30L1 AIC2	0.040	0.797	76 102	10.147	6.221	6.700
	AIS2precise	0.070	0.012	70.193	8.710	6 222	6.052
	AIS2 fuzzy	0.075	0.808	79.392	8.890	6.352	6.007
	AIS3 _{precise}	0.8/5	0.816	/8.296	8.829	6.359	6.937
	AIS3 _{fuzzy}	0.8/1	0.810	80.452	8.950	6.470	/.131
	AIS4 _{precise}	0.875	0.815	78.376	8.834	6.364	6.962
	AIS4 _{fuzzy}	0.874	0.808	78.811	8.862	6.358	7.007
	AIS5 _{precise}	0.880	0.809	74.547	8.599	6.191	6.738
	AIS5 _{fuzzy}	0.869	0.804	81.630	9.012	6.541	7.180
	Set3 _{precise} "	0.864	0.812	84.860	9.176	6.608	7.210
ANN	Set1	0.876	0.787	84.367	9.093	6.935	7.682
	AIS2 _{precise}	0.890	0.805	68.589	8.223	6.248	6.993
	$AIS2_{fuzzy}$	0.884	0.803	72.222	8.473	6.444	7.232
	AIS3 _{precise}	0.893	0.815	66.528	8.111	6.172	6.926
	AIS3 _{fuzzy}	0.891	0.811	67.646	8.181	6.182	6.952
	AIS4 _{precise}	0.894	0.818	66.090	8.068	6.141	6.914
	AIS4 _{fuzzy}	0.886	0.817	71.270	8.405	6.354	7.172
	AIS5 _{precise}	0.895	0.797	65.299	8.036	6.139	6.847
	AIS5 _{fuzzy}	0.887	0.802	70.576	8.362	6.365	7.100
	Set3 _{precise} ^a	0.908	0.791	56.693	7.365	5.581	6.171
Ridge	Set1	0.822	0.786	121.419	11.016	8.454	9.312
	AIS2 _{precise}	0.829	0.810	107.128	10.345	7.775	8.763
	AIS2 _{fuzzy}	0.822	0.803	110.983	10.529	7.876	8.873
	AIS3 _{precise}	0.837	0.810	102.096	10.100	7.682	8.732
	AIS3 _{fuzzy}	0.833	0.808	104.294	10.208	7.715	8.787
	AIS4 _{precise}	0.836	0.813	102.598	10.125	7.695	8.759
	AIS4 _{fuzzy}	0.833	0.809	104.538	10.220	7.723	8.798
	AIS5 precise	0.829	0.810	106.864	10.332	7.780	8.791
	AIS5furry	0.823	0.803	110.694	10.515	7.877	8.895
	Set3maica a	0.826	0.802	108.847	10.429	8.011	9.055
LASSO	Set1	0.822	0.785	121 508	11.020	8 471	9.331
11000	AIS2	0.829	0.810	107 127	10 344	7 774	8 748
	AIS2	0.822	0.802	111 266	10 542	7 882	8 861
	AIS2	0.836	0.802	102 403	10 119	7 676	8 700
	AIS3-	0.821	0.800	102.495	10.259	7 710	8 770
	AISA	0.031	0.009	103.332	10.235	7.695	0.//9
	AISA .	0.030	0.012	102./31	10.131	7.000	0./20
	ALS ⁴ fuzzy	0.034	0.009	105.148	10.230	7.714	0./00
	AISS _{precise}	0.829	0.810	110.939	10.330	7.004	0.//4
	AISS _{fuzzy}	0.823	0.803	110.874	10.524	/.884	8.887
	Set3precise	0.824	0.796	110.162	10.492	8.034	9.042

^a Set3_{precise} is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A2 The fit performance of eleven machine learning models for ship S3.

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
DT	Set1	0.857	0.684	105.672	10.125	7.259	8.643
	AIS2 _{precise}	0.854	0.699	106.123	10.087	7.292	8.759
	AIS2 _{fuzzy}	0.850	0.695	108.384	10.209	7.427	8.876
	AIS3 _{precise}	0.871	0.706	93.959	9.334	6.759	8.074
	AIS3 _{fuzzy}	0.874	0.681	90.614	9.273	6.729	7.972
	AIS4 _{precise}	0.867	0.692	97.233	9.628	6.941	8.311
	AIS4 _{fuzzy}	0.869	0.687	94.625	9.621	7.005	8.343

Table A2 (continued)

Madal	Datasat	p ²	\mathbf{P}^2 (test)	MCE	DMCE (top (dow)	MAE (top (dow)	MADE (0/)
Model	Dataset	R-	R ⁻ (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS5 _{precise}	0.867	0.684	97.066	9.534	6.948	8.222
	AIS5 _{fuzzy}	0.853	0.704	106.927	10.083	7.267	8.664
	Set3 _{precise} ^a	0.865	0.684	98.572	9.705	7.042	8.343
ET	Set1	0.977	0.800	17.021	3.911	2.462	2.964
	AIS2 _{precise}	0.986	0.822	10.267	2.769	1.681	2.113
	AIS2 _{fuzzy}	0.977	0.814	16.566	3.552	2.175	2.756
	AIS3 _{precise}	0.982	0.818	12.791	3.030	1.702	2.189
	AIS3 _{fuzzy}	0.988	0.813	8.588	2.438	1.4/8	1.867
	AIS4 _{precise}	0.981	0.810	13.005	3.179	1.801	2.3/1
	AIS4 _{fuzzy}	0.981	0.811	12.030	3.320	2.020	2.337
	AIS5	0.982	0.826	12 204	2 086	1.000	2.304
	Set3 a	0.985	0.821	10.758	2.500	1 716	2.210
RF	Set1	0.960	0.768	29 573	5 369	3 407	4 234
10	AIS2	0.963	0.807	26.977	5 153	3.378	4 167
	AIS2 _{furry}	0.959	0.803	29.977	5.426	3.478	4.315
	AIS3	0.951	0.803	35.971	5.896	3.790	4.743
	AIS3 _{fuzzy}	0.948	0.807	37.592	6.052	3.787	4.741
	AIS4 _{precise}	0.959	0.797	29.386	5.381	3.477	4.317
	AIS4 _{fuzzy}	0.954	0.802	33.398	5.680	3.620	4.511
	AIS5 _{precise}	0.963	0.809	27.121	5.168	3.376	4.170
	AIS5 _{fuzzy}	0.960	0.805	29.142	5.343	3.415	4.241
	Set3 _{precise} ^a	0.956	0.802	31.781	5.576	3.587	4.463
AB	Set1	0.988	0.798	9.177	2.942	2.371	2.718
	AIS2 _{precise}	0.990	0.815	7.319	2.589	2.060	2.335
	$AIS2_{fuzzy}$	0.989	0.805	7.569	2.576	1.975	2.218
	AIS3 _{precise}	0.995	0.813	3.799	1.682	1.270	1.480
	AIS3 _{fuzzy}	0.994	0.803	4.303	1.839	1.356	1.568
	AIS4 _{precise}	0.992	0.810	5.579	2.186	1.699	1.933
	AIS4 _{fuzzy}	0.989	0.801	7.743	2.614	2.101	2.367
	AIS5 _{precise}	0.995	0.820	3.588	1.728	1.292	1.513
	AIS5 _{fuzzy}	0.995	0.802	3.489	1.623	1.154	1.330
	Set3 _{precise}	0.991	0.812	6.328	2.183	1.712	1.998
GB	Set1	0.962	0.776	28.220	4.726	3.221	3.841
	AIS2 _{precise}	0.966	0.815	25.195	4.467	2.872	3.617
	AIS2 _{fuzzy}	0.962	0.798	27.998	4.806	3.066	3.870
	AIS2	0.974	0.817	10.905	4 507	2.311	2.932
	AISA	0.908	0.813	20.026	4.863	3,002	3.881
	AIS4 c	0.966	0.811	25.020	4 373	2 668	3 431
	AIS5	0.969	0.818	22,552	4 221	2.710	3,366
	AIS5furry	0.971	0.817	21.037	4.028	2.586	3.238
	Set3 _{precise} a	0.964	0.819	26.559	4.694	2.836	3.642
XG	Set1	0.959	0.778	30.013	4.738	3.214	3.744
	AIS2 _{precise}	0.961	0.814	28.566	4.798	2.995	3.753
	AIS2 _{fuzzy}	0.942	0.807	42.158	5.988	3.915	4.873
	AIS3 _{precise}	0.964	0.809	26.403	4.516	2.727	3.416
	AIS3 _{fuzzy}	0.969	0.806	22.552	4.331	2.511	3.237
	AIS4precise	0.954	0.809	33.595	5.384	3.366	4.179
	AIS4 _{fuzzy}	0.961	0.806	28.229	5.078	3.093	3.892
	AIS5 _{precise}	0.976	0.819	17.745	3.884	2.439	2.960
	$AIS5_{fuzzy}$	0.959	0.808	30.356	4.995	3.159	3.921
	Set3 _{precise} ^a	0.961	0.810	28.714	5.030	3.052	3.828
LB	Set1	0.935	0.766	48.608	6.560	4.506	5.448
	AIS2 _{precise}	0.945	0.802	40.487	5.912	3.868	4.848
	AIS2 _{fuzzy}	0.925	0.802	53.776	7.068	4.742	5.928
	AIS3 _{precise}	0.954	0.802	33.337	5.389	3.4/4	4.419
	AIS3 _{fuzzy}	0.952	0.795	34.420	5.208	3.334	4.423 E 460
	AIS4 _{precise}	0.938	0.001	28 060	5 866	4.301	4 969
	AIS5	0.947	0.784	25 222	5.432	3.540	4.909
	AIS5	0.952	0.304	34 216	5 421	3 563	4.412
	Set 3	0.933	0.804	38 795	5.845	3,853	4 853
SVM	Set1	0.812	0.001	138 669	11 753	7 557	8 957
0,111	AIS2macica	0.842	0.825	114.633	10.675	6.588	8.092
	AIS2 furry	0.829	0.817	123.943	11.116	6.904	8.485
	AIS3 nrecice	0.847	0.823	110.536	10.488	6.537	8.005
	AIS3 _{fuzzv}	0.842	0.816	114.255	10.658	6.761	8.329
	AIS4 _{precise}	0.845	0.828	112.062	10.563	6.588	8.077
	AIS4 _{fuzzy}	0.842	0.822	114.254	10.668	6.734	8.244
	AIS5 _{precise}	0.840	0.825	115.821	10.727	6.746	8.262
	AIS5 _{fuzzy}	0.840	0.818	115.603	10.720	6.657	8.187
	Set3 _{precise} ^a	0.844	0.820	113.000	10.591	6.627	8.167
ANN	Set1	0.829	0.780	126.769	11.217	7.780	9.353
	AIS2 _{precise}	0.849	0.812	109.169	10.413	7.022	8.680
	AIS2 _{fuzzy}	0.849	0.813	109.194	10.415	6.917	8.561

Table A2 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS3 _{precise}	0.869	0.800	94.542	9.681	6.645	8.156
	AIS3 _{fuzzy}	0.847	0.799	111.263	10.484	7.230	8.936
	AIS4 _{precise}	0.860	0.799	101.451	10.008	6.840	8.418
	AIS4 _{fuzzy}	0.847	0.800	110.709	10.470	7.192	8.881
	AIS5 _{precise}	0.860	0.813	101.322	10.029	6.763	8.262
	AIS5 _{fuzzy}	0.854	0.810	106.288	10.265	6.849	8.413
	Set $3_{precise}^{a}$	0.874	0.798	91.583	9.475	6.480	7.992
Ridge	Set1	0.780	0.778	162.676	12.739	9.007	11.114
	AIS2 _{precise}	0.793	0.801	149.861	12.227	8.517	10.890
	AIS2 _{fuzzy}	0.790	0.799	152.029	12.316	8.509	10.860
	AIS3 _{precise}	0.801	0.797	143.924	11.981	8.319	10.627
	AIS3 _{fuzzy}	0.802	0.798	143.536	11.966	8.330	10.651
	AIS4 _{precise}	0.798	0.799	145.868	12.062	8.348	10.695
	AIS4 _{fuzzy}	0.799	0.800	145.189	12.035	8.339	10.671
	AIS5 _{precise}	0.796	0.804	147.564	12.133	8.425	10.745
	AIS5 _{fuzzy}	0.793	0.802	149.516	12.214	8.459	10.779
	Set3 _{precise} ^a	0.801	0.796	144.061	11.987	8.329	10.615
LASSO	Set1	0.779	0.778	163.445	12.769	9.011	11.128
	AIS2 _{precise}	0.793	0.800	149.869	12.227	8.508	10.879
	AIS2 _{fuzzy}	0.790	0.799	152.048	12.317	8.502	10.852
	AIS3 _{precise}	0.800	0.798	145.050	12.028	8.317	10.627
	AIS3 _{fuzzy}	0.800	0.798	144.547	12.007	8.322	10.641
	AIS4 _{precise}	0.798	0.799	146.172	12.075	8.346	10.694
	AIS4 _{fuzzy}	0.799	0.799	145.246	12.037	8.329	10.657
	AIS5 _{precise}	0.796	0.804	147.612	12.135	8.426	10.746
	AIS5 _{fuzzy}	0.793	0.802	149.539	12.215	8.450	10.765
	Set3 _{precise} ^a	0.799	0.796	145.425	12.043	8.323	10.619
Note:							

....

^a Set3_{precise} is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A3 The fit performance of eleven machine learning models for ship S4.

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
DT	Set1	0.906	0.758	81.312	8.851	6.363	6.681
	AIS2 _{precise}	0.916	0.736	69.034	8.033	5.999	6.463
	AIS2 _{fuzzy}	0.910	0.730	73.824	8.275	6.130	6.586
	AIS3 _{precise}	0.916	0.741	68.065	8.086	6.006	6.432
	AIS3 _{fuzzy}	0.926	0.725	60.675	7.518	5.564	5.919
	AIS4 _{precise}	0.921	0.745	64.090	7.807	5.747	6.160
	AIS4 _{fuzzy}	0.899	0.741	82.735	8.913	6.661	7.152
	AIS5 _{precise}	0.904	0.749	78.681	8.637	6.425	6.897
	AIS5 _{fuzzy}	0.912	0.758	72.400	8.366	6.185	6.648
	Set3 _{precise} ^a	0.916	0.746	68.063	8.094	6.036	6.523
ET	Set1	0.988	0.858	10.120	2.625	1.778	1.862
	AIS2 _{precise}	0.999	0.867	0.705	0.629	0.394	0.422
	AIS2 _{fuzzy}	0.999	0.863	0.811	0.714	0.462	0.495
	AIS3 _{precise}	0.997	0.869	2.131	1.151	0.807	0.876
	AIS3 _{fuzzy}	0.997	0.864	2.431	1.115	0.779	0.846
	AIS4 _{precise}	0.997	0.870	2.521	1.191	0.845	0.915
	AIS4 _{fuzzy}	0.998	0.864	1.826	1.115	0.768	0.830
	AIS5 _{precise}	0.998	0.871	1.642	0.927	0.651	0.696
	AIS5 _{fuzzy}	0.998	0.866	1.390	0.973	0.659	0.716
	Set3 _{precise} ^a	0.998	0.872	1.434	0.901	0.627	0.687
RF	Set1	0.974	0.848	22.794	4.752	3.335	3.501
	AIS2 _{precise}	0.976	0.856	19.824	4.444	3.279	3.600
	AIS2 _{fuzzy}	0.976	0.854	19.766	4.429	3.273	3.607
	AIS3 _{precise}	0.972	0.854	22.477	4.723	3.464	3.773
	AIS3 _{fuzzy}	0.973	0.855	21.949	4.659	3.424	3.751
	AIS4 _{precise}	0.973	0.855	21.804	4.644	3.421	3.742
	AIS4 _{fuzzy}	0.974	0.858	21.363	4.599	3.381	3.708
	AIS5 _{precise}	0.975	0.859	20.097	4.472	3.292	3.590
	AIS5 _{fuzzy}	0.975	0.858	20.309	4.491	3.298	3.602
	Set3 _{precise} ^a	0.975	0.853	20.349	4.497	3.331	3.618
AB	Set1	0.980	0.843	17.332	3.939	3.283	3.654
	AIS2 _{precise}	0.987	0.865	10.568	3.102	2.595	2.916
	$AIS2_{fuzzy}$	0.985	0.862	11.992	3.358	2.790	3.103
	AIS3 _{precise}	0.990	0.867	8.454	2.664	2.206	2.484
	AIS3 _{fuzzy}	0.989	0.867	8.670	2.766	2.285	2.560
	AIS4 _{precise}	0.988	0.864	9.894	2.953	2.477	2.782
	AIS4 _{fuzzy}	0.987	0.864	10.576	3.117	2.607	2.916
	AIS5 _{precise}	0.988	0.869	9.701	2.956	2.466	2.774
	AIS5 _{fuzzy}	0.988	0.868	9.410	2.864	2.401	2.674
	Set3 _{precise} ^a	0.986	0.865	11.021	3.144	2.591	2.905
						<i>.</i> .	

Table A3 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
GB	Set1	0.977	0.851	19.591	4.196	3.176	3.352
	AIS2 _{precise}	0.989	0.868	9.077	2.587	1.960	2.099
	AIS2 fuzzy	0.988	0.868	9.667	2.653	2.046	2.189
	AIS3 _{precise}	0.995	0.868	4.407	1.836	1.343	1.452
	AIS3 fuzzy	0.991	0.871	7.288	2.277	1.677	1.808
	AIS4 _{precise}	0.993	0.866	5.462	1.884	1.438	1.531
	AIS4 _{fuzzy}	0.991	0.863	6.981	2.207	1.677	1.803
	AIS5 _{precise}	0.991	0.873	7.631	2.412	1.810	1.933
	AIS5 _{fuzzy}	0.990	0.875	8.437	2.566	1.943	2.087
	Set3 _{precise} ^a	0.989	0.866	8.845	2.500	1.838	1.957
XG	Set1	0.977	0.858	19.657	4.126	3.068	3.185
	AIS2 _{precise}	0.991	0.864	7.508	2.341	1.721	1.808
	AIS2 _{fuzzy}	0.992	0.870	6.889	2.321	1.715	1.816
	AIS3 _{precise}	0.994	0.868	4.689	1.591	1.126	1.196
	AIS3 fuzzy	0.995	0.873	4.260	1.605	1.117	1.188
	AIS4 _{precise}	0.993	0.861	5.846	1.821	1.344	1.426
	AIS4 _{fuzzv}	0.989	0.865	8.965	2.311	1.733	1.832
	AIS5 _{precise}	0.992	0.870	6.441	2.074	1.548	1.640
	AIS5 _{fuzzy}	0.987	0.878	11.059	2.835	2.157	2.299
	$Set3_{precise}^{a}$	0.995	0.869	3.758	1.585	1.140	1.201
LB	Set1	0.968	0.844	28.153	5.010	3.861	4.044
	AIS2 _{precise}	0.979	0.851	17.028	3.711	2.865	3.064
	AIS2 _{fuzzy}	0.988	0.854	9.860	2.778	2.152	2.313
	AIS3 _{precise}	0.989	0.866	9.039	2.625	2.009	2.161
	AIS3 _{fuzzy}	0.986	0.865	11.633	3.097	2.388	2.564
	AIS4 _{precise}	0.978	0.855	18.105	3.969	3.112	3.336
	AIS4 _{fuzzy}	0.981	0.846	15.360	3.672	2.862	3.083
	AIS5 precise	0.992	0.865	6.859	2.321	1.771	1.925
	AIS5 fuzzy	0.987	0.873	10.530	2.901	2.250	2.440
	Set3precise a	0.987	0.855	10.943	2.871	2.200	2.340
SVM	Set1	0.906	0.842	81.874	9.015	6.318	6.374
	AIS2 precise	0.930	0.848	56.850	7.333	5.462	5.814
	AIS2 _{furm}	0.936	0.845	51.762	6.893	5.122	5.485
	AIS3	0.929	0.846	57.822	7.548	5.488	5.811
	AIS3 fuzzy	0.917	0.842	68.045	8.187	5.956	6.291
	AIS4precise	0.926	0.850	60.077	7.704	5.660	5.977
	AIS4 _{fuzzy}	0.917	0.846	67.802	8.170	5.974	6.346
	AIS5	0.927	0.860	59.875	7.686	5.642	6.018
	AIS5 furry	0.919	0.854	66.517	8.094	5.967	6.387
	Set3precise a	0.921	0.857	63.718	7.972	5.848	6.146
ANN	Set1	0.925	0.845	65.521	8.076	6.102	6.390
	AIS2 precise	0.936	0.862	52.288	7.217	5.653	6.104
	AIS2 _{furm}	0.936	0.842	52.055	7.184	5.607	6.059
	AIS3	0.944	0.859	46.191	6.779	5.331	5.782
	AIS36umu	0.941	0.848	48.047	6.911	5.366	5.842
	AIS4-masia	0.943	0.856	46 674	6.812	5 354	5 803
	AIS46	0.943	0.852	46 629	6.809	5 277	5 720
	AIS5	0.939	0.868	50 219	7 062	5 524	5 962
	AIS56	0.930	0.858	57 295	7 541	5.889	6 371
	Set3	0.930	0.856	42,555	6 513	5.034	5 502
Ridge	Set1	0.825	0.821	152 631	12.351	9 343	9.548
Tudge	AIS2	0.822	0.802	145 669	12,066	9 341	9.625
	AIS2	0.816	0.796	150.467	12.000	9 500	9.825
	AIS2	0.832	0.807	137 302	11 717	9.182	9.007
	AIS2.	0.826	0.802	1/1 021	11.000	9.280	0.647
	AISJ _{fuzzy}	0.820	0.802	128 025	11.505	9.280	9.047
	AIS4 precise	0.826	0.800	142 348	11.744	9.187	9.407
	AIC5	0.827	0.802	141.400	11.920	9.244	0.524
	AISS precise	0.827	0.803	145 201	12.046	0.255	9.534
	Sat2 a	0.822	0.803	125 224	11 620	9.333	9.090
14660	SetSprecise	0.033	0.011	153.334	10.225	0.247	9.400
1000	4152	0.024	0.025	145 771	12.302	9.340	9.337
	AIS2precise	0.022	0.003	140.//1	12.070	9.340	9.020
	AIS2 _{fuzzy}	0.815	0.797	150.852	12.2/9	9.308	9.835
	AISS precise	0.031	0.800	137.950	11./41	9.191	9.499
	AISS fuzzy	0.024	0.804	143.555	11.9//	9.303	9.041
	AIS4 _{precise}	0.005	0.800	138.304	11./59	9.193	9.489
	AIS4 _{fuzzy}	0.825	0.802	143.263	11.904	9.292	9.626
	AISS _{precise}	0.827	0.808	141.586	11.895	9.244	9.530
	AIS5 _{fuzzy}	0.822	0.805	145.687	12.06/	9.364	9.692
	Set3 _{precise} "	0.832	0.809	135.961	11.656	9.053	9.417

Note:

^a Set3_{precise} is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A4

The fit performance of eleven machine learning models for ship S5.

-		0	1				
Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
DT	Cot1	0.020	0.921	22 600	E E 9 9	4 1 4 4	6 250
DI	AIS2 .	0.939	0.821	20.250	5.191	4.144	5 761
	AIS2precise	0.947	0.793	29.239	5.181	3.809	5.701
	AIS2 _{fuzzy}	0.940	0.799	21.064	5.379	3.934	5.947
	AISS precise	0.942	0.793	31.904	5.502	4.072	6.220
	AISS _{fuzzy}	0.941	0.012	32.094	5.043	4.101	0.320
	AIS4 _{precise}	0.940	0.793	33.054	5.628	4.130	0.221
	AIS4 _{fuzzy}	0.941	0.800	32.814	5.558	4.121	6.247
	AIS5 _{precise}	0.948	0.800	28.458	5.104	3.741	5.634
	AIS5 _{fuzzy}	0.945	0.826	30.556	5.217	3.848	5.813
-	Set3 _{precise}	0.947	0.785	29.488	5.182	3.764	5.625
ET	Set1	0.998	0.895	1.057	0.805	0.569	0.857
	AIS2 _{precise}	0.999	0.896	0.493	0.529	0.371	0.559
	$AIS2_{fuzzy}$	0.998	0.893	1.165	0.835	0.604	0.914
	AIS3 _{precise}	0.998	0.895	0.890	0.707	0.495	0.748
	$AIS3_{fuzzy}$	0.997	0.893	1.963	1.134	0.815	1.234
	AIS4 _{precise}	0.998	0.895	1.105	0.768	0.550	0.842
	AIS4 _{fuzzy}	0.998	0.893	1.248	0.820	0.579	0.879
	AIS5 _{precise}	0.997	0.894	1.475	0.901	0.652	0.988
	AIS5 _{fuzzy}	0.998	0.891	1.055	0.808	0.584	0.883
	Set3 _{precise} ^a	0.997	0.892	1.413	0.854	0.619	0.935
RF	Set1	0.982	0.884	9.951	3.140	2.354	3.594
	AIS2 _{precise}	0.982	0.878	9.753	3.116	2.290	3.509
	AIS2 _{fi122V}	0.983	0.883	9.496	3.072	2.249	3.461
	AIS3 precise	0.982	0.879	10.152	3.168	2.328	3.562
	AIS3 furry	0.983	0.887	9.681	3.103	2.298	3.538
	AIS4 pression	0.981	0.875	10,565	3.238	2.356	3,594
	AIS46	0.983	0.885	9 200	3.026	2 224	3 413
	AIS5	0.983	0.879	9 594	3 090	2 281	3 497
	AIS5	0.984	0.887	9.003	2 996	2.201	3 464
	Set3 a	0.981	0.874	10 498	3 225	2.200	3.663
ΔB	Set 1	0.990	0.895	5 408	2 213	1.830	3 156
71D	AIC2 .	0.004	0.896	2 1 97	1.671	1.000	2 265
	AIS2 precise	0.994	0.000	2.107	1.671	1.330	2.303
	AIS2 _{fuzzy}	0.995	0.893	2.917	1.377	1.231	2.199
	AISS _{precise}	0.996	0.892	2.33/	1.3/2	1.073	1.942
	AIS 5 fuzzy	0.997	0.897	1.084	1.130	0.841	1.554
	AIS4 _{precise}	0.995	0.888	2.854	1.584	1.202	2.249
	AIS4 _{fuzzy}	0.995	0.894	2.937	1.618	1.277	2.286
	AIS5 _{precise}	0.995	0.889	2.723	1.4/6	1.1/2	2.123
	AIS5 _{fuzzy}	0.996	0.895	2.299	1.392	1.081	1.951
	Set3 _{precise}	0.995	0.886	2.543	1.525	1.209	2.217
GB	Set1	0.993	0.895	3.885	1.743	1.360	2.158
	AIS2 _{precise}	0.996	0.892	2.273	1.265	0.946	1.496
	AIS2 _{fuzzy}	0.997	0.893	1.801	1.015	0.782	1.257
	AIS3 _{precise}	0.995	0.890	2.674	1.204	0.879	1.397
	AIS3 _{fuzzy}	0.996	0.894	2.307	1.143	0.839	1.335
	AIS4 _{precise}	0.997	0.888	1.936	1.010	0.720	1.132
	AIS4 _{fuzzy}	0.994	0.893	3.367	1.426	1.047	1.656
	AIS5 _{precise}	0.997	0.893	1.628	1.102	0.823	1.310
	AIS5 _{fuzzy}	0.993	0.892	3.733	1.665	1.282	2.046
	Set3 _{precise} ^a	0.993	0.887	3.519	1.359	1.021	1.610
XG	Set1	0.990	0.892	5.361	1.995	1.520	2.370
	AIS2 _{precise}	0.997	0.884	1.919	1.190	0.830	1.304
	AIS2 _{fuzzy}	0.993	0.886	3.701	1.539	1.118	1.750
	AIS3 _{precise}	0.996	0.885	2.079	1.206	0.857	1.347
	AIS3 _{fuzzy}	0.991	0.893	4.859	1.785	1.314	2.077
	AIS4 _{precise}	0.990	0.884	5.595	2.020	1.420	2.218
	AIS4 _{fuzzy}	0.992	0.888	4.440	1.860	1.368	2.169
	AIS5 _{precise}	0.991	0.891	4.860	1.909	1.382	2.183
	AIS5 _{fuzzy}	0.992	0.887	4.417	1.897	1.403	2.206
	Set3precise a	0.993	0.878	3.601	1.605	1.133	1.749
LB	Set1	0.986	0.879	7.810	2.636	2.028	3.173
	AIS2 _{precise}	0.987	0.879	7.311	2.490	1.883	2.957
	AIS2fuzzy	0.984	0.869	9.040	2.831	2.115	3.308
	AIS3 prociso	0.991	0.882	5.103	2.066	1.528	2.380
	AIS3	0.985	0.884	8,471	2.658	1.990	3.143
	AIS4	0.987	0.846	7.256	2.420	1.848	2.954
	AIS4	0.984	0.878	9.032	2.837	2.146	3 365
	AIS5	0.004	0.880	4 875	2.037	1 523	2 200
	AISS precise	0.991	0.000	0 100	2.075	2 104	2.350
	Cat? a	0.903	0.0/9	7,170	2.793	1 750	3.4/0 9.705
SVM	Set Sprecise	0.98/	0.873	7.384	2.330 6 172	1./30	4./40
3 V IVI	3011	0.931	0.001	30.400	0.173	4.302	0.030
	AIS2 _{precise}	0.916	0.881	40.567	0.810	4.910	7.414
	AIS2 _{fuzzy}	0.912	0.886	48.618	6.946	4.984	7.542
	AIS3 _{precise}	0.912	0.880	48.897	6.986	5.055	7.619

Table A4 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS3 _{fuzzy}	0.913	0.882	48.270	6.942	5.017	7.597
	AIS4 _{precise}	0.913	0.878	47.993	6.918	5.019	7.549
	AIS4 _{fuzzy}	0.915	0.881	47.104	6.851	4.980	7.544
	AIS5 _{precise}	0.918	0.878	45.274	6.711	4.874	7.385
	AIS5 _{fuzzy}	0.920	0.880	44.342	6.608	4.801	7.317
	$Set3_{precise}^{a}$	0.916	0.873	46.421	6.785	4.917	7.472
ANN	Set1	0.926	0.886	40.737	6.373	4.900	7.545
	AIS2 _{precise}	0.938	0.876	34.278	5.776	4.398	6.845
	AIS2 _{fuzzy}	0.943	0.885	31.933	5.592	4.281	6.685
	AIS3 _{precise}	0.942	0.881	32.259	5.619	4.257	6.634
	AIS3 _{fuzzy}	0.935	0.881	35.988	5.948	4.524	7.035
	AIS4 _{precise}	0.940	0.880	33.504	5.733	4.354	6.741
	AIS4 _{fuzzy}	0.938	0.878	34.189	5.806	4.435	6.882
	AIS5 _{precise}	0.935	0.878	36.276	5.973	4.538	6.997
	AIS5 _{fuzzy}	0.939	0.881	33.836	5.787	4.393	6.840
	Set3 _{precise} ^a	0.935	0.879	36.157	5.956	4.544	7.075
Ridge	Set1	0.875	0.868	69.368	8.325	6.341	9.937
	AIS2 _{precise}	0.886	0.875	63.247	7.949	5.972	9.145
	AIS2 _{fuzzy}	0.884	0.874	64.133	8.004	5.987	9.116
	AIS3 _{precise}	0.892	0.868	60.011	7.743	5.826	8.883
	AIS3 _{fuzzy}	0.892	0.871	59.890	7.735	5.845	8.893
	AIS4 _{precise}	0.890	0.872	60.879	7.799	5.867	8.914
	AIS4 _{fuzzy}	0.890	0.873	60.924	7.802	5.897	8.940
	AIS5 _{precise}	0.887	0.874	62.515	7.903	5.941	9.040
	AIS5 _{fuzzy}	0.887	0.875	62.587	7.907	5.952	9.027
	$Set3_{precise}^{a}$	0.889	0.868	61.610	7.846	5.934	9.109
LASSO	Set1	0.874	0.868	69.799	8.351	6.357	9.948
	AIS2 _{precise}	0.886	0.875	63.278	7.951	5.976	9.156
	AIS2 _{fuzzy}	0.884	0.874	64.249	8.012	5.995	9.128
	AIS3 _{precise}	0.891	0.869	60.385	7.766	5.839	8.900
	AIS3 _{fuzzy}	0.891	0.870	60.464	7.771	5.876	8.925
	AIS4 _{precise}	0.889	0.869	61.278	7.824	5.879	8.934
	AIS4 _{fuzzy}	0.890	0.873	61.092	7.813	5.909	8.957
	AIS5 _{precise}	0.887	0.874	62.689	7.914	5.950	9.050
	AIS5 _{fuzzy}	0.887	0.874	62.829	7.923	5.967	9.032
	Set3 _{precise} ^a	0.888	0.868	61.988	7.870	5.953	9.129
Note:	1						

^a Set3_{precise} is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A5

Гhe f	it r	performance	of eleven	machine	learning	models	for ship S6.	
							1	

Model	Dataset		R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
DT	Set1	0.837	0.636	67.292	8.143	5.917	7.777
	AIS2 _{precise}	0.823	0.572	73.999	8.507	6.292	8.362
	AIS2 _{fuzzy}	0.839	0.584	67.435	8.118	5.944	7.841
	AIS3 _{precise}	0.847	0.568	63.921	7.913	5.799	7.668
	AIS3 _{fuzzy}	0.841	0.581	66.494	8.095	5.969	7.923
	AIS4 _{precise}	0.855	0.571	60.340	7.645	5.580	7.407
	AIS4 _{fuzzy}	0.833	0.594	69.924	8.261	6.086	8.043
	AIS5 _{precise}	0.847	0.581	63.834	7.896	5.826	7.701
	AIS5 _{fuzzy}	0.832	0.591	70.398	8.318	6.145	8.148
	Set3 _{precise} ^a	0.832	0.576	69.684	8.275	6.119	8.113
ET	Set1	0.985	0.765	6.050	1.928	1.359	1.796
	AIS2 _{precise}	0.991	0.767	3.917	1.699	1.229	1.633
	AIS2 _{fuzzy}	0.992	0.765	3.275	1.519	1.124	1.491
	AIS3 _{precise}	0.988	0.764	4.917	1.561	1.136	1.516
	AIS3 _{fuzzy}	0.986	0.765	5.657	1.944	1.414	1.886
	AIS4 _{precise}	0.988	0.762	4.791	1.801	1.318	1.760
	AIS4 _{fuzzy}	0.987	0.763	5.498	1.871	1.381	1.838
	AIS5 _{precise}	0.984	0.763	6.604	2.439	1.780	2.368
	AIS5 _{fuzzy}	0.989	0.759	4.566	1.904	1.413	1.874
	Set3 _{precise} ^a	0.979	0.752	8.706	2.743	2.010	2.678
RF	Set1	0.956	0.766	18.155	4.225	3.016	4.012
	AIS2 _{precise}	0.956	0.747	18.527	4.279	3.106	4.133
	$AIS2_{fuzzy}$	0.961	0.753	16.394	4.028	2.959	3.942
	AIS3 _{precise}	0.954	0.746	19.175	4.366	3.148	4.187
	$AIS3_{fuzzy}$	0.954	0.752	19.080	4.337	3.155	4.211
	AIS4 _{precise}	0.956	0.747	18.285	4.259	3.068	4.089
	AIS4 _{fuzzy}	0.958	0.755	17.786	4.194	3.069	4.097
	AIS5 _{precise}	0.959	0.747	17.057	4.116	2.974	3.950
	AIS5 _{fuzzy}	0.962	0.751	16.017	3.985	2.922	3.886
	Set3 _{precise} ^a	0.953	0.740	19.498	4.382	3.173	4.211
AB	Set1	0.969	0.770	12.857	3.481	2.871	4.105
						<i>.</i>	1 . 1 .

Table A5 (continued)

Model	Dataset	\mathbf{p}^2	P^2 (test)	MSE	PMSE (top/day)	MAE (top/day)	MADE (06)
model	Dataset	ĸ	K (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS2 _{precise}	0.984	0.752	6.749	2.491	2.043	2.988
	$AIS2_{fuzzy}$	0.980	0.759	8.310	2.799	2.346	3.410
	AIS3 _{precise}	0.985	0.752	6.184	2.309	1.883	2.810
	AIS3 _{fuzzy}	0.983	0.766	7.124	2.537	2.098	3.091
	AIS4 _{precise}	0.983	0.755	6.924	2.537	2.113	3.111
	AIS4 _{fuzzy}	0.975	0.756	10.579	3.112	2.619	3.768
	AIS5 _{precise}	0.983	0.750	6.959	2.393	1.958	2.888
	AIS5 _{fuzzy}	0.980	0.759	8.222	2.643	2.186	3.192
C D	Set3 _{precise}	0.980	0.755	8.175	2.647	2.186	3.210
GB	Set1	0.965	0.786	14.509	3.538	2.597	3.507
	AIS2 _{precise}	0.974	0.774	10.728	2.915	2.250	3.046
	AIS2 _{fuzzy}	0.971	0.778	12.005	3.246	2.535	3.453
	AIS3 _{precise}	0.968	0.768	13.413	3.2/1	2.531	3.437
	AIS3 _{fuzzy}	0.974	0.766	10.865	2./13	2.076	2.823
	AIS4 _{precise}	0.974	0.768	10.657	3.097	2.384	3.237
	AIS4 _{fuzzy}	0.970	0.775	10.020	3.380	2.030	3.000
	AIS5 precise	0.934	0.765	19.294	4.244	3.262	4.409
	AISO _{fuzzy}	0.900	0.703	11.017	3.032 9.111	2.993	4.039
VC	Set5precise	0.971	0.770	14.922	2,620	2.364	3.220
AG	Sell	0.900	0.780	14.223	3.620	2.092	3.041
	AIS2 _{precise}	0.971	0.773	11.988	3.174	2.438	3.300
	AIS2 _{fuzzy}	0.964	0.777	15.120	3.399	2.700	3./3/
	AIS3 precise	0.904	0.702	14.662	3.465	2.073	2 607
	AIS3 _{fuzzy}	0.905	0.774	14.002	3.570	2.728	3.097
	AIS4 _{precise}	0.971	0.768	12.290	3.278	2.510	3.410
	AIS4 _{fuzzy}	0.972	0.779	11.539	3.130	2.381	3.228
	AIS5 _{precise}	0.948	0.765	21.685	4.533	3.501	4./55
	AISS _{fuzzy}	0.957	0.758	17.993	3.839	2.929	3.955
ID	Set3 _{precise}	0.959	0.771	17.299	3.835	2.890	3.902
LD	Sell	0.951	0.773	20.401	4.334	3.285	4.4/2
	AIS2 _{precise}	0.957	0.769	14.000	4.086	3.154	4.284
	AIS2 _{fuzzy}	0.965	0.774	14.//1	3.002	2.829	3.8//
	AIS3 _{precise}	0.965	0.751	14./10	3.549	2.709	3.0/0
	AIS3 _{fuzzy}	0.961	0.765	16.089	3.729	2.8/5	3.906
	AIS4precise	0.961	0.756	16.2/3	3.800	2.915	3.961
	AIS4 _{fuzzy}	0.962	0.764	15.650	3.083	2.832	3.853
	AIS5 _{precise}	0.956	0.749	18.441	3.987	3.023	4.106
	AIS5 _{fuzzy}	0.963	0.757	15.608	3.608	2.754	3.761
01714	Set3 _{precise}	0.963	0.754	15.520	3.514	2.682	3.646
SVM	Set1	0.838	0.748	67.236	8.1/5	5.625	7.308
	AIS2 _{precise}	0.859	0.768	58.991	7.655	5.491	7.220
	AIS2 _{fuzzy}	0.840	0.762	66.704	8.154	5.866	7.724
	AIS3 _{precise}	0.849	0.766	63.237	7.922	5.687	7.503
	AIS3 _{fuzzy}	0.835	0.768	68.880	8.281	5.903	7.754
	AIS4 _{precise}	0.840	0.769	66.795	8.150	5.817	7.656
	AIS4 _{fuzzy}	0.842	0.766	66.097	8.114	5.750	7.527
	AIS5 _{precise}	0.846	0.770	64.572	8.017	5.703	7.479
	AIS5 _{fuzzy}	0.826	0.774	72.707	8.522	6.072	7.993
A 3 13 1	Set3 _{precise}	0.843	0.767	65.144	8.045	5.755	7.629
ANN	Set1	0.851	0.740	61.550	7.798	5.849	7.715
	AIS2 _{precise}	0.875	0.763	52.267	7.189	5.479	7.270
	AIS2 _{fuzzy}	0.855	0.767	60.467	7.758	5.885	7.788
	AIS3 _{precise}	0.865	0.774	56.395	7.477	5.698	7.549
	AIS3 _{fuzzy}	0.854	0.776	61.192	7.813	5.943	7.845
	AIS4 _{precise}	0.868	0.775	55.403	7.419	5.662	7.506
	AIS4 _{fuzzy}	0.859	0.769	58.976	7.652	5.795	7.653
	AIS5 _{precise}	0.868	0.765	55.181	7.401	5.673	7.526
	AIS5 _{fuzzy}	0.854	0.765	60.861	7.781	5.944	7.870
D:1	Set3 _{precise}	0.859	0.772	58.184	7.599	5.750	7.603
Ridge	Set1	0.758	0.729	100.434	10.018	7.588	10.192
	AIS2 _{precise}	0.773	0.740	94.924	9.740	7.360	9.841
	AIS2 _{fuzzy}	0.771	0.738	95.615	9.775	7.376	9.863
	AIS3 _{precise}	0.787	0.749	89.046	9.434	7.255	9.691
	AIS3 _{fuzzy}	0.785	0.747	89.799	9.473	7.247	9.679
	AIS4 _{precise}	0.786	0.750	89.615	9.464	7.237	9.663
	AIS4 _{fuzzy}	0.784	0.748	90.306	9.500	7.233	9.661
	AIS5 _{precise}	0.778	0.743	92.805	9.631	7.393	9.895
	AIS5 _{fuzzy}	0.777	0.741	93.183	9.651	7.389	9.899
	Set3 _{precise} "	0.775	0.745	93.218	9.652	7.454	9.977
LASSO	Set1	0.753	0.724	102.272	10.109	7.629	10.199
	AIS2 _{precise}	0.772	0.738	95.454	9.767	7.342	9.801
	AIS2 _{fuzzy}	0.770	0.735	96.087	9.799	7.368	9.835
	AIS3 _{precise}	0.786	0.747	89.527	9.459	7.238	9.656
	AIS3 _{fuzzy}	0.784	0.749	90.435	9.507	7.231	9.643
	AIS4 _{precise}	0.785	0.747	89.820	9.475	7.231	9.647
	AIS4 _{fuzzy}	0.783	0.749	90.743	9.523	7.206	9.600

Table A5 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS5 _{precise}	0.777	0.741	93.139	9.648	7.387	9.878
	AIS5 _{fuzzy}	0.777	0.741	93.454	9.665	7.379	9.870
	Set3 _{precise} ^a	0.774	0.744	93.502	9.667	7.443	9.960
Note:							

^a Set3_{precise} is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

Table A6

The fit performance of eleven machine learning models for ship S7.

Model	Dataset	R ²	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
DT	Set1	0.828	0.680	69.472	8.260	6.302	8.155
	AIS2 _{precise}	0.863	0.680	55.328	7.389	5.573	7.264
	AIS2 _{fuzzy}	0.853	0.670	59.404	7.669	5.797	7.542
	AIS3 _{precise}	0.856	0.670	58.237	7.557	5.694	7.432
	AIS3 _{fuzzy}	0.850	0.671	60.824	7.759	5.896	7.686
	AIS4 _{precise}	0.855	0.667	58.606	7.606	5.720	7.432
	AIS4 _{fuzzy}	0.856	0.671	58.321	7.622	5.775	7.511
	AIS5 _{precise}	0.865	0.678	54.511	7.334	5.473	7.099
	AIS5 _{fuzzy}	0.867	0.669	53.839	7.272	5.433	7.071
P.T.	Set3 _{precise}	0.880	0.683	48.319	6.903	5.173	6.749
EI	Sell	0.950	0.800	17.780	3.880	2.884	3./13
	AIS2precise	0.985	0.830	11 701	2.11/	2 179	2.925
	AIS2 JUZZY	0.971	0.830	8 690	2 410	1.676	2.010
	AIS36um	0.973	0.826	10 900	2.886	2.007	2.593
	AIS4 _{precise}	0.983	0.829	6.702	2.040	1.405	1.820
	AIS4 _{fuzzy}	0.976	0.820	9.693	2.688	1.894	2.454
	AIS5 _{precise}	0.978	0.834	8.811	2.497	1.753	2.266
	AIS5 _{fuzzy}	0.983	0.828	6.851	2.236	1.591	2.050
	Set3 _{precise} ^a	0.987	0.805	5.176	1.848	1.259	1.639
RF	Set1	0.964	0.793	14.369	3.774	2.813	3.649
	AIS2 _{precise}	0.962	0.808	15.226	3.874	2.845	3.726
	AIS2 _{fuzzy}	0.959	0.806	16.605	4.019	2.964	3.884
	AIS3 _{precise}	0.958	0.810	16.981	4.069	2.963	3.883
	AIS3 _{fuzzy}	0.958	0.811	17.018	4.095	2.979	3.891
	AIS4 _{precise}	0.957	0.809	17.317	4.118	3.023	3.958
	AIS4 _{fuzzy}	0.957	0.806	17.549	4.147	3.037	3.972
	AIS5 _{precise}	0.964	0.813	14.703	3.799	2.760	3.604
	AIS5 _{fuzzy}	0.966	0.817	13.809	3.084	2.693	3.513
ΔB	Set3 Set1	0.901	0.794	13.301	3.920	2.007	3.740
AD	AIS2	0.904	0.750	6 382	2 399	1 970	2 684
	AIS2	0.986	0.812	5 520	2.083	1.663	2.004
	AIS3	0.991	0.813	3.818	1.747	1.405	1.959
	AIS3 _{fuzzy}	0.988	0.816	4.669	1.917	1.519	2.098
	AIS4 _{precise}	0.987	0.810	5.060	2.008	1.642	2.260
	AIS4 _{fuzzy}	0.984	0.812	6.476	2.401	2.023	2.782
	AIS5 _{precise}	0.988	0.826	4.812	2.046	1.675	2.298
	AIS5 _{fuzzy}	0.987	0.820	5.055	2.014	1.624	2.245
	Set3 _{precise} ^a	0.982	0.777	7.272	2.415	1.888	2.558
GB	Set1	0.962	0.803	15.408	3.756	2.777	3.605
	AIS2 _{precise}	0.971	0.815	11.694	3.275	2.287	2.984
	AIS2 _{fuzzy}	0.963	0.811	14.984	3.741	2.665	3.503
	AIS3 _{precise}	0.978	0.818	8.804 10.601	2.705	1.//4	2.312
	AISS _{fuzzy}	0.973	0.821	10.091	3.100	2.141	2.809
	AIS4 _{precise}	0.975	0.814	9 991	2 994	2.065	2.729
	AIS5	0.975	0.826	10.330	3 084	2.147	2.810
	AIS5furry	0.977	0.822	9.116	2.812	1.991	2.610
	Set3precise a	0.986	0.785	5.466	2.156	1.442	1.880
XG	Set1	0.972	0.813	11.021	3.022	2.222	2.865
	AIS2 _{precise}	0.972	0.810	11.116	3.156	2.168	2.779
	AIS2 _{fuzzy}	0.968	0.814	12.937	3.415	2.437	3.161
	AIS3 _{precise}	0.981	0.816	7.733	2.613	1.674	2.122
	AIS3 _{fuzzy}	0.977	0.822	9.345	2.859	1.912	2.453
	AIS4 _{precise}	0.973	0.813	10.730	3.019	2.111	2.714
	AIS4 _{fuzzy}	0.972	0.821	11.364	3.182	2.236	2.883
	AIS5 _{precise}	0.973	0.827	10.967	3.204	2.208	2.823
	AIS5 _{fuzzy}	0.976	0.831	9.854	2.981	2.094	2.702
I.D.	Set3 _{precise}	0.986	0.784	5.731	2.093	1.424	1.808
ГŖ	Set1	0.957	0.789	17.547	4.044	3.053	3.968
	AISZprecise	0.903	0.790	14./30	3.0/3 3.760	2.000 2.012	3.489
	AIS2 .	0.939	0.794	0.323	2 740	1 032	2 536
	1 1100 precise	0.770	0.007	2.7 10	2.7 TU	1.704	4.000

Table A6 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS3 _{fuzzy}	0.975	0.805	10.022	3.034	2.163	2.840
	AIS4 _{precise}	0.963	0.790	15.034	3.546	2.604	3.424
	AIS4 _{fuzzy}	0.976	0.788	9.920	2.910	2.171	2.846
	AIS5 _{precise}	0.981	0.803	7.624	2.614	1.804	2.364
	AIS5 _{fuzzy}	0.973	0.813	10.759	2.940	2.095	2.762
	Set3 _{precise} ^a	0.982	0.785	7.152	2.366	1.742	2.283
SVM	Set1	0.906	0.786	38.185	6.078	4.323	5.574
	AIS2 _{precise}	0.867	0.819	53.666	7.308	5.142	6.525
	AIS2 _{fuzzv}	0.855	0.812	58.832	7.646	5.481	6.978
	AIS3 _{precise}	0.861	0.820	56.159	7.463	5.273	6.678
	AIS3 _{fuzzy}	0.860	0.820	56.543	7.490	5.326	6.747
	AIS4 _{precise}	0.860	0.821	56.451	7.482	5.268	6.680
	AIS4 _{fuzzy}	0.868	0.816	53.522	7.291	5.227	6.663
	AIS5 _{precise}	0.854	0.815	58.893	7.641	5.411	6.831
	AIS5 furry	0.855	0.811	58,735	7.637	5.447	6.893
	Set3precise a	0.871	0.748	51.533	7.113	5.173	6.591
ANN	Set1	0.863	0.786	55.639	7.392	5.651	7.274
	AIS2macica	0.877	0.822	49.757	7.015	5.388	6.972
	AIS26	0.880	0.815	48.398	6 909	5.348	6 960
	AIS3	0.886	0.818	46 000	6 707	5 154	6 669
	AIS3	0.891	0.816	44 189	6 596	5.071	6 574
	AISA	0.895	0.820	42 238	6 442	4 942	6 414
	AIS4	0.886	0.819	46 178	6 751	5 216	6 783
	AIS5	0.879	0.805	48 929	6 903	5 287	6.805
	AIS5	0.869	0.805	53 158	7 238	5 571	7 180
	Sat2 a	0.802	0.000	42 221	6 51 5	5.071	6 5 8 7
Pidao	Set3precise	0.392	0.771	95 162	0.313	6 955	0.337
nuge	AIC2 .	0.790	0.707	77 090	0 0 0 0	6.677	0.017
	AIS2precise	0.807	0.797	77.909	0.020	6.742	0.403
	AIS2 _{fuzzy}	0.800	0.793	76.337	8.800	6 551	0.390
	AISSprecise	0.813	0.798	75.045	8.703	6.614	8.321
	AISSfuzzy	0.013	0.795	75.765	8.701	6.590	0.420
	AIS4 _{precise}	0.811	0.800	70.440	8.740	6.580	8.334
	AIS4 _{fuzzy}	0.811	0.797	/0.088	8.754	6.640	8.432
	AIS5 _{precise}	0.809	0.799	77.312	8.789	6.635	8.431
	AIS5 _{fuzzy}	0.809	0.796	77.344	8.791	6.707	8.543
1 4000	Set3 _{precise}	0.820	0.758	72.381	8.498	6.520	8.315
LASSO	Set1	0.789	0.781	85.405	9.238	6.961	8.819
	AIS2 _{precise}	0.807	0.796	78.356	8.848	6.703	8.536
	AIS2 _{fuzzy}	0.806	0.792	78.750	8.871	6.753	8.625
	AIS3 _{precise}	0.811	0.796	76.696	8.753	6.608	8.410
	AIS3 _{fuzzy}	0.811	0.796	76.732	8.756	6.644	8.459
	AIS4precise	0.809	0.798	77.292	8.787	6.634	8.425
	AIS4 _{fuzzy}	0.809	0.797	77.165	8.781	6.659	8.477
	AIS5 _{precise}	0.808	0.798	77.734	8.813	6.664	8.483
	AIS5 _{fuzzy}	0.808	0.796	77.682	8.811	6.719	8.568
	Set3 _{precise} "	0.819	0.758	72.827	8.524	6.550	8.374

Note.

^a Set3_{precise} is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

able A7	
he fit performance of eleven machine learning models for ship S8	3.

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
DT	Set1	0.916	0.774	54.181	7.305	5.213	6.441
	AIS2 _{precise}	0.910	0.734	54.413	7.305	5.175	6.255
	AIS2 fuzzy	0.909	0.751	55.016	7.391	5.225	6.303
	AIS3 _{precise}	0.904	0.764	58.172	7.506	5.430	6.557
	AIS3 fuzzy	0.910	0.757	54.043	7.255	5.193	6.272
	AIS4precise	0.910	0.746	54.031	7.280	5.178	6.240
	AIS4 _{fuzzy}	0.907	0.747	56.211	7.451	5.288	6.384
	AIS5 _{precise}	0.908	0.771	55.429	7.369	5.275	6.362
	AIS5 _{fuzzy}	0.925	0.777	45.620	6.622	4.665	5.687
	Set3 _{precise} ^a	0.916	0.769	50.649	6.985	4.922	5.949
ET	Set1	0.998	0.882	1.556	0.811	0.551	0.679
	AIS2 _{precise}	0.998	0.866	0.927	0.774	0.471	0.588
	AIS2 _{fuzzy}	0.995	0.862	2.789	1.167	0.761	0.941
	AIS3 _{precise}	0.997	0.870	2.074	1.178	0.744	0.925
	AIS3 _{fuzzy}	0.997	0.870	1.736	0.987	0.628	0.776
	AIS4 _{precise}	0.996	0.865	2.660	1.228	0.795	0.986
	AIS4 _{fuzzy}	0.997	0.863	1.868	1.000	0.639	0.791
	AIS5 _{precise}	0.998	0.877	1.223	0.864	0.549	0.687
	AIS5 _{fuzzy}	0.998	0.874	1.459	0.949	0.616	0.766
	Set3 _{precise} ^a	0.995	0.876	2.783	1.404	0.907	1.120
RF	Set1	0.978	0.859	13.895	3.707	2.535	3.124

Table A7 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS2 practice	0.974	0.840	15.552	3.918	2.680	3.274
	AIS2 _{furgy}	0.976	0.840	14.417	3.782	2.623	3.196
	AIS3	0.970	0.848	17.980	4.202	2.858	3.508
	AIS3 _{fuzzy}	0.975	0.848	15.355	3.895	2.688	3.294
	AIS4 _{precise}	0.974	0.839	15.743	3.948	2.718	3.318
	AIS4 _{fuzzy}	0.974	0.840	15.800	3.958	2.747	3.356
	AIS5 precise	0.975	0.856	15.054	3.848	2.645	3.229
	AIS5 _{fuzzy}	0.976	0.860	14.471	3.781	2.619	3.204
	Set3precise a	0.976	0.855	14.566	3.798	2.624	3.187
AB	Set1	0.982	0.870	11.601	3.288	2.747	3.479
	AIS2 _{precise}	0.993	0.852	4.466	2.032	1.640	2.081
	AIS2 _{furgay}	0.990	0.860	6.002	2.344	1.935	2.443
	AIS3 precise	0.993	0.857	4.187	1.850	1.461	1.869
	AIS3	0.993	0.859	4.258	1.782	1.406	1.799
	AIS4 _{pracica}	0.992	0.853	4.887	2.044	1.651	2.115
	AIS4 _{furgay}	0.994	0.856	3.765	1.844	1.442	1.826
	AIS5 _{precise}	0.995	0.866	3.047	1.544	1.182	1.516
	AIS5 _{furme}	0.996	0.874	2.605	1.432	1.084	1.388
	Set 3 marine a	0 991	0.863	5 365	2.114	1 693	2.148
GB	Set1	0.983	0.875	10 771	3 062	2 188	2,750
GD	4152	0.900	0.845	6 089	1 946	1 312	1.638
	AIS2	0.000	0.842	5.472	1.940	1.312	1.636
	AIS2 JUZZY	0.991	0.851	6 707	2 1 2 7	1.317	1.030
	AIS2	0.905	0.850	0.757	2.12/	1.410	2 110
	AIS JUZZY	0.903	0.830	9.273 E 901	1 020	1.027	1 520
	AIG4	0.991	0.849	3.801	1.050	1.227	1.559
	AIS4 _{fuzzy}	0.992	0.840	4.749	1.908	1.335	1.095
	AIS5 _{precise}	0.988	0.859	7.307	2.097	1.438	1./81
	AIS5 _{fuzzy}	0.986	0.863	8.510	2.330	1.622	2.011
110	Set3 _{precise}	0.985	0.860	9.102	2.427	1.670	2.075
XG	Set1	0.991	0.877	5.538	1.956	1.429	1.791
	AIS2 _{precise}	0.979	0.841	12.914	3.086	2.202	2.713
	$AIS2_{fuzzy}$	0.989	0.850	6.647	2.089	1.460	1.815
	AIS3 _{precise}	0.985	0.842	9.459	2.492	1.759	2.163
	$AIS3_{fuzzy}$	0.989	0.850	6.678	2.185	1.473	1.824
	AIS4 _{precise}	0.982	0.839	11.047	2.796	1.970	2.439
	AIS4 _{fuzzy}	0.987	0.847	7.669	2.271	1.552	1.925
	AIS5 _{precise}	0.973	0.863	16.064	3.747	2.646	3.231
	$AIS5_{fuzzy}$	0.978	0.861	13.557	3.275	2.288	2.797
	Set3 _{precise} ^a	0.979	0.856	12.821	2.974	2.114	2.589
LB	Set1	0.979	0.871	13.718	3.540	2.601	3.309
	AIS2 _{precise}	0.973	0.832	16.182	3.417	2.447	3.043
	AIS2 _{fuzzy}	0.983	0.837	9.937	2.763	1.977	2.484
	AIS3 _{precise}	0.982	0.844	10.828	2.743	1.936	2.441
	AIS3 _{fuzzy}	0.979	0.848	12.946	3.069	2.203	2.759
	AIS4 _{precise}	0.969	0.824	18.763	4.017	2.929	3.677
	AIS4 _{fuzzy}	0.973	0.835	16.409	3.765	2.725	3.415
	AIS5 _{precise}	0.973	0.849	16.500	3.523	2.521	3.138
	AIS5 _{fuzzy}	0.978	0.860	13.784	3.213	2.262	2.836
	$Set3_{precise}^{a}$	0.976	0.852	14.749	3.261	2.338	2.882
SVM	Set1	0.900	0.862	64.371	8.014	5.742	6.905
	AIS2 _{precise}	0.892	0.846	64.923	8.048	5.555	6.624
	AIS2 _{fuzzy}	0.886	0.841	68.842	8.289	5.746	6.819
	AIS3 _{precise}	0.906	0.861	56.735	7.523	5.223	6.371
	AIS3 _{fuzzy}	0.901	0.856	59.608	7.712	5.314	6.426
	AIS4 _{precise}	0.906	0.862	56.668	7.517	5.201	6.343
	AIS4 _{fuzzy}	0.900	0.856	60.112	7.746	5.316	6.423
	AIS5 _{precise}	0.897	0.858	62.015	7.865	5.503	6.604
	AIS5 _{furry}	0.892	0.854	65.006	8.054	5.607	6.685
	Set3pracica a	0.910	0.869	54,154	7.349	5.117	6.123
ANN	Set1	0.914	0.857	55 217	7 398	5 605	6 809
1 77 87 8	AIS2	0.903	0.834	58 524	7 590	5 568	6 678
	AIS2	0.896	0.830	62.810	7 876	5 865	7 024
	AIS3	0.050	0.854	52.010	7 201	5.280	6 420
	AIS3	0.910	0.850	54 338	7 351	5 383	6 496
	AIS4	0.917	0.849	50.268	7 033	5 138	6 252
	AISA.	0.012	0.847	59 470	7 207	5 203	6 307
	AIC5	0.913	0.04/	52.7/9	7 207	5.275	6 /59
	AICE	0.911	0.040	23.000	7.202	5.343	6 401
	r1135 _{fuzzy}	0.912	0.040	23.300	/.4/0	0.000	0.431
	SetSprecise	0.924	0.862	40.222	0.733	4.904	5.959
кіаде	Sell	0.866	0.842	80.315	9.288	7.004	8.561
	AI52precise	0.858	0.829	85.639	9.248	/.008	8.573
	AIS2 _{fuzzy}	0.856	0.826	87.056	9.324	7.077	8.631
	AIS3 _{precise}	0.868	0.839	79.392	8.905	6.681	8.300
	AIS3 _{fuzzy}	0.866	0.836	81.009	8.996	6.756	8.358
	AIS4 _{precise}	0.867	0.838	79.957	8.936	6.693	8.299
	AIS4 _{fuzzy}	0.864	0.835	81.764	9.037	6.780	8.364

Table A7 (continued)

Model	Dataset	R^2	R^2 (test)	MSE	RMSE (ton/day)	MAE (ton/day)	MAPE (%)
	AIS5 _{precise}	0.867	0.840	80.108	8.945	6.728	8.344
	AIS5 _{fuzzy}	0.865	0.838	81.568	9.026	6.771	8.361
	Set3 _{precise} ^a	0.879	0.853	72.818	8.529	6.512	7.959
LASSO	Set1	0.865	0.842	87.140	9.332	7.023	8.576
	AIS2 _{precise}	0.857	0.828	85.994	9.267	7.011	8.567
	AIS2 _{fuzzy}	0.855	0.826	87.359	9.340	7.076	8.621
	AIS3 _{precise}	0.867	0.839	80.087	8.944	6.729	8.334
	AIS3 _{fuzzy}	0.864	0.837	81.870	9.043	6.794	8.365
	AIS4 _{precise}	0.867	0.838	80.157	8.948	6.700	8.306
	AIS4 _{fuzzy}	0.864	0.834	81.947	9.047	6.787	8.369
	AIS5 _{precise}	0.867	0.840	80.433	8.963	6.737	8.348
	AIS5 _{fuzzy}	0.864	0.838	82.001	9.050	6.782	8.359
	Set3 _{precise} ^a	0.878	0.852	73.581	8.573	6.525	7.966

^a Set3_{precise} is the best dataset in Li et al. (2022) which is the Part I of this series of studies.

References

- Bennett, G.G., 1996. Practical rhumb line calculations on the spheroid. J. Navig. 49 (1), 112–119.
- Bergstra, J., Yamins, D., Cox, D.D., 2013. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on Machine Learning (ICML 2013), pp. 115–123.
- BIMCO, 2021. Just in Time Arrival Clause for Voyage Charter Parties 2021. https:// www.bimco.org/contracts-and-clauses/bimco-clauses/current/just-in-time-arrival-cl ause-for-voyage-charter-parties-2021. (Accessed 5 April 2022).
- Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Haussler, D. (Ed.), Proceedings of the Annual Conference on Conf
- Computational Learning Theory. ACM Press, Pittsburgh, PA, pp. 144–152. Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
- Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classification and Regression Trees. Wadsworth, Belmont, CA.
- Chen, T., Guestrin, C., 2016. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794.
- Drucker, H., 1997. Improving regressors using boosting techniques. ICML 97, 107–115. Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1), 119–139.
- Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat 29 1189–1232
- Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn. 63 (1), 3–42.
- Haykin, S.O., 2008. Neural Networks and Learning Machines, the third ed. Prentice Hall, New Jersey.
- Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N., 2018. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https:// doi.org/10.24381/cds.adbb2d47. (Accessed 10 September 2021).
- Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12 (1), 55–67.
- IMO, 2020. Fourth IMO GHG study 2020. https://www.cdn.imo.org/localresources/en /OurWork/Environment/Documents/Fourth%20IMO%20GHG%20Study%202020% 20Executive-Summary.pdf. (Accessed 19 March 2022).
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Liu, T.Y., 2017. LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 3146–3154.
- Li, X., Du, Y., Chen, Y., Nguyen, S., Zhang, W., Schönborn, A., Sun, Z., 2022. Data fusion and machine learning for ship fuel efficiency modeling: Part I – Voyage report data and meteorological data. Commun. Transport. Res. 2, 100074. https://doi.org/ 10.1016/j.commtr.2022.100074.
- Merkel, A., Kalantari, J., Mubder, A., 2022. Port call optimization and CO2-emissions savings–Estimating feasible potential in tramp shipping. Marit. Transport Res. 3, 100054.
- Rio, M.H., Mulet, S., Picot, N., 2014. Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett. 41 (24), 8918–8925.
- Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58 (1), 267–288.

- Wan, Z., El Makhloufi, A., Chen, Y., Tang, J., 2018. Decarbonizing the international shipping industry: solutions and policy recommendations. Mar. Pollut. Bull. 126, 428–435.
 Weintrit, A., Kopacz, P., 2011. A novel approach to Loxodrome (Rhumb-Line),
- orthodrome (great circle) and geodesic line in ECDIS and navigation in general. Methods and Algorithms in Navigation, Marine Navigation and Safety of Sea Transportation 123–132.
- Yan, R., Wang, S., Psaraftis, H.N., 2021. Data analytics for fuel consumption management in maritime transportation: Status and perspectives. Transport. Res. E Logist. Transport. Rev. 155, 102489.

Yuquan Du is a Senior Lecturer in the Centre for Maritime and Logistics Management at Australian Maritime College (AMC), University of Tasmania, Australia. He obtained his PhD in Control Theory and Control Engineering in June 2012 from Nankai University, and then worked for 3 years as a Research Fellow at the Centre for Maritime Studies, National University of Singapore. His current research concentrates on machine learning models, optimization models, and solution algorithms for management science problems in transportation, logistics, and supply chain management. He is a member of the Australian Maritime Logistics Research Network.

Yanyu Chen is a PhD candidate in the Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Australia. She obtained her master's degree in Information and Communication Technology in July 2021 from UTAS, and then worked as a Research Assistant in the Centre for Maritime and Logistics Management at Australian Maritime College, UTAS. Her current research concentrates on machine learning models, deep learning models, optimization models, and solution algorithms for research problems in marine biology, fishery management, and supply chain management.

Xiaohe Li graduated from Harbin Engineering University. He obtained his PhD in Power Engineering and Engineering Thermophysics from Harbin Engineering University in March 2022. His current research focuses on ship fuel consumption prediction models, machine learning models, energy efficiency optimization models, solution algorithms, and energy efficiency management software development for the shipping industry.

Communications in Transportation Research 2 (2022) 100073

Alessandro Schönborn is an Assistant Professor at World Maritime University (WMU) in the Maritime Energy Management (MEM) specialization. His research interests focus on fuel and propulsion technology, and on marine renewable energy from wave, tidal and ocean currents, but he has further interests in solar and wind power for marine applications. He graduated from University College London (UCL) with an M.Eng. degree in Mechanical Engineering and holds a PhD in combustion (UCL) for a thesis on renewable fuels for diesel engines. Before joining WMU, he worked at MAN Energy Solutions, SINTEF Energy Research, and Lund University.

Zhuo Sun is a Professor at the Department of Logistics in Dalian Maritime University. He received his dual bachelor's degree in Civil Engineering and Computer Science from Dalian University of Technology in China in 2003, master's degree in Hydraulics from Dong-A University in South Korea in 2005, and PhD in Urban Planning from Nagoya University in Japan in 2008. He conducted his postdoctoral research in the Centre for Maritime Studies of National University of Singapore from 2009 to 2012. His research interests are in the areas of shipping network design and port planning. He won the Gold Prize for the "Next Generation Container Port Challenge" in the Singapore in 2013 and the third-place winner of the "The Last Mile Delivery" Algorithm Competition organized by Alibaba, Hong Kong University of Science and Technology, and INFORMS in 2016. He developed a spatial planning tool named MicroCity (https://microcity.github.io).