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Maximising survey efficiency can help reduce the tradeoff between spending limited 
conservation resources on identifying population changes and responding to those 
changes through management. Burrow-nesting seabirds are particularly challenging 
to survey because nests cannot be counted directly. We evaluated a stratified random 
survey design for generating unbiased population estimates simultaneously for four 
petrel species nesting on Macquarie Island, Australia, where the survey cue, burrow 
entrances, is similar for all species. We also compared the use of design-based and 
model-based analyses for minimising uncertainty in estimates. We recorded 2845 
Antarctic prion burrows, 306 white-headed petrel burrows and two blue petrel bur-
rows while distance-sampling along 154 km of transects. For blue petrels and grey 
petrels, we completed nocturnal searches along a further 71 km and searched 249 km 
of tracks during follow-up ground searches. We failed to generate unbiased population 
estimates for two rare and localised species, blue and grey petrels, from our stratified 
random survey. Only for the most widespread and abundant species, Antarctic prion, 
did the estimate have reasonable power to detect a rapid population change. Model-
based analyses of the stratified random survey data did not improve upon traditional 
design-based analyses in terms of uncertainty in population estimates, but they did 
provide useful spatial representation of current populations. Models that used the tar-
geted survey data did not reflect current population sizes and distributions of the two 
rare and localised species. We found that when species ecologies, distributions and 
abundances vary, a multi-method approach to surveys is needed. Species with low 
abundance that occur patchily across large islands are likely to be best estimated using 
targeted surveys, whereas widespread and abundant species can be accurately and pre-
cisely estimated from randomised surveys using informative model-based analyses.
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Introduction

Seabirds are keystone species in ocean and island ecosystems. 
They provide top–down regulation of prey populations, drive 
primary production through nutrient deposition and sup-
port tourism and cultural harvests (Newman  et  al. 2009, 
Mulder  et  al. 2011, Danckwerts  et  al. 2014, Otero  et  al. 
2018, Pagès  et  al. 2018). Today, numerous threats to sea-
birds at sea and on land result in their classification as one 
of the most threatened of all bird groups globally (Dias et al. 
2019). As higher order predators in marine systems, seabirds’ 
responses to anthropogenic impacts can indicate systemic 
environmental change and as such they have been adopted 
as ‘essential ocean variables’ for observing and managing our 
seas (Miloslavich et al. 2018). Monitoring seabirds can detect 
and track environmental changes, as well as the conservation 
status of individual species as they respond to anthropogenic 
threats and the effectiveness of conservation interventions 
being implemented to address those threats (Brooke  et  al. 
2018, Dias et al. 2019).

About one third of all seabirds nest in underground bur-
rows (Del Hoyo et al. 1992). Monitoring these species is par-
ticularly difficult because nests are hard to observe directly. 
Typically the number of burrows and the proportion that are 
occupied are measured separately and combined to obtain an 
estimate for a given area, often a whole island (Sutherland 
and Dann 2012). In most cases large uncertainty in these esti-
mates prevents the detection of significant changes in seabird 
population sizes over time (Bird et al. 2021). Uncertainty is 
usually greater for burrow detection than burrow occupancy, 
since burrows are often distributed discontinuously across 
challenging terrain, and their entrances may be obscured 
by vegetation (Rayner  et  al. 2007, Rodríguez  et  al. 2019). 
While field and analytical methods are constantly evolving to 
improve the accuracy and precision of population estimates 
(Thompson 2013), further improvements are desirable, 
maximising efficiency during fieldwork and data analysis to 
deliver the most information within financial and practical 
constraints (Possingham et al. 2012).

Multiple burrowing seabird species often nest sympatri-
cally on islands. In this study we test if unbiased estimators of 
several species’ burrow numbers could be efficiently generated 
using a single randomised survey design given that the survey 
cue, burrow entrances, is similar across species. Alternatively, 
do morphological, phenological and ecological differences 
between species require targeted species-specific surveys as 
elsewhere (Dilley et al. 2019)? Determining the relevant survey 
design can be challenging. Stratified designs, where the area 
to be sampled is divided into homogenous sub-areas, or ran-
domised designs where survey effort is distributed randomly 
across the area to be sampled, or a combination of the two, are 
recommended where the goal of surveys is to estimate popu-
lations and track changes over time (Buckland et  al. 2015). 
However, for rare or highly localised species that can easily be 
missed within the landscape, randomised surveys can result in 
low precision (Thompson 2013, Pacifici et al. 2016). In such 
cases incorporating prior knowledge such as historical records, 

pilot ground surveys and nocturnal surveys of aerial activity 
can improve results (Rayner et al. 2007, Arneill et al. 2019).

When analysing data, design-based or model-based anal-
yses can be used. Design-based methods simply calculate 
abundance within the sampled area and extrapolate from 
this to the wider area. They make assumptions about the 
survey design, for example that sampling effort was allocated 
randomly. Model-based methods rely on the relationship 
between species abundance and spatial and environmental 
covariates to infer abundance in space and/or time. Models 
can improve precision in animal abundance estimates by 
eliminating biologically unlikely changes in density through 
smoothing (Camp et al. 2020). While design-based methods 
can require stratification of survey data to account for uneven 
sampling (possibly by design), model-based methods utilise 
data more efficiently through finer scale covariates. However, 
switching from design- to model-based methods requires a 
substitution of assumptions: from assuming sampling loca-
tions were chosen at random, to assuming the model accu-
rately reflects a species’ realised niche (Camp  et  al. 2020). 
Information is currently limited as to how well this assump-
tion performs for different types of species, e.g. common or 
rare, and clustered or dispersed species (Pacifici et al. 2016, 
Dilley et al. 2019).

We studied four procellariiform petrels on Macquarie 
Island (54°30′S, 158°57′E), a remote oceanic island approxi-
mately 1500 km south-east of Tasmania, Australia. Our study 
system has many of the factors that make burrowing seabirds 
challenging to study. The island is large with most terrain 
only accessible by foot, so surveys require multi-day field 
trips. As a UNESCO World Heritage Site and Tasmanian 
Nature Reserve, access permits are required and the sub-
Antarctic environment and island’s terrain add logistical 
difficulty. The current distributions of our study species are 
poorly known as they are responding to staged eradications of 
introduced wekas Gallirallus australis (1988), cats Felis catus 
(2001), rabbits Oryctolagus cuniculus, black rats Rattus rattus 
and house mice Mus musculus (all 2011) following decades of 
impacts (Copson and Whinam 2001, Robinson and Copson 
2014, Springer 2016). Antarctic prions Pachyptila desolata 
and white-headed petrels Pterodroma lessonii were previ-
ously widespread and relatively common, while blue petrels 
Halobaena caerulea and grey petrels Procellaria cinerea have 
only recently recolonised the island having been extirpated in 
the 1900s (Brothers 1984, Brothers and Bone 2008).

In this study we 1) compare the performance of a stratified 
random survey design with targeted species-specific surveys, 
and 2) compare design-based versus model-based analyses for 
estimating burrow numbers. We synthesize our findings into 
guidance on key considerations for surveying multi-species 
assemblages of burrowing seabirds.

Methods

We estimated the sizes and distributions of our four study 
species’ populations through five steps (Fig. 1).
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Preliminary survey

We undertook a preliminary survey in November–December 
2017 visiting known petrel colonies (Schulz  et  al. 2006, 
Brothers and Bone 2008) and opportunistically recording 
burrows across Macquarie Island. We recorded 1521 bur-
rows in total during our preliminary survey. All burrows were 
identified to species level (Supporting information) and geo-
referenced using a handheld Garmin 60 GPS.

Environmental covariates, stratification and survey 
design

We used spatial environmental covariates and a clustering 
algorithm to classify eight strata across the island using the 
‘cmeans’ function from the e1071 package in R (Meyer et al. 
2019, <www.r-project.org>). The environmental covariates 
were aspect, elevation, proximity to ridgelines, slope, a topo-
graphic wetness index, topographically-deflected mean wind 
speed and a normalised difference vegetation index (NDVI), 
derived from a 5-m resolution digital elevation model and 
QuickBird satellite imagery (Bricher  et  al. 2013). All bur-
row locations from the preliminary survey were overlain on 
the eight strata and classified by species and stratum (Fig. 1). 
Antarctic prions and white-headed petrels were widespread 

whereas blue and grey petrel burrows were not encountered 
away from known sites. Based on this we optimised effort 
in our stratified random survey for the two widespread 
species. When overlain on the strata Antarctic prions and 
white-headed petrels showed a strongly skewed distribution 
(Fig. 1). The observed frequency of each species’ burrows in 
each stratum was compared with expected frequency derived 
from track points extracted from our GPS tracks in Garmin 
BaseCamp ver. 4.7.0 (Garmin 2019) – a proxy for time 
spent surveying each stratum. The observed and expected 
frequency distributions (Fig. 1) were used to generate 200 
stratified random points and 100 reserve points (as replace-
ments when a target point was inaccessible) in QGIS ver. 
3.6.3 (<http://qgis.osgeo.org>). One third (67 × 2) of the 
points were assigned to strata based upon the observed fre-
quencies of Antarctic prion and white-headed petrel burrows 
in different strata, and the remaining third (66) were controls 
based upon the relative extents of the eight strata island-wide.

Survey implementation

Stratified random transect survey
From 5 January to 24 April 2018 we distance sampled 
burrows along 158 km of transects navigated between our 
randomly generated points. Distance sampling is a way of 

Figure 1. Petrel survey design and implementation on Macquarie Island. Burrows of different species were recorded at known sites and 
incidentally elsewhere (1). The frequency of incidental burrows in different modelled strata was used to assign numbers of random plots in 
different strata (2). Transect surveys were followed by targeted searches for localised species, informed by knowledge of existing sites and by 
spotlighting (3). Survey data were used to estimate burrow numbers using design- and model-based methods (4). Finally these estimates 
were adjusted for occupancy to give a final population estimate (5).
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estimating density while explicitly accounting for uncertain 
detection (Miller et al. 2013), and has been used effectively to 
estimate petrel population sizes (Lawton et al. 2006, Rexer-
Huber et al. 2017). In our survey, a lead person walked in 
a straight line, recording the exact route by handheld GPS. 
Waypoints were taken each time the transect transitioned 
from ‘short’ to ‘tall’ (</> 70 cm) vegetation so that the tran-
sect could be subdivided post hoc for analyses. A second per-
son, walking directly behind the first, visually scanned left 
and right identifying all burrows observed from the transect 
line, recording them on a second GPS and measuring the 
perpendicular distance between the burrow and the transect 
line to the nearest 10 cm.

Targeted species-specific searches
Because blue petrels and grey petrels were not encountered 
away from known colonies during the preliminary survey, 
we undertook targeted searches for those species. In 2017–
2018 we surveyed all known colonies of blue petrels and grey 
petrels. To detect new colonies we adapted methods from 
Schulz et al. (2006) and Dilley et al. (2017), defining suitable 
habitat based upon descriptions in these two papers and our 
own experience of known sites (Supporting information). We 
conducted nocturnal surveys of suitable habitat by observing 
from vantage points, or traversing on foot, to identify birds 
vocalising or flying over colonies. Flying birds were readily 
observed to at least 100 m range with a Ledlenser P17.2 spot-
light. Active daytime burrow searches were made in suitable 
habitats focusing on known sites, any areas identified during 
nocturnal surveys and around brown skua Stercorarius ant-
arcticus territories where blue petrel remains were identified.

Burrows were found by looking for fresh droppings, feath-
ers and trampled vegetation or soil at burrow entrances, and 
by listening for blue petrels responding to imitation calls 
(Schulz et al. 2006, Dilley et al. 2017). Colonies were defined 
as clusters of ≥ 1 burrow separated by > 50 m from the near-
est cluster. We attempted to census grey petrels, searching 
outwards from all located burrows to search the whole area 
of suitable habitat (Schulz et al. 2006). When surveying blue 
petrel colonies, we followed Dilley et al. (2017) to define the 
colony extent and estimate total burrows by sub-sampling 
circle plots and extrapolating to the colony area.

Analysis

Design-based analyses
Colony counts
For grey petrels we censused all burrows across the island, and 
for blue petrels we summed our colony estimates to generate 
a whole-island estimate of burrow numbers.

Distance analyses
We sub-divided our transects into sections by vegetation 
height and strata in QGIS. For Antarctic prions and white-
headed petrels, we truncated the burrow observations, with 
the most distant 5% of observed burrows excluded from 
analyses. This resulted in truncation distances of 5.5 m for 

analysis of Antarctic prion data and 11.10 m for white-
headed petrel data. Using the distance package in R we then 
fitted half normal and hazard rate detection functions with 
cosine, hermite and polynomial adjustments and with stra-
tum, observer and vegetation height as covariates (Miller 
2017). To account for overdispersion of our distance data we 
used a two-step process to select a final detection function 
using an adjusted version of Akaike’s information criterion 
(QAIC) following Howe et al. (2019). We used the selected 
model to estimate abundance for each stratum within the 
area covered by transects (twice the truncation distance mul-
tiplied by transect lengths) and then scaled this to provide 
an overall burrow estimate and upper and lower confidence 
limits for the whole island (Miller 2017).

Model-based analyses
We used a generalised additive model (GAM) and the selected 
detection functions described above to build density surface 
models (DSMs) in the dsm package for Antarctic prions and 
white-headed petrels from distance sampling data and envi-
ronmental covariates (Miller et al. 2013, 2020). We clipped 
our transects into lengths 2× the truncation distance in length. 
The lengths were then buffered by the truncation distance to 
create contiguous squares of strip transect. Observations were 
linked to their respective transect square to generate square-
specific burrow counts. Mean values of the same environ-
mental variables used to generate strata were calculated for 
each transect section using the tabularaster package (Sumner 
2018). Models were fitted with estimated abundance – bur-
row count per transect square corrected for detection – as the 
response variable, spatial smooths of all seven environmental 
variables and a bivariate spatial smooth of x- and y-coordi-
nates of burrow observations (Marshall  et  al. 2017). Three 
global models were fitted using quasipoisson, negative bino-
mial and Tweedie distributions. The default basis complex-
ity (k = 10) was used for all variables except the bivariate xy 
smooth which was assigned a basis complexity of k = 60 to 
allow a high level of spatial complexity and account for the 
spatial autocorrelated distribution of burrows (Marshall et al. 
2017). We selected a probability distribution based upon 
diagnostic plots and adjusted r2 from the three global mod-
els and compared all subsets of the global model using AIC. 
The final model (lowest AIC score) was tested for concurv-
ity (Marshall  et  al. 2017, Bock 2018). The final model for 
each species was used to predict burrow abundance across the 
entire island at a 20 × 20 m grid cell resolution. The predicted 
abundances from all cells were summed to produce an island-
wide estimate of burrow numbers. If the selected detection 
function had no covariates we used the delta method for esti-
mating 95% confidence intervals (CI). If the detection func-
tion included covariates we also used variance propagation to 
estimate CI (Miller et al. 2020, Bravington et al. 2021).

We also generated spatial models of blue and grey petrel 
abundance. Our data for these two species were derived from 
targeted surveys. Unlike in distance sampling where uncer-
tain detection is explicitly accounted for, we assumed per-
fect detection of burrows during our targeted searches. We 
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extracted environmental covariates in the same way as above 
and fitted GAMs directly with the mgcv package (Wood 
2017). We selected models in the same way as above, and 
used the selected model for each species to predict abundance 
island-wide.

Power analyses
To evaluate the strength of our unbiased estimators of burrow 
numbers we simulated declines of 30, 50 and 80% over three 
generations for Antarctic prions and white-headed petrels fol-
lowing Bird et al. (2021) and assessed their power to detect 
significant differences between repeat estimates (Supporting 
information).

Population estimation

We adjusted burrow estimates by species-specific occupancy 
from Bird et al. (in press) to generate population estimates. 
Estimates of occupancy were used to adjust burrow estimates: 
for colonies where colony-specific occupancy was available 
(blue petrels); or for the whole population (all other species). 
We multiplied burrow and occupancy estimates to estimate 
population size, and used the delta method to combine vari-
ances around the burrow and occupancy estimates before cal-
culating confidence intervals.

Results

Survey implementation

During the transect survey we recorded 2845 Antarctic prion 
burrows, 306 white-headed petrel burrows and two blue 
petrel burrows. An additional 90 burrows (just under 3%) 
could not be identified to species-level and were excluded 
from analyses.

As only two blue petrel burrows and no grey petrel bur-
rows were encountered during transect surveys, we walked 71 
km during nocturnal surveys and searched 249 km of tracks 

during follow-up ground searches. During these searches 
we found and surveyed 37 blue petrel colonies including 12 
previously unrecorded colonies, and 74 grey petrel colonies 
including 31 at previously unrecorded sites.

Our stratified random transect surveys covered 48 ha and 
60 ha, or 0.4 and 0.5% of the whole island for Antarctic 
prions and white-headed petrels respectively. This comprised 
2× effective strip half width (ESW) calculated during dis-
tance analysis (below) × total transect length during transect 
surveys (Antarctic prions: ESW = 3.04, SE = 0.07, 95% CI 
2.90–3.18; white-headed petrels: ESW = 3.82, SE = 0.21, 
95% CI 3.68–3.96). The total areas searched for blue and 
grey petrels were 1192 and 1264 ha, or 9.3 and 9.9% of the 
whole island comprising the island-wide transect surveys plus 
buffered ground searches and nocturnal search tracks.

Estimating burrow numbers

Design-based methods
Grey petrel abundance was low, so we counted all burrows 
in the colonies we located, totalling 630 burrows across the 
island. For blue petrels we estimated burrow density in each 
colony, extrapolated to the total area of the colony (Supporting 
information). The peak density recorded was 1.79 burrows 
m−2 and summed colony estimates gave a total of 11 900 bur-
rows with a coefficient of variation of 8% (Table 1).

Distance analysis of the stratified random transect data 
identified a hazard rate key function with no adjustments 
and no covariates as the best detection function for Antarctic 
prion burrows and a half normal key function with observer 
as a covariate for white-headed petrel burrows (Supporting 
information). We recorded a peak density of 0.28 Antarctic 
prion burrows m−2 in the transect squares and 0.08 white-
headed petrel burrows m−2. Extrapolating to the full extent 
of each stratum, and summing these estimates returned total 
estimates of 288 000 Antarctic prion burrows and 29, 500 
white-headed petrel burrows on the island, with CVs of 13% 
and 36% respectively (Table 1).

Table 1. Estimates of the total number of burrows, breeding occupancy and total population estimates for four burrowing petrel species on 
Macquarie Island. The upper and lower confidence limits are expressed as a range, with the coefficient of variation for each estimate. The 
most precise estimates for each species are highlighted in bold.

Species Survey Analysis
Burrow 
estimate Range (95% CI) CV (%)

Population 
estimate Range (95% CI) CV (%)

White-headed 
petrel

Transects Design-based 
– distance analysis

29 500 20 800–41 700 36 13 464 9510–19 100 36

Transects Model-based – DSM 28 000 20 200–38 700 34 12 769 9020–18 100 36
Antarctic prion Transects Design-based 

– distance analysis
288 000 253 000–329 000 13 192 216 168 000–219 000 14

Transects Model-based – DSM 239 000 212 000–271 000 13 159 575 141 000–181 000 13
Blue petrel Targeted 

search
Design-based 

– extrapolation
11 900 11 000–12 800 8 5588 5040–6330 12

Targeted 
search

Model-based – DSM 1 610 000 312 000–2 910 000 82 902 443 402 000–2 030 000 92

Grey petrel Targeted 
search

Design-based 
– census

630 630–630 0 252 227–302 15

Targeted 
search

Model-based – DSM 230 000 112 000–347 000 52 91 190 53 900–154 000 56
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Model-based methods
Inspection of residual quantile–quantile (QQ) plots and 
AIC scores showed that the negative binomial distribu-
tion gave the best fit to the Antarctic prion data, and the 
Tweedie distribution for white-headed petrels (Supporting 
information). The selected models included terms for loca-
tion, elevation, slope and NDVI for prions and location, 
elevation, slope, topographic wetness and NDVI for white-
headed petrels.

Predicted burrow densities along transects peaked at 0.04 
burrows m−2 for Antarctic prions and 0.01 burrows m−2 for 
white-headed petrels. Summing the predicted numbers of 
Antarctic prion and white-headed petrel burrows in all pix-
els island-wide returned estimates of 239 000 and 28 000 
burrows respectively with CVs of 34% and 12% (Table 1). 
Model predictions, when plotted, also provide species distri-
bution maps (Fig. 2).

To model blue petrel and grey petrel abundance, we 
included real absences from along transect and search 
tracks, and density estimates from within surveyed colonies. 
Initial attempts to run models with 30 000 absences failed 

computationally, so a sub-sampled set of 3000 absences was 
used in the final models. The models predicted peak densi-
ties of 13.6 and 0.05 burrows m−2 for blue petrels and grey 
petrels, with whole-island estimates of 1 610 000 and 230 
000 burrows respectively. Uncertainty around these estimates 
was high with coefficients of variation of 82% and 52% 
respectively.

Estimating population size

Burrow inspections estimated 40% (95% CI: 36–48%) of 
grey petrel burrows, 46% of white-headed petrel burrows 
(44–55%) and 67% (55–79%) of Antarctic prion burrows 
to be occupied by breeding pairs (Bird et  al. in press). For 
blue petrels occupancy was estimated at all colonies using 
playback (Bird  et  al. in press). Adjusting burrow estimates 
by occupancy gave us island-wide population estimates for 
each species (Table 1). Using the delta method to combine 
burrow and occupancy estimates did not dramatically inflate 
uncertainty in the final population estimates for prions and 
white-headed petrel.

Figure 2. Island-wide burrow density (burrows m−2) plotted on a log scale for widespread species (a) Antarctic prions and (b) white-headed 
petrels, and recolonising species (c) blue petrels and (d) grey petrels. (a) and (b) are DSM predictions, (c) and (d) are from search surveys 
– circles are plotted around occupied pixels to increase visibility. Predicted densities in (a) and (b) were truncated below 1% of peak pre-
dicted density.
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Comparing methods

Sample sizes of Antarctic prions and white-headed petrels 
were large enough to generate burrow estimates using design-
based distance analysis but were insufficient for blue petrels 
and grey petrels. The high number of Antarctic prion burrows 
encountered along transects resulted in lower uncertainty 
than for white-headed petrels. Censusing grey petrels and 
simple area-based extrapolation for blue petrels resulted in 
more precise estimates (lower CVs) than distance sampling, 
but our survey assumptions, such as finding all colonies/bur-
rows and delineating colonies accurately, are untested.

There was negligible difference in uncertainty when esti-
mating burrow numbers using the transect data and design-
based distance analysis or model-based DSMs (Table 1). 
While the spatial predictions from the models (Fig. 2) and 
the partial effects plots (Supporting information) appear to 
be realistic, peak densities predicted by the models for the 
original sampling units (transect squares) were much lower 
than the raw estimates: 0.04 versus 0.28 burrows m−2 for 

prions and 0.01 versus 0.08 burrows m−2 for white-headed 
petrels. This may be partially explained by model-smoothing, 
but it also suggests the models did not cope well with over-
dispersion and zero-inflation in the data, which may be why 
the DSM-derived estimate for Antarctic prions is lower than 
the estimate from distance analysis.

Conversely, model-based estimates appear to substantially 
over-predict current blue and grey petrel burrow-densities, 
resulting in estimates two to three orders of magnitude above 
our direct estimates (Fig. 3). We overlaid our searched area 
– buffered nocturnal, transect and search survey tracks – on 
modelled blue and grey petrel abundance. This compari-
son indicates that habitat supporting 30% and 18% of the 
model-predicted populations of each species was surveyed, 
giving us confidence that the species were indeed absent from 
those areas, and that the models are over-predicting (Fig. 3).

Power analysis demonstrated that if the Antarctic prion 
population were increasing or decreasing rapidly (equivalent 
to a change of 30% over three generations as defined by the 
IUCN for Red List assessments) we would be able to detect 

Figure 3. Surveyed and modelled densities of recolonising blue petrels and grey petrels illustrating that models currently over-predict the 
distributions of both species.
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a significant difference between either our design-based or 
model-based estimates and an equivalent repeat estimate after 
approximately 15 years. The lower precision of our estimate 
of white-headed petrel burrow numbers means detecting 
such a rapid change would take more than 45 years (Fig. 4).

Discussion

Our results show that a multi-method approach is needed 
to generate population estimates for multiple sympatric 
burrowing seabird species, even though their basic ecology 
is ostensibly similar. Furthermore, the most effective sur-
vey approach can vary for different species, even when the 
survey cue is similar and they occur within the same island 
ecosystem. Species habitat use, life histories, distributions 
and abundances are important factors in determining the 
survey approach. Below we summarise key considerations for 
designing burrowing seabird surveys (Fig. 5).

Survey design

Most studies that estimate burrowing seabird population sizes 
aim to use their estimate to detect trends (Bird et al. 2021). 
For this, stratified and/or randomised survey designs are suit-
able for generating unbiased estimates (Buckland et al. 2015). 
We found, that given the patterns of occurrence of our study 
species our stratified random survey design was only suitable 
for generating unbiased estimates of two widespread species. 
It was unsuitable for the two localised species, blue and grey 
petrels. Furthermore, only our estimates of the most abun-
dant species, Antarctic prion, had power to detect significant 
population changes in a moderate timeframe of ~15 years.

While targeted searches superficially appear to perform 
well, having lower coefficients of variation than estimates 
from our transect survey, they carry an unquantifiable bias 
which undermines their use for detecting trends. Mapping 
and censusing blue and grey petrel colonies provided a con-
temporary assessment of current distributions of both spe-
cies, despite blue petrels being found to occur in just 0.05% 
and grey petrels in 0.03% of 20 × 20 m pixels island-wide 
(compared with model predictions of > 1 breeding pair of 
Antarctic prions in 16%, and white-headed petrels from 
0.9% of all pixels). For rare and localised species, targeted 
searches can provide conservative estimators of population 
size for conservation assessments, and minimum occupied 
areas for inferring spatial change through time.

Design-based versus model-based analysis

Given the high uncertainty in population estimates for bur-
rowing seabirds to date, we assessed whether model-based 
approaches could reduce uncertainty in population esti-
mates. We found that density surface models yielded mar-
ginally narrower confidence intervals for Antarctic prions 
and white-headed petrels than typical distance analysis, a 

hybrid of design- and model-based methods (Table 1). The 
improvement in precision we observed was modest com-
pared with Camp et al. (2020) who recently reported a 52% 
reduction in CI width using DSMs to estimate density over 
conventional distance analysis. There is no indication that a 
switch to model-based analyses will overcome the challenges 
associated with burrowing seabird population estimation 
and improve estimates for trend detection. Based upon our 
results and those of other recent studies (Buxton et al. 2016, 
Bird et al. 2021) we advocate that studies aiming to detect 
population trends should focus on constant-effort monitor-
ing approaches rather than collecting intermittent whole-
island population estimates.

In a landscape impacted by invasive species, whether cur-
rently or historically, native species do not occupy all suitable 
habitat (Smith et al. 2019). In our transect survey, this resulted 
in many zeros in otherwise suitable habitat. Consequently, the 
models for prions and white-headed petrels underestimated 
density because those high counts have been smoothed over 
all suitable habitat. The model compensated by overestimat-
ing occurrence, resulting in population estimates similar to 
those from distance sampling. In contrast, for blue and grey 
petrels for which our sample sizes were far lower, there was 
a big disparity between our design-based and model-based 
population estimates, with the models appearing to radically 
overestimate both density and occurrence (Fig. 3). This means 
it is difficult to test the assumption that our surveys detected 
all or nearly all colonies. While it’s likely some colonies were 
missed, the history of field surveys on Macquarie Island 
(Schulz et al. 2006, Brothers and Bone 2008), and the fact 
we surveyed areas that supported 30% of total model-pre-
dicted blue petrel burrows and 18% of predicted grey petrel 
burrows, suggests our models failed to capture these species’ 
realized niches accurately (Rayner  et  al. 2007, Camp et  al. 
2020). For highly localised species, the models were unable 
to accurately discriminate between suitable occupied habitat 
and apparently suitable unoccupied habitat.

Model-based analyses do have benefits. By providing 
information on distribution as well as abundance, models 
can: be more appropriate for communicating information 
to non-experts (Miller et al. 2013); inform spatially explicit 
management actions; inform monitoring design; and be used 
to reveal shifts in distribution through time. A limitation of 
monitoring colonial seabirds within established plots is that 
social attraction and density dependence can mask popula-
tion growth and decline away from core ranges (Kildaw et al. 
2005). Designing monitoring such that plots are positioned 
across a density gradient and include apparently suitable but 
unoccupied areas allows for the detection of wider population 
change. DSMs are an ideal tool to inform plot placement. 
For blue and grey petrels, the model predictions, while inad-
equate for abundance estimation, indicate apparently suitable 
habitat (Cianfrani et al. 2010), which, as with Antarctic pri-
ons and white-headed petrels, could be used to inform future 
searches and monitoring.
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Figure 4. Time until differences between current and simulated future population sizes become significant from our distance analysis (a and 
c) and model-based analysis (b and d) of our stratified random survey data. We simulated rates of change of 30, 50 and 80% over three 
generations (sensu IUCN Red List criteria). The horizontal black dashed line represents no change (N_t/N_1 = 1), and the vertical dashed 
line shows the first time-step at which the upper 95% CI excludes 1.
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Recommendations for future studies

We had 12 months to complete multiple field surveys and 
compare a range of methods. Given this is not possible in 
most management scenarios, we consider how our results 
might help guide future burrowing seabird surveys that are 
more time-constrained.

First, defining the purpose for the survey and why a 
population estimate is needed (Lindenmayer  et  al. 2008, 
Possingham et al. 2012) is a fundamental step. This clarifies 
the importance of bias and precision, which informs survey 
design and analysis. For example, if the purpose is to provide 
one estimate for a time series that will be used to detect popula-
tion trends, minimising bias and high precision are important 
(Bird et al. 2021). Similarly, if the aim is to inform spatially 
explicit management actions on the ground, or to commu-
nicate information about threats and actions, model-based 
analyses which provide a spatial representation of abundance 
may be most useful. Alternatively, if a population estimate is 
required for a conservation assessment, a design-based analysis 
that provides a high level of accuracy may be best.

Second, we recommend gathering any prior informa-
tion about the island and study species and their approxi-
mate abundance and distribution. If previous surveys have 
occurred, consider repeating the same methods to allow 
comparisons to be made, even at the expense of increased 
precision from new methods. If methods cannot be repeated, 
prior information about species distribution and abundance 
can still be used to weight surveys, to choose the appropri-
ate survey design, and to select between model-based and 
design-based analyses (Arneill et al. 2019, Camp et al. 2020). 

Understanding the ecology and life history of the study spe-
cies informs suitable timing for surveys and the best method 
for measuring burrow occupancy (Sutherland and Dann 
2012, Bird  et  al. in press). Given the nocturnal activity of 
burrowing seabirds at colonies, spotlighting was a highly 
effective part of our survey strategy. We found only three spe-
cies’ burrows during daytime transect surveys, in contrast, we 
encountered flying/vocalising birds of 11 species while spot-
lighting at night. This directed daytime searches which led to 
the discovery of nesting burrows of three of these additional 
species during follow-up daytime searches, and the identifica-
tion of many new colonies.

We have not been able to identify clear thresholds for 
choosing randomised versus targeted surveys or model-based 
versus design-based analyses, but in general prior consider-
ation of island size and species distribution and abundance 
is helpful (Fig. 5). Species with low abundance that occur 
patchily across large islands are likely to be best estimated 
using targeted surveys, as these species are poorly captured by 
randomised survey design (Dilley et al. 2019). Model-based 
analyses of surveys for these species are also likely to over-
estimate distribution and abundance, so design-based anal-
yses are typically better. At the other end of the spectrum, 
the populations of abundant, widespread species, especially 
on smaller islands, can be accurately and precisely estimated 
from randomised surveys using informative model-based 
analyses (Fig. 5). Distribution is typically the most impor-
tant of these three parameters. Randomised survey designs 
perform better for widespread species, even at low abundance 
on large islands, than they do for patchily distributed, albeit 
more abundant species (Dilley et al. 2019).

Figure 5. Key aspects of designing surveys and analyses for burrowing seabird populations.
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In a rapidly changing world, seabird surveys will continue 
to provide information on the status and trajectory of threat-
ened and recovering taxa, and highlight larger perturbations 
in marine and island ecosystems. We found that differences 
in species’ ecologies, life histories, distributions and abun-
dances require multiple survey methods. Given the cost of 
field surveys, defining the survey question is a fundamental 
first step in survey design. For assessing the conservation sta-
tus of rare, patchily distributed taxa, targeted surveys that 
generate biased but inherently precautionary estimates are 
acceptable. For indicating large-scale change, randomised 
surveys of widespread and abundant species, which play the 
greatest functional role in ecosystems are preferred. Where it 
is important to derive trends from repeat measures, whole-
island surveys, particularly of patchily distributed and rare 
species on larger islands, are better substituted with regular 
monitoring in a representative sample of sites.

Acknowledgements – The authors thank Noel Carmichael, Tasmania 
Parks and Wildlife Service and the Marine Conservation Team 
– Department of Natural Resources and Environment for their 
support facilitating this project. Thanks to Natalie Kelly, David 
Miller, Eric Rexstad, Simon Wotherspoon, Ben Raymond and 
Mike Sumner for suggestions for data manipulation and analysis, 
and to colleagues on Macquarie Island for support with data 
collection, in particular Melanie Wells and Andrea Turbett. We also 
thank Ecography Editor-in-Chief Prof. Miguel Araújo and Subject 
Editor Prof. Nigel Yoccoz and two anonymous reviewers for their 
exceptional help in improving the manuscript.
Funding – This study was supported by funding from the Australian 
Government’s National Environmental Science Program through 
the Threatened Species Recovery Hub, the Australian Antarctic 
Science program (AAS 4305). JB was supported by a Research 
Training Program scholarship, an Antarctic Science International 
Bursary, National Environmental Science Programme Threatened 
Species Recovery Hub Research Support and a BirdLife Australia 
Stuart Leslie Bird Research Award.

Author contributions

Jeremy P. Bird: Conceptualization (lead); Data cura-
tion (lead); Formal analysis (lead); Investigation (lead); 
Methodology (lead); Project administration (supporting); 
Visualization (lead); Writing – original draft (lead); Writing 
– review and editing (lead). Aleks Terauds: Formal analysis 
(supporting); Methodology (supporting); Writing – original 
draft (supporting); Writing – review and editing (support-
ing). Richard A. Fuller: Project administration (supporting); 
Supervision (equal); Writing – original draft (supporting); 
Writing – review and editing (supporting). Penelope P. 
Pascoe: Investigation (supporting); Writing – original draft 
(supporting); Writing – review and editing (supporting). 
Toby D. Travers: Formal analysis (supporting); Visualization 
(supporting); Writing – original draft (supporting); Writing 
– review and editing (supporting). Julies C. McInnes: 
Investigation (supporting); Writing – original draft (support-
ing); Writing – review and editing (supporting). Rachael 

Alderman: Conceptualization (supporting); Writing – origi-
nal draft (supporting); Writing – review and editing (sup-
porting). Justine D. Shaw: Conceptualization (supporting); 
Project administration (lead); Supervision (equal); Writing 
– original draft (supporting); Writing – review and editing 
(supporting).

Transparent Peer Review

The peer review history for this article is available at <https://
publons.com/publon/10.1111/ecog.06204>.

Data availability statement

Data are available from the Dryad Digital Repository: 
<https://doi.org/10.5061/dryad.sn02v6x2d> (Bird  et  al. 
2022).

Supporting information

The supporting information associated with this article is 
available from the online version.

References

Arneill, G. E. et al. 2019. Sampling strategies for species with high 
breeding-site fidelity: a case study in burrow-nesting seabirds. 
– PLoS One 14: e0221625.

Bird, J. P. et al. 2021. Uncertainty in population estimates: a meta-
analysis for petrels. – Ecol. Solut. Evid. 2: e12077.

Bird, J. P. et al. 2022. Data from: Generating unbiased estimates of 
burrowing seabird populations. – Dryad Digital Repository, 
<https://doi.org/10.5061/dryad.sn02v6x2d>.

Bird, J. P., Fuller, R. A., Pascoe, P. P. and Shaw, J. D.Trialling cam-
era traps to determine occupancy and breeding in burrowing 
seabirds. – Remote Sens. Ecol. Conserv. <https://doi.
org/10.1002/rse2.235>.

Bock, T. 2018. What is autocorrelation? | Autocorrelation exam-
ples. – <www.displayr.com/autocorrelation/>.

Bravington, M. V. et al. 2021. Variance propagation for density 
surface models. – J. Agric. Biol. Environ. Stat. 26: 306–323.

Bricher, P. K. et al. 2013. Mapping sub-Antarctic cushion plants 
using random forests to combine very high resolution satellite 
imagery and terrain modelling. – PLoS One 8: e72093.

Brooke, M. de L. et al. 2018. Seabird population changes following 
mammal eradications on islands. – Anim. Conserv. 21: 3–12.

Brothers, N. P. 1984. Breeding, distribution and status of burrow-
nesting petrels at Macqaurie Island. – Aust. Wildl. Res. 11: 
113–131.

Brothers, N. and Bone, C. 2008. The response of burrow-nesting 
petrels and other vulnerable bird species to vertebrate pest man-
agement and climate change on sub-Antarctic Macquarie 
Island. – Pap. Proc. R. Soc. Tasman. 142: 123–148.

Buckland, S. T. et al. 2015. Distance sampling: methods and appli-
cations. – Springer.

Buxton, R. T. et al. 2016. Monitoring burrowing petrel popula-
tions: a sampling scheme for the management of an island key-
stone species. – J. Wildl. Manage. 80: 149–161.



12

Camp, R. J. et al. 2020. Using density surface models to estimate 
spatio-temporal changes in population densities and trend. – 
Ecography 43: 1079–1089.

Cianfrani, C. et al. 2010. Do habitat suitability models reliably 
predict the recovery areas of threatened species? – J. Appl. Ecol. 
47: 421–430.

Copson, G. and Whinam, J. 2001. Review of ecological restoration 
programme on subantarctic Macquarie Island: pest management 
progress and future directions. – Ecol. Manage. Restor. 2: 129–138.

Danckwerts, D. K. et al. 2014. Biomass consumption by breeding 
seabirds in the western Indian Ocean: indirect interactions with 
fisheries and implications for management. – ICES J. Mar. Sci. 
71: 2589–2598.

Del Hoyo, J. et al. 1992. Handbook of the birds of the world. – 
Lynx edicions.

Dias, M. P. et al. 2019. Threats to seabirds: a global assessment. – 
Biol. Conserv. 237: 525–537.

Dilley, B. J. et al. 2017. The distribution and abundance of blue 
petrels Halobaena caerulea breeding at subantarctic Marion 
Island. – Emu-Austral Ornithol. 117: 1–11.

Dilley, B. J. et al. 2019. Clustered or dispersed: testing the effect 
of sampling strategy to census burrow-nesting petrels with var-
ied distributions at sub-Antarctic Marion Island. – Antarct. Sci. 
31: 231–242.

Garmin 2019. BaseCamp. – <www8.garmin.com/support/down-
load_details.jsp?id=4435>.

Howe, E. J. et al. 2019. Model selection with overdispersed distance 
sampling data. – Methods Ecol. Evol. 10: 38–47.

Kildaw, S. D. et al. 2005. Formation and growth of new seabird 
colonies: the significance of habitat quality. – Mar. Ornithol. 
33: 49–58.

Lawton, K. et al. 2006. An estimate of population sizes of burrowing 
seabirds at the Diego Ramirez archipelago, Chile, using distance 
sampling and burrow-scoping. – Polar Biol. 29: 229–238.

Lindenmayer, D. et al. 2008. A checklist for ecological management 
of landscapes for conservation. – Ecol. Lett. 11: 78–91.

Marshall, L. et al. 2017. Intermediate distance sampling workshop 
– St Andrews 2017. – <http://workshops.distancesampling.
org/stand-intermed-2017/practicals/bookdown/index.html>.

Meyer, D. et al. 2019. Package ‘e1071’. Misc functions of the 
Department of Statistics, Probability Theory Group (Formerly: 
E1071), TU Wien. – <http://sunsite2.icm.edu.pl/pub/unix/
math/cran/web/packages/e1071/e1071.pdf>.

Miller, D. L. 2017. Package ‘Distance’ – distance sampling detec-
tion function and abundance estimation. – <http://github.
com/DistanceDevelopment/Distance/>.

Miller, D. L. et al. 2013. Spatial models for distance sampling data: 
recent developments and future directions. – Methods Ecol. 
Evol. 4: 1001–1010.

Miller, D. L. et al. 2020. Package ‘dsm’. Density surface modelling 
of distance sampling data. – <https://cran.rstudio.com/web/
packages/dsm/dsm.pdf>.

Miloslavich, P. et al. 2018. Essential ocean variables for global sus-
tained observations of biodiversity and ecosystem changes. – 
Global Change Biol. 24: 2416–2433.

Mulder, C. P. H. et al. (eds) 2011. Seabird islands: ecology, invasion 
and restoration. – Oxford Univ. Press.

Newman, J. et al. 2009. Estimating regional population size and 
annual harvest intensity of the sooty shearwater in New Zea-
land. – N. Z. J. Zool. 36: 307–323.

Otero, X. L. et al. 2018. Seabird colonies as important global driv-
ers in the nitrogen and phosphorus cycles. – Nat. Commun. 9: 
246.

Pacifici, K. et al. 2016. Occupancy estimation for rare species using 
a spatially-adaptive sampling design. – Methods Ecol. Evol. 7: 
285–293.

Pagès, M. et al. 2018. The dynamics of volunteer motivations for 
engaging in the management of invasive plants: insights from 
a mixed-methods study on Scottish seabird islands. – J. Envi-
ron. Plan. Manage. 61: 904–923.

Possingham, H. P. et al. 2012. The conservation return on invest-
ment from ecological monitoring. – In: Lindenmayer, D. and 
Gibbons, P. (eds), Biodiversity monitoring in Australia. CSIRO, 
pp. 49–58.

Rayner, M. J. et al. 2007. Predictive habitat modelling for the 
population census of a burrowing seabird: a study of the endan-
gered Cook’s petrel. – Biol. Conserv. 138: 235–247.

Rexer-Huber, K. et al. 2017. White-chinned petrel population esti-
mate, disappointment Island (Auckland Islands). – Polar Biol. 
40: 1053–1061.

Robinson, S. A. and Copson, G. R. 2014. Eradication of cats Felis 
catus from subantarctic Macquarie Island. – Ecol. Manage. 
Restor. 15: 34–40.

Rodríguez, A. et al. 2019. Future directions in conservation research 
on petrels and shearwaters. – Front. Mar. Sci. 6: 94.

Schulz, M. et al. 2006. Breeding of the grey petrel Procellaria cinerea 
on Macquarie Island: population size and nesting habitat. – 
Emu 105: 323–329.

Smith, A. et al. 2019. Modeling spatiotemporal abundance of 
mobile wildlife in highly variable environments using boosted 
GAMLSS hurdle models. – Ecol. Evol. 9: 2346–2364.

Springer, K. 2016. Methodology and challenges of a complex 
multi-species eradication in the sub-Antarctic and immediate 
effects of invasive species removal. – N. Z. J. Ecol. 40: 273.

Sumner, M. D. 2018. Package ‘Tabular Raster.’ – <https://cran.r-
project.org/web/packages/tabularaster/tabularaster.pdf>.

Sutherland, D. R. and Dann, P. 2012. Improving the accuracy of 
population size estimates for burrow-nesting seabirds. – Ibis 
154: 488–498.

Thompson, W. 2013. Sampling rare or elusive species: concepts, 
designs and techniques for estimating population parameters. 
– Island Press.

Wood, S. N. 2017. Generalized additive models: an introduction 
with R. – CRC Press/Taylor & Francis Group.


