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NON-EXTENDABILITY OF THE FINITE
HILBERT TRANSFORM

GUILLERMO P. CURBERA, SUSUMU OKADA, AND WERNER J. RICKER

ABSTRACT. The finite Hilbert transform 7: X — X acts continuously on every re-
arrangement invariant space X on (—1,1) having non-trivial Boyd indices. It is proved
that T cannot be further extended, whilst still taking its values in X, to any larger
domain space. That is, T: X — X is already optimally defined.

1. INTRODUCTION AND MAIN RESULT

The finite Hilbert transform T'(f) of f € L*(—1,1) is the well known principal value

integral I (J Jl ) M d
-0t T ive) T—1

which exists for a.e. t € (—1,1) and is a measurable function. It has important applica-
tions to aerodynamics and elasticity via the airfoil equation, [3], [16], [20], [23], [24], and
to problems arising in image reconstruction; see, for example, [I1], [21]. We refer to [7],
[8], [9], [10], [I5] where one-dimensional singular integral operators closely related to the
finite Hilbert transform are studied in great detail

Foreach 1 < p < oo the classical linear operator f — T'(f) maps L”(—1, 1) continuously
into itself; denote this operator by 7,. Tricomi showed that T, is a Fredholm operator
and exhibited inversion formulae, [23], except for the case when p = 2, [24] §4.3] (see
also [12, Ch. 11}, [19, Ch. 14.4-3] and the references therein). For T, the situation
is significantly different, as already pointed out somewhat earlier in [22] p.44]. Partial
operator theoretic results for Ty on L?(—1,1) were obtained by Okada and Elliott, [17];
see also the references.

In [4] the finite Hilbert transform 7" was studied when acting on suitable rearrangement
invariant (r.i., in short) spaces X on (—1,1); see below for the relevant definitions.
Actually, T" acts continuously on X (denote this operator by Tx) precisely when the
Boyd indices of X are non-trivial, that is, when 0 < ay < ax < 1; see [13, pp.170-171].
This class of r.i. spaces is the largest and most adequate replacement for the LP-spaces
when undertaking a further study of the finite Hilbert transform 7". This is due to two
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critical facts: that T: X — X is injective if and only if the function 1/4/1 — 22 ¢ X, and
that T: X — X has non-dense range if and only if 1/4/1 — 22 belongs to the associate
space X’ of X (whenever X is separable). In terms of r.i. spaces the previous conditions
can be phrased as follows: T: X — X is injective if and only if L*>*(—1,1) € X and
T: X — X has a non-dense range if and only if X < L*»'(—1,1) (for X separable). Here
L*Y(—1,1) and L*>*(—1,1) are the usual Lorentz spaces.

Various types of inversion results of Tricomi for the operator 7}, (when 1 < p < 2
and 2 < p < o) have been extended to Tx whenever the Boyd indices of X satisfy
the condition 0 < ay < @x < 1/2 or 1/2 < ay < ax < 1; see [4, Theorems 3.2 and
3.3]. Moreover, T is necessarily a Fredholm operator in such r.i. spaces, [4, Remark
3.4]. Results of this kind admit the possibility for a refinement of the solution of the
airfoil equation; see [4, Corollary 3.5]. Additional operator theoretic results concerning
Tx in r.i. spaces X occur in the recent article [5] (e.g., compactness, order boundedness,
integral representation, etc.).

An important problem is the possibility of extending the domain of 7},, with 7}, still
maintaining its values in LP(—1,1). It was shown in [18, Example 4.21], forall 1 < p < «©
with p = 2, that there is no larger Banach function space (B.f.s. in short) containing
LP(—1,1) such that T}, has an LP(—1, 1)-valued continuous extension to this space. This
result was generalized in [4, Theorem 4.7]. Namely, it is not possible to extend the finite
Hilbert transform Tx: X — X for any r.i. space X satisfying

(1) O<ay<ax<1/2 or 12<ay<ax <Ll

The arguments used in [4] for establishing the above result do not apply to Tx for r.i.
spaces X which fail to satisfy (). In particular, they do not apply to Ty: L?*(—1,1) —
L?*(—1,1). However, in [4] it was also established, via a completely different approach,
that at least Ty does not have a continuous L?(—1,1)-valued extension to any larger
B.f:s., [4, Theorem 5.3].

Thus, the question of extendability of T'x remains unanswered for a large sub-family
of r.i. spaces which have non-trivial Boyd indices. Indeed, with the exception of X =
L*(—1,1), this is the case for all those r.i. spaces X satisfying 0 < ay < 1/2<ayx < 1. In
particular, this includes all the Lorentz spaces L*4 for 1 < ¢ < o0 with ¢ = 2. The proof
given in [4] for Ty, based on the Hilbert space structure of L?(—1,1), is not applicable to
other r.i. spaces of the kind just mentioned.

The aim of this note is to answer the above question for all r.i. spaces X on which Ty
is continuous, via a new and unified proof.

Theorem. Let X be a r.i. space on (—1,1) with non-trivial Boyd indices. The finite
Hilbert transform Tx: X — X has no continuous, X -valued extension to any genuinely
larger B.f.s. containing X.

2. PRELIMINARIES

In this paper the relevant measure space is (—1, 1) equipped with its Borel o-algebra
B and Lebesgue measure m (restricted to B). We denote by L°(—1,1) = L° the space
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(of equivalence classes) of all C-valued measurable functions, endowed with the topology
of convergence in measure. The space LP(—1,1) is denoted simply by L?, for 1 < p < 0.

A Banach function space (B.f.s.) X on (—1,1) is a Banach space X < L satisfying
the ideal property, that is, g € X and |g|x < | f|x whenever f € X, ge L° and |g| < |f]|

a.e. The associate space X' of X consists of all g € L° satisfying Sl_l |fg| < oo, for every

f € X, equipped with the norm ||g|x := su1p{|Si1 fgl : |flx < 1}. The space X' is
a closed subspace of the Banach space dual X* of X. The space X satisfies the Fatou
property if, whenever {f,}>_; € X satisfies 0 < f,, < fus1 1 f a.e. with sup,, ||f.]x < o,
then f e X and | f.|x — |fllx. In this paper all B.fs.” X are on (—1,1) relative to
Lebesgue measure and, as in [I], satisfy the Fatou property.

A rearrangement invariant (ri.) space X on (—1,1) is a B.f.s. such that if ¢* < f*
with f € X, then g € X and |g|x < |f|x. Here f*:[0,2] — [0, 0] is the decreasing
rearrangement of f, that is, the right continuous inverse of its distribution function:
A—m({t e (=1,1): |f(t)] > A}). The associate space X' of a r.i. space X is again a
r.i. space. Every r.i. space X on (—1,1) satisfies L* < X < L!. Moreover, if f € X and
g€ X', then fge L' and ||fg|r < |flx]g]x, i-e., Holder’s inequality is available.

The family of r.i. spaces includes many classical spaces appearing in analysis, in par-
ticular the Lorentz L7 spaces, [Il, Definition IV.4.1].

Given a r.i. space X on (—1,1), due to the Luxemburg representation theorem there
exists a r.i. space X on (0,2) such that |f|x = |f*|z for f € X, [I, Theorem I1.4.10].
The dilation operator E, for ¢ > 0 is defined, for each f € X, by E/(f)(s) := f(st)
for 0 < s < min{2,1/t} and zero for min{2,1/t} < s < 2. The operator E,: X — X
is bounded with |[E,| 5 ¢ < max{t,1}. The lower and upper Boyd indices of X are
defined, respectively, by

oy = sup BIPulx g n e loel Bk
0<t<1 logt 1<t<oo logt
see [2] and also [I, Definition II1.5.12]. They satisfy 0 < ay < @y < 1. Note that
Aqrp = Arp = 1/p
For all of the above and further facts on r.i. spaces see [I], for example.

3. PROOF OF THE THEOREM
Given X, a r.i. space on (—1,1) with non-trivial Boyd indices, consider the space
[7,X] = {f e L' T(h) € X, ¥|h| < | fl}.
which is a B.f.s. for the norm

| fllrxy == sup |T(h)[x, felT,X]
|hI<|f]
The proof of this fact uses, in an essential way, a deep result of Talagrand concerning
LP-valued measures, [4, Proposition 4.5]. The space [T, X] is the largest B.f.s. containing
X to which Tx: X — X has a continuous, linear, X-valued extension, [4, Theorem 4.6].
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In particular, X < [T, X]. Thus, in order to show that no genuine extension of T’ is
possible it suffices to show that [T, X| < X; see Theorems 4.7 and 5.3 in [4].

Fix N € N. Given ay,...,ay € C and disjoint sets A; ..., Ay in B, define the simple
function

N
¢:i= ) anxa,-
n=1

On A := {1, —1}" consider the probability measure do, which is the product measure of
N copies of the uniform probability on {1, —1}. Define the bounded measurable function

F on A by
N
o= (01,...,0n)EN— F(o):=|Tx ( Z O’nanXAn)
n=1 X
Observe, since the sets Ay, ..., Ay are pairwise disjoint, that for every o = (oy,...,0n) €
A one has
N N
> OntnXa, Z |an|xa, =19,
n=1 n=1
whence
N
@ 1Pl = sup|7( Y mena )| < s [0 =
o = .

On the other hand, an application of Fubini’s theorem yields
[ Elloay = 1F |2

r

- [ 1F@ao

) anT (xa,)

= J (g, [ o
>J3«L(ﬁmw|

) =J3mﬁmw(ﬁ

Consider now the inner integral over A in the last term (3]) of the previous expression.
For t € (—1,1) fixed, set

[

B
D= " o
:q Q

[

a,T (xa,) (t) dt) do

3
Il
—

M=

onan T (xa,) (1) dt) do

3
Il
—

M=

onan T (xa,) (1) da) dt.

Il
it

n

Bni=a, T (xa,) (), n=1....,N.
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It is known that the coordinate projections
P,:oeA—o,e{-1,1}, n=1,... N,

form an orthonormal set, that is,
f P;P,do = f ojordo =0, J k=1,...,N.
A A

Then, for the inner integral in (3)), we have

N
Z UnanT (XAn
Alp=1

Apply the Khintchine inequality, [6], Inequality 1.10 and p.23], for {P,}Y_, vyields

1 N 1/2
=z —= Bn2>
ﬁ(;j |

T(iaaw <Wfé

)| do =

Accordingly,

(4) Z onanT (xa,) (

Then, from (IZ{I) and (4), it follows that

1 N 1/2
HFHLw(A) > — sup ( an| IT (xa, (t)|2> dt
V2 |glyr=1 —1 Z
1 1/2
5) =—{K |%MTWMW)
v X .

We recall the following consequence of the Stein-Weiss formula for the distribution
function of the Hilbert transform H on R of a characteristic function, due to Laeng, [14]
Theorem 1.2]. Namely, for A € R with m(A) < o (where m also denotes Lebesgue
measure in R), we have

2m(A)

In particular, for any set A < (—1,1) it follows, for each A > 0, that
m(A
mlfe e A< [T(xa)(@)] > A} = m(fz < A= [HO) @) > A) = )
That is,
(6) m({x e A:|T(xa)(x)] >)\})=%, AeB, A>0.

Set A\=1and § :=2/(e"+1) <1. Foreachn =1,..., N, define
= {z e An: |T(xa,) ()] > 1}.
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Then ([6)) implies that

2m(A,)
7 A)) = —"2 = 6m(A, =1,...,N.
(7 m(A}) = 2 Gn(d,), n= 1
Since the sets Ay, . .., Ay are pairwise disjoint, so are their subsets Af, ..., AL. Note that
IT (xa,)(x)] > 1forx e AL, for n = 1,..., N. Thus, on (—1,1) we have the pointwise
estimates

N N 1/2
2
(Z|an|2|T<xAn> ) (Z anl? 1T (xa) x)

n=1 =1

= Z |an] 1T (xa,)| X4,

(8) Z |an|XA,1I-

Since | - | x is a lattice norm, (8) yields
) 1/2

N
= Z an X AL -
n=1

) | ( o T () i onb|

= |elx,

where ¢ is the simple function

From ([7) it follows that
(10) m({ze (=1,1):|p(z)| > A}) = dm({x e (—1,1) : |¢(x)] > A}), A >0.

Consider the dilation operator Es: X — X for § < 1 given above, that is, Es(f)(t) =
f(dt) for 0 < s < min{2,1/6} and zero otherwise. For the decreasing rearrangements ¢*
and ¢* of ¢ and ¢, respectively, it follows from (I0) that

9" = Es(¢7).
Consequently, with | Es|| denoting the operator norm of Es: X — X, we have
(11) I9lx = 1ol % = 1Es(™) 5 < [ Esl - ™z = [E5] - ol

It follows, from (2), (Bl), (@) and (1) that
I8lx < 1Es] - llellx

1/2
< |E|- \ ( S fa |T<><An>|2)
n=1

< V2| Es| - 8]l x1-

X
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That is, there exists a constant M > 0, depending exclusively on X, such that

(12) Mlolx < |lir.xi,

for all simple functions ¢.
In order to extend (I2) to all functions in [T, X] fix f € [T, X]. For every simple
function ¢ satisfying |¢| < |f| it follows from (I2)) that

M|olx < |olrx1 < Iflzx)-

Taking the supremum with respect to all such ¢ yields, via the Fatou property of X,
that f € X and

M| flx < flrx-

In particular, [T, X| € X. Consequently, [T, X| = X with equivalent norms. Thus, no
genuine X-valued extension of Tx: X — X is possible. 0

The above Theorem has an immediate consequence. Namely, it extends, to all r.i.
spaces with non-trivial Boyd indices, certain results known for those r.i. spaces X sat-
isfying 0 < ay < @ax < 1/2 or 1/2 < ay < ax < 1, [4, Corollary 4.8], and for
X = L?*(—1,1), [4, Corollaries 5.4 and 5.5].

Corollary. Let X be a r.i. space on (—1,1) with non-trivial Boyd indices.
(a) There exists a constant B > 0 such that, for every f € X, we have

B
— < T < Tx (0 < Tx(h < .
UL sup |Tx (xaf)|y < sup |Tx(61)] < sup. [T (R < [1f]x

(b) For a function f € L' the following conditions are equivalent.
(a) fe X.
(b) T(fxa) € X for every A€ B.
(c) T(f0) € X for every 6 € L* with |0] =1 a.e.
(d) T(h) € X for every h e L° with |h| < |f] a.e.
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