NON-EXTENDABILITY OF THE FINITE HILBERT TRANSFORM

GUILLERMO P. CURBERA, SUSUMU OKADA, AND WERNER J. RICKER

Abstract

The finite Hilbert transform $T: X \rightarrow X$ acts continuously on every rearrangement invariant space X on $(-1,1)$ having non-trivial Boyd indices. It is proved that T cannot be further extended, whilst still taking its values in X, to any larger domain space. That is, $T: X \rightarrow X$ is already optimally defined.

1. Introduction and main result

The finite Hilbert transform $T(f)$ of $f \in L^{1}(-1,1)$ is the well known principal value integral

$$
(T(f))(t)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi}\left(\int_{-1}^{t-\varepsilon}+\int_{t+\varepsilon}^{1}\right) \frac{f(x)}{x-t} d x
$$

which exists for a.e. $t \in(-1,1)$ and is a measurable function. It has important applications to aerodynamics and elasticity via the airfoil equation, [3], [16], [20], [23], [24], and to problems arising in image reconstruction; see, for example, [11], [21]. We refer to [7], [8], [9], [10], [15] where one-dimensional singular integral operators closely related to the finite Hilbert transform are studied in great detail

For each $1<p<\infty$ the classical linear operator $f \mapsto T(f)$ maps $L^{p}(-1,1)$ continuously into itself; denote this operator by T_{p}. Tricomi showed that T_{p} is a Fredholm operator and exhibited inversion formulae, [23], except for the case when $p=2$, [24, §4.3] (see also [12, Ch. 11], [19, Ch. 14.4-3] and the references therein). For T_{2} the situation is significantly different, as already pointed out somewhat earlier in [22, p.44]. Partial operator theoretic results for T_{2} on $L^{2}(-1,1)$ were obtained by Okada and Elliott, [17]; see also the references.

In 44 the finite Hilbert transform T was studied when acting on suitable rearrangement invariant (r.i., in short) spaces X on $(-1,1)$; see below for the relevant definitions. Actually, T acts continuously on X (denote this operator by T_{X}) precisely when the Boyd indices of X are non-trivial, that is, when $0<\underline{\alpha}_{X} \leqslant \bar{\alpha}_{X}<1$; see [13, pp.170-171]. This class of r.i. spaces is the largest and most adequate replacement for the L^{p}-spaces when undertaking a further study of the finite Hilbert transform T. This is due to two

[^0]critical facts: that $T: X \rightarrow X$ is injective if and only if the function $1 / \sqrt{1-x^{2}} \notin X$, and that $T: X \rightarrow X$ has non-dense range if and only if $1 / \sqrt{1-x^{2}}$ belongs to the associate space X^{\prime} of X (whenever X is separable). In terms of r.i. spaces the previous conditions can be phrased as follows: $T: X \rightarrow X$ is injective if and only if $L^{2, \infty}(-1,1) \ddagger X$ and $T: X \rightarrow X$ has a non-dense range if and only if $X \subseteq L^{2,1}(-1,1)$ (for X separable). Here $L^{2,1}(-1,1)$ and $L^{2, \infty}(-1,1)$ are the usual Lorentz spaces.

Various types of inversion results of Tricomi for the operator T_{p} (when $1<p<2$ and $2<p<\infty$) have been extended to T_{X} whenever the Boyd indices of X satisfy the condition $0<\underline{\alpha}_{X} \leqslant \bar{\alpha}_{X}<1 / 2$ or $1 / 2<\underline{\alpha}_{X} \leqslant \bar{\alpha}_{X}<1$; see [4, Theorems 3.2 and 3.3]. Moreover, T is necessarily a Fredholm operator in such r.i. spaces, [4, Remark 3.4]. Results of this kind admit the possibility for a refinement of the solution of the airfoil equation; see [4, Corollary 3.5]. Additional operator theoretic results concerning T_{X} in r.i. spaces X occur in the recent article [5] (e.g., compactness, order boundedness, integral representation, etc.).

An important problem is the possibility of extending the domain of T_{p}, with T_{p} still maintaining its values in $L^{p}(-1,1)$. It was shown in [18, Example 4.21], for all $1<p<\infty$ with $p \neq 2$, that there is no larger Banach function space (B.f.s. in short) containing $L^{p}(-1,1)$ such that T_{p} has an $L^{p}(-1,1)$-valued continuous extension to this space. This result was generalized in [4, Theorem 4.7]. Namely, it is not possible to extend the finite Hilbert transform $T_{X}: X \rightarrow X$ for any r.i. space X satisfying

$$
\begin{equation*}
0<\underline{\alpha}_{X} \leqslant \bar{\alpha}_{X}<1 / 2 \quad \text { or } \quad 1 / 2<\underline{\alpha}_{X} \leqslant \bar{\alpha}_{X}<1 \tag{1}
\end{equation*}
$$

The arguments used in [4] for establishing the above result do not apply to T_{X} for r.i. spaces X which fail to satisfy (1). In particular, they do not apply to $T_{2}: L^{2}(-1,1) \rightarrow$ $L^{2}(-1,1)$. However, in [4] it was also established, via a completely different approach, that at least T_{2} does not have a continuous $L^{2}(-1,1)$-valued extension to any larger B.f.s., [4, Theorem 5.3].

Thus, the question of extendability of T_{X} remains unanswered for a large sub-family of r.i. spaces which have non-trivial Boyd indices. Indeed, with the exception of $X=$ $L^{2}(-1,1)$, this is the case for all those r.i. spaces X satisfying $0<\underline{\alpha}_{X} \leqslant 1 / 2 \leqslant \bar{\alpha}_{X}<1$. In particular, this includes all the Lorentz spaces $L^{2, q}$ for $1 \leqslant q \leqslant \infty$ with $q \neq 2$. The proof given in [4] for T_{2}, based on the Hilbert space structure of $L^{2}(-1,1)$, is not applicable to other r.i. spaces of the kind just mentioned.

The aim of this note is to answer the above question for all r.i. spaces X on which T_{X} is continuous, via a new and unified proof.

Theorem. Let X be a r.i. space on $(-1,1)$ with non-trivial Boyd indices. The finite Hilbert transform $T_{X}: X \rightarrow X$ has no continuous, X-valued extension to any genuinely larger B.f.s. containing X.

2. Preliminaries

In this paper the relevant measure space is $(-1,1)$ equipped with its Borel σ-algebra \mathcal{B} and Lebesgue measure m (restricted to \mathcal{B}). We denote by $L^{0}(-1,1)=L^{0}$ the space
(of equivalence classes) of all \mathbb{C}-valued measurable functions, endowed with the topology of convergence in measure. The space $L^{p}(-1,1)$ is denoted simply by L^{p}, for $1 \leqslant p \leqslant \infty$.

A Banach function space (B.f.s.) X on $(-1,1)$ is a Banach space $X \subseteq L^{0}$ satisfying the ideal property, that is, $g \in X$ and $\|g\|_{X} \leqslant\|f\|_{X}$ whenever $f \in X, g \in L^{0}$ and $|g| \leqslant|f|$ a.e. The associate space X^{\prime} of X consists of all $g \in L^{0}$ satisfying $\int_{-1}^{1}|f g|<\infty$, for every $f \in X$, equipped with the norm $\|g\|_{X^{\prime}}:=\sup \left\{\left|\int_{-1}^{1} f g\right|:\|f\|_{X} \leqslant 1\right\}$. The space X^{\prime} is a closed subspace of the Banach space dual X^{*} of X. The space X satisfies the Fatou property if, whenever $\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq X$ satisfies $0 \leqslant f_{n} \leqslant f_{n+1} \uparrow f$ a.e. with $\sup _{n}\left\|f_{n}\right\|_{X}<\infty$, then $f \in X$ and $\left\|f_{n}\right\|_{X} \rightarrow\|f\|_{X}$. In this paper all B.f.s.' X are on $(-1,1)$ relative to Lebesgue measure and, as in [1], satisfy the Fatou property.

A rearrangement invariant (r.i.) space X on $(-1,1)$ is a B.f.s. such that if $g^{*} \leqslant f^{*}$ with $f \in X$, then $g \in X$ and $\|g\|_{X} \leqslant\|f\|_{X}$. Here $f^{*}:[0,2] \rightarrow[0, \infty]$ is the decreasing rearrangement of f, that is, the right continuous inverse of its distribution function: $\lambda \mapsto m(\{t \in(-1,1):|f(t)|>\lambda\})$. The associate space X^{\prime} of a r.i. space X is again a r.i. space. Every r.i. space X on $(-1,1)$ satisfies $L^{\infty} \subseteq X \subseteq L^{1}$. Moreover, if $f \in X$ and $g \in X^{\prime}$, then $f g \in L^{1}$ and $\|f g\|_{L^{1}} \leqslant\|f\|_{X}\|g\|_{X^{\prime}}$, i.e., Hölder's inequality is available.

The family of r.i. spaces includes many classical spaces appearing in analysis, in particular the Lorentz $L^{p, q}$ spaces, [1, Definition IV.4.1].

Given a r.i. space X on $(-1,1)$, due to the Luxemburg representation theorem there exists a r.i. space \tilde{X} on $(0,2)$ such that $\|f\|_{X}=\left\|f^{*}\right\|_{\tilde{X}}$ for $f \in X$, [1, Theorem II.4.10]. The dilation operator E_{t} for $t>0$ is defined, for each $f \in \tilde{X}$, by $E_{t}(f)(s):=f(s t)$ for $0 \leqslant s \leqslant \min \{2,1 / t\}$ and zero for $\min \{2,1 / t\}<s \leqslant 2$. The operator $E_{t}: \widetilde{X} \rightarrow \tilde{X}$ is bounded with $\left\|E_{1 / t}\right\|_{\tilde{X} \rightarrow \tilde{X}} \leqslant \max \{t, 1\}$. The lower and upper Boyd indices of X are defined, respectively, by

$$
\underline{\alpha}_{X}:=\sup _{0<t<1} \frac{\log \left\|E_{1 / t}\right\|_{\tilde{X} \rightarrow \tilde{X}}}{\log t} \text { and } \bar{\alpha}_{X}:=\inf _{1<t<\infty} \frac{\log \left\|E_{1 / t}\right\|_{\tilde{X} \rightarrow \tilde{X}}}{\log t} ;
$$

see [2] and also [1, Definition III.5.12]. They satisfy $0 \leqslant \underline{\alpha}_{X} \leqslant \bar{\alpha}_{X} \leqslant 1$. Note that $\underline{\alpha}_{L^{p}}=\bar{\alpha}_{L^{p}}=1 / p$.

For all of the above and further facts on r.i. spaces see [1] for example.

3. Proof of the Theorem

Given X, a r.i. space on $(-1,1)$ with non-trivial Boyd indices, consider the space

$$
[T, X]:=\left\{f \in L^{1}: T(h) \in X, \forall|h| \leqslant|f|\right\},
$$

which is a B.f.s. for the norm

$$
\|f\|_{[T, X]}:=\sup _{|h| \leqslant|f|}\|T(h)\|_{X}, \quad f \in[T, X] .
$$

The proof of this fact uses, in an essential way, a deep result of Talagrand concerning L^{0}-valued measures, [4, Proposition 4.5]. The space $[T, X]$ is the largest B.f.s. containing X to which $T_{X}: X \rightarrow X$ has a continuous, linear, X-valued extension, [4, Theorem 4.6].

In particular, $X \subseteq[T, X]$. Thus, in order to show that no genuine extension of T_{X} is possible it suffices to show that $[T, X] \subseteq X$; see Theorems 4.7 and 5.3 in [4].

Fix $N \in \mathbb{N}$. Given $a_{1}, \ldots, a_{N} \in \mathbb{C}$ and disjoint sets $A_{1} \ldots, A_{N}$ in \mathcal{B}, define the simple function

$$
\phi:=\sum_{n=1}^{N} a_{n} \chi_{A_{n}} .
$$

On $\Lambda:=\{1,-1\}^{N}$ consider the probability measure $d \sigma$, which is the product measure of N copies of the uniform probability on $\{1,-1\}$. Define the bounded measurable function F on Λ by

$$
\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \Lambda \mapsto F(\sigma):=\left\|T_{X}\left(\sum_{n=1}^{N} \sigma_{n} a_{n} \chi_{A_{n}}\right)\right\|_{X}
$$

Observe, since the sets A_{1}, \ldots, A_{N} are pairwise disjoint, that for every $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in$ Λ one has

$$
\left|\sum_{n=1}^{N} \sigma_{n} a_{n} \chi_{A_{n}}\right|=\sum_{n=1}^{N}\left|a_{n}\right| \chi_{A_{n}}=|\phi|,
$$

whence

$$
\begin{equation*}
\|F\|_{L^{\infty}(\Lambda)}=\sup _{\sigma \in \Lambda}\left\|T\left(\sum_{n=1}^{N} \sigma_{n} a_{n} \chi_{A_{n}}\right)\right\|_{X} \leqslant \sup _{|h| \leqslant|\phi|}\|T(h)\|_{X}=\|\phi\|_{[T, X]} . \tag{2}
\end{equation*}
$$

On the other hand, an application of Fubini's theorem yields

$$
\begin{align*}
\|F\|_{L^{\infty}(\Lambda)} & \geqslant\|F\|_{L^{1}(\Lambda)} \\
& =\int_{\Lambda}|F(\sigma)| d \sigma \\
& =\int_{\Lambda}\left\|\sum_{n=1}^{N} \sigma_{n} a_{n} T\left(\chi_{A_{n}}\right)\right\|_{X} d \sigma \\
& =\int_{\Lambda}\left(\sup _{\|g\|_{X^{\prime}}=1} \int_{-1}^{1}|g(t)| \sum_{n=1}^{N} \sigma_{n} a_{n} T\left(\chi_{A_{n}}\right)(t) \mid d t\right) d \sigma \\
& \geqslant \sup _{\|g\|_{X^{\prime}}=1} \int_{\Lambda}\left(\int_{-1}^{1}|g(t)|\left|\sum_{n=1}^{N} \sigma_{n} a_{n} T\left(\chi_{A_{n}}\right)(t)\right| d t\right) d \sigma \\
& =\sup _{\|g\|_{X^{\prime}}=1} \int_{-1}^{1}|g(t)|\left(\int_{\Lambda}\left|\sum_{n=1}^{N} \sigma_{n} a_{n} T\left(\chi_{A_{n}}\right)(t)\right| d \sigma\right) d t . \tag{3}
\end{align*}
$$

Consider now the inner integral over Λ in the last term (3) of the previous expression. For $t \in(-1,1)$ fixed, set

$$
\beta_{n}:=a_{n} T\left(\chi_{A_{n}}\right)(t), \quad n=1 \ldots, N .
$$

It is known that the coordinate projections

$$
P_{n}: \sigma \in \Lambda \mapsto \sigma_{n} \in\{-1,1\}, \quad n=1, \ldots, N
$$

form an orthonormal set, that is,

$$
\int_{\Lambda} P_{j} P_{k} d \sigma=\int_{\Lambda} \sigma_{j} \sigma_{k} d \sigma=\delta_{j, k}, \quad j, k=1, \ldots, N
$$

Then, for the inner integral in (3), we have

$$
\int_{\Lambda}\left|\sum_{n=1}^{N} \sigma_{n} a_{n} T\left(\chi_{A_{n}}\right)(t)\right| d \sigma=\int_{\Lambda}\left|\sum_{n=1}^{N} \beta_{n} P_{n}(\sigma)\right| d \sigma
$$

Apply the Khintchine inequality, [6, Inequality 1.10 and p.23], for $\left\{P_{n}\right\}_{n=1}^{N}$ yields

$$
\int_{\Lambda}\left|\sum_{n=1}^{N} \beta_{n} P_{n}(\sigma)\right| d \sigma \geqslant \frac{1}{\sqrt{2}}\left(\sum_{n=1}^{N}\left|\beta_{n}\right|^{2}\right)^{1 / 2} .
$$

Accordingly,

$$
\begin{equation*}
\int_{\Lambda}\left|\sum_{n=1}^{N} \sigma_{n} a_{n} T\left(\chi_{A_{n}}\right)(t)\right| d \sigma \geqslant \frac{1}{\sqrt{2}}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left|T\left(\chi_{A_{n}}\right)(t)\right|^{2}\right)^{1 / 2} . \tag{4}
\end{equation*}
$$

Then, from (3) and (4), it follows that

$$
\begin{align*}
\|F\|_{L^{\infty}(\Lambda)} & \geqslant \frac{1}{\sqrt{2}} \sup _{\|g\|_{X^{\prime}}=1} \int_{-1}^{1}|g(t)|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left|T\left(\chi_{A_{n}}\right)(t)\right|^{2}\right)^{1 / 2} d t \\
& =\frac{1}{\sqrt{2}}\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left|T\left(\chi_{A_{n}}\right)\right|^{2}\right)^{1 / 2}\right\|_{X} \tag{5}
\end{align*}
$$

We recall the following consequence of the Stein-Weiss formula for the distribution function of the Hilbert transform H on \mathbb{R} of a characteristic function, due to Laeng, [14, Theorem 1.2]. Namely, for $A \subseteq \mathbb{R}$ with $m(A)<\infty$ (where m also denotes Lebesgue measure in \mathbb{R}), we have

$$
\left.m\left(\left\{x \in A: \mid H\left(\chi_{A}\right)(x)\right) \mid>\lambda\right\}\right)=\frac{2 m(A)}{e^{\pi \lambda}+1}, \quad \lambda>0 .
$$

In particular, for any set $A \subseteq(-1,1)$ it follows, for each $\lambda>0$, that

$$
m\left(\left\{x \in A:\left|T\left(\chi_{A}\right)(x)\right|>\lambda\right\}\right)=m\left(\left\{x \in A:\left|H\left(\chi_{A}\right)(x)\right|>\lambda\right\}\right)=\frac{2 m(A)}{e^{\pi \lambda}+1} .
$$

That is,

$$
\begin{equation*}
m\left(\left\{x \in A:\left|T\left(\chi_{A}\right)(x)\right|>\lambda\right\}\right)=\frac{2 m(A)}{e^{\pi \lambda}+1}, \quad A \in \mathcal{B}, \quad \lambda>0 \tag{6}
\end{equation*}
$$

Set $\lambda=1$ and $\delta:=2 /\left(e^{\pi}+1\right)<1$. For each $n=1, \ldots, N$, define

$$
A_{n}^{1}:=\left\{x \in A_{n}:\left|T\left(\chi_{A_{n}}\right)(x)\right|>1\right\} .
$$

Then (6) implies that

$$
\begin{equation*}
m\left(A_{n}^{1}\right)=\frac{2 m\left(A_{n}\right)}{e^{\pi}+1}=\delta m\left(A_{n}\right), \quad n=1, \ldots, N \tag{7}
\end{equation*}
$$

Since the sets A_{1}, \ldots, A_{N} are pairwise disjoint, so are their subsets $A_{1}^{1}, \ldots, A_{N}^{1}$. Note that $\left|T\left(\chi_{A_{n}}\right)(x)\right|>1$ for $x \in A_{n}^{1}$, for $n=1, \ldots, N$. Thus, on $(-1,1)$ we have the pointwise estimates

$$
\begin{align*}
\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left|T\left(\chi_{A_{n}}\right)\right|^{2}\right)^{1 / 2} & \geqslant\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left|T\left(\chi_{A_{n}}\right)\right|^{2} \chi_{A_{n}}\right)^{1 / 2} \\
& =\sum_{n=1}^{N}\left|a_{n}\right|\left|T\left(\chi_{A_{n}}\right)\right| \chi_{A_{n}} \\
& \geqslant \sum_{n=1}^{N}\left|a_{n}\right| \chi_{A_{n}^{1}} . \tag{8}
\end{align*}
$$

Since $\|\cdot\|_{X}$ is a lattice norm, (8) yields

$$
\begin{equation*}
\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left|T\left(\chi_{A_{n}}\right)\right|^{2}\right)^{1 / 2}\right\|_{X} \geqslant\left\|\sum_{n=1}^{N}\left|a_{n}\right| \chi_{A_{n}^{1}}\right\|_{X}=\|\varphi\|_{X} \tag{9}
\end{equation*}
$$

where φ is the simple function

$$
\varphi:=\sum_{n=1}^{N} a_{n} \chi_{A_{n}^{1}} .
$$

From (7) it follows that

$$
\begin{equation*}
m(\{x \in(-1,1):|\varphi(x)|>\lambda\})=\delta m(\{x \in(-1,1):|\phi(x)|>\lambda\}), \quad \lambda>0 . \tag{10}
\end{equation*}
$$

Consider the dilation operator $E_{\delta}: \widetilde{X} \rightarrow \widetilde{X}$ for $\delta<1$ given above, that is, $E_{\delta}(f)(t)=$ $f(\delta t)$ for $0 \leqslant s \leqslant \min \{2,1 / \delta\}$ and zero otherwise. For the decreasing rearrangements ϕ^{*} and φ^{*} of ϕ and φ, respectively, it follows from (10) that

$$
\phi^{*}=E_{\delta}\left(\varphi^{*}\right) .
$$

Consequently, with $\left\|E_{\delta}\right\|$ denoting the operator norm of $E_{\delta}: \widetilde{X} \rightarrow \widetilde{X}$, we have

$$
\begin{equation*}
\|\phi\|_{X}=\left\|\phi^{*}\right\|_{\tilde{X}}=\left\|E_{\delta}\left(\varphi^{*}\right)\right\|_{\tilde{X}} \leqslant\left\|E_{\delta}\right\| \cdot\left\|\varphi^{*}\right\|_{\tilde{X}}=\left\|E_{\delta}\right\| \cdot\|\varphi\|_{X} \tag{11}
\end{equation*}
$$

It follows, from (2), (5), (19) and (11) that

$$
\begin{aligned}
\|\phi\|_{X} & \leqslant\left\|E_{\delta}\right\| \cdot\|\varphi\|_{X} \\
& \leqslant\left\|E_{\delta}\right\| \cdot\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left|T\left(\chi_{A_{n}}\right)\right|^{2}\right)^{1 / 2}\right\|_{X} \\
& \leqslant \sqrt{2}\left\|E_{\delta}\right\| \cdot\|\phi\|_{[T, X]} .
\end{aligned}
$$

That is, there exists a constant $M>0$, depending exclusively on X, such that

$$
\begin{equation*}
M\|\phi\|_{X} \leqslant\|\phi\|_{[T, X]}, \tag{12}
\end{equation*}
$$

for all simple functions ϕ.
In order to extend (12) to all functions in $[T, X]$ fix $f \in[T, X]$. For every simple function ϕ satisfying $|\phi| \leqslant|f|$ it follows from (12) that

$$
M\|\phi\|_{X} \leqslant\|\phi\|_{[T, X]} \leqslant\|f\|_{[T, X]} .
$$

Taking the supremum with respect to all such ϕ yields, via the Fatou property of X, that $f \in X$ and

$$
M\|f\|_{X} \leqslant\|f\|_{[T, X]} .
$$

In particular, $[T, X] \subseteq X$. Consequently, $[T, X]=X$ with equivalent norms. Thus, no genuine X-valued extension of $T_{X}: X \rightarrow X$ is possible.

The above Theorem has an immediate consequence. Namely, it extends, to all r.i. spaces with non-trivial Boyd indices, certain results known for those r.i. spaces X satisfying $0<\underline{\alpha}_{X} \leqslant \bar{\alpha}_{X}<1 / 2$ or $1 / 2<\underline{\alpha}_{X} \leqslant \bar{\alpha}_{X}<1$, 4, Corollary 4.8], and for $X=L^{2}(-1,1)$, 4, Corollaries 5.4 and 5.5].
Corollary. Let X be a r.i. space on $(-1,1)$ with non-trivial Boyd indices.
(a) There exists a constant $\beta>0$ such that, for every $f \in X$, we have

$$
\frac{\beta}{4}\|f\|_{X} \leqslant \sup _{A \in \mathcal{B}}\left\|T_{X}\left(\chi_{A} f\right)\right\|_{X} \leqslant \sup _{|\theta|=1}\left\|T_{X}(\theta f)\right\|_{X} \leqslant \sup _{|h| \leqslant|f|}\left\|T_{X}(h)\right\|_{X} \leqslant\|f\|_{X}
$$

(b) For a function $f \in L^{1}$ the following conditions are equivalent.
(a) $f \in X$.
(b) $T\left(f \chi_{A}\right) \in X$ for every $A \in \mathcal{B}$.
(c) $T(f \theta) \in X$ for every $\theta \in L^{\infty}$ with $|\theta|=1$ a.e.
(d) $T(h) \in X$ for every $h \in L^{0}$ with $|h| \leqslant|f|$ a.e.

Acknowledgement. We are grateful to the referee for some valuable suggestions.

References

[1] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
[2] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Can. J. Math. 21 (1969), 1245-1254.
[3] H. K. Cheng, N. Rott, Generalizations of the inversion formula of thin airfoil theory, J. Rational Mech. Anal. 3 (1954), 357-382.
[4] G. P. Curbera, S. Okada, W. J. Ricker, Inversion and extension of the finite Hilbert transform on ($-1,1$), Ann. Mat. Pura Appl. (4), 198 (2019), 1835-1860.
[5] G. P. Curbera, S. Okada, W. J. Ricker, Extension and integral representation of the finite Hilbert transform in rearrangement invariant spaces, Quaest. Math., 43 (2020), 783-812.
[6] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
[7] R. Duduchava, Integral Equations in Convolution with Discontinuous Presymbols. Singular Integral Equations with Fixed Singularities, and their Applications to some Problems of Mechanics, Teubner Verlagsgesellschaft, Leipzig, 1979.
[8] F. D. Gakhov, Boundary Value Problems, Dover Publications, Inc., New York, NY, 1990.
[9] I. Gohberg, N. Krupnik, One-Dimensional Linear Singular Integral Operators Vol. I. Introduction, Operator Theory Advances and Applications 53, Birkhäuser, Berlin, 1992.
[10] I. Gohberg, N. Krupnik, One-Dimensional Linear Singular Integral Operators Vol. II. General Theory and Applications, Operator Theory Advances and Applications 54, Birkhäuser, Berlin, 1992.
[11] A. Katsevich, A. Tovbis, Finite Hilbert transform with incomplete data: null-space and singular values, Inverse Problems 28 (2012), 105006, 28 pp.
[12] F. W. King, Hilbert Transforms Vol. I, Cambridge University Press, Cambridge New York, 2009.
[13] S. G. Krein, Ju. I. Petunin, E. M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence R. I., 1982.
[14] E. Laeng, On the L L^{p} norms of the Hilbert transform of a characteristic function, J. Funct. Anal. 262 (2012), 4534-4539.
[15] S. Mikhlin, S. Prössdorf, Singular Integral Operators, Springer-Verlag, Berlin, 1986.
[16] N. I. Muskhelishvili, Singular Integral Equations, Wolters-Noordhoff Publishing, Groningen, 1967.
[17] S. Okada, D. Elliott, The finite Hilbert transform in \mathcal{L}^{2}, Math. Nachr. 153 (1991), 43-56.
[18] S. Okada, W. J. Ricker, E. A. Sánchez-Pérez, Optimal Domain and Integral Extension of Operators: Acting in Function Spaces, Operator Theory Advances and Applications 180, Birkhäuser, Berlin, 2008.
[19] A. D. Polyanin, A. V. Manzhirov, Handbook of Integral Equations, 2nd ed., CRC Press, Boca Raton, FL, 2008.
[20] E. Reissner, Boundary value problems in aerodynamics of lifting surfaces in non-uniform motion, Bull. Amer. Math. Soc. 55 (1949), 825-850.
[21] E. Y. Sidky, Xiaochuan Pan, Recovering a compactly supported function from knowledge of its Hilbert transform on a finite interval, IEEE Signal Processing Letters 12 (2005), 97-100.
[22] H. Söhngen, Zur Theorie der endlichen Hilbert-Transformation, Math. Z. 60 (1954), 31-51.
[23] F. G. Tricomi, On the finite Hilbert transform, Quart. J. Math. 2 (1951), 199-211.
[24] F. G. Tricomi, Integral Equations, Interscience, New York, 1957.
Facultad de Matemáticas \& IMUS, Universidad de Sevilla, Calle Tarfia s/n, Sevilla 41012, Spain

Email address: curbera@us.es
School of Natural Sciences (Maths/ Physics), University of Tasmania, Private Bag 37, Hobart, Tas. 7001, Australia

Email address: susumu.okada@utas.edu.au
Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany

Email address: werner.ricker@ku.de

[^0]: Date: May 14, 2021.
 2010 Mathematics Subject Classification. Primary 44A15, 46E30; Secondary 47A53, 47B34.
 Key words and phrases. Finite Hilbert transform, rearrangement invariant space, airfoil equation, Fredholm operator.

 The first author acknowledges the support of of PGC2018-096504-B-C31, FQM-262 and Feder-US1254600 (Spain).

