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Abstract
The classical Rayleigh–Taylor instability occurs when a heavy fluid overlies a lighter one, and the two fluids are separated 
by a horizontal interface. The configuration is unstable, and a small perturbation to the interface grows with time. Here, we 
consider such an arrangement for planar flow, but in a porous medium governed by Darcy’s law. First, the fully saturated 
situation is considered, where the two horizontal fluids are separated by a sharp interface. A classical linearized theory is 
reviewed, and the nonlinear model is solved numerically. It is shown that the solution is ultimately limited in time by the 
formation of a curvature singularity at the interface. A partially saturated Boussinesq theory is then presented, and its 
linearized approximation predicts a stable interface that merely diffuses. Nonlinear Boussinesq theory, however, allows 
the growth of drips and bubbles at the interface. These structures develop with no apparent overturning at their heads, 
unlike the corresponding flow for two free fluids.
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1  Introduction

Lord Rayleigh [1] and later Sir G.I. Taylor [2] both consid-
ered the unstable fluid flow that now bears their names, 
in which two horizontal immiscible fluids, with a sharp 
interface separating them, lie horizontally with the heavier 
fluid above the lighter one. Gravity acts downward, and 
any small disturbance to the interface results in the unsta-
ble growth of fingers of the heavy fluid moving downward 
and bubbles of the lighter fluid penetrating upward. Ray-
leigh and Taylor considered planar flow and carried out lin-
earized analyses, based on the assumption that the inter-
face shape never varies greatly from a horizontal plane. 
Their analysis predicts, however, that perturbations to the 
interface must grow exponentially in time, whenever the 
heavier fluid is above the lighter one.

Since linearized Rayleigh–Taylor theory predicts expo-
nential growth of the interface, the linearizing assump-
tion itself becomes invalid within finite time, and nonlin-
ear effects must be included. The difficult question of how 
nonlinearity affects the shapes of the growing droops and 
bubbles at the interface has consequently been of great 
interest and relevance. Earlier numerical solutions for 
free-flowing inviscid fluids separated by a sharp interface 
observed that there was a finite time at which the solu-
tion abruptly failed, and the review by Sharp [3] mentions 
this as something of a mystery. However, Moore [4] had 
shown, in the related Kelvin–Helmholtz instability, that 
the sharp interface develops a curvature singularity within 
finite time, and this is the reason for the sudden failure 
of the inviscid solution at this critical time. Cowley et al. 
[5] confirmed Moore’s analysis with their own asymptotic 
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theory, and Baker et al. [6] have shown that curvature sin-
gularities may also occur within finite time for the classical 
Rayleigh–Taylor problem.

It might be expected that the inclusion of viscosity in 
the fluids would avoid a curvature singularity from form-
ing at the interface, but Forbes et al. [7] and Forbes and 
Bassom [8] have indicated that the situation is a little more 
nuanced than this. They showed that very large curvature 
spikes still form at the interface, even when viscosity is 
included, and to avoid them, a certain amount of fluid mix-
ing is required, at an interface that must be of finite width. 
This explains why ‘vortex blob’ methods, introduced by 
Krasny [9] and used later by Baker and Pham [10], are able 
to continue an otherwise inviscid solution past the critical 
time at which curvature singularity would be expected, 
since they effectively replace the sharp interface with a 
diffuse vortex sheet of finite width.

The Rayleigh–Taylor problem has numerous applica-
tions, where it may help explain certain cloud formations 
in meteorology [11] and finger formation in astrophysics 
[12], and has thus been the subject of extensive research. 
A review by Kelley et al. [13] has emphasized the way in 
which Rayleigh–Taylor instability can occur over vast 
length scales, from the microscopic to the galactic. Fur-
thermore, flows of this type are not just restricted to two-
dimensional planar geometry. They have been studied 
in cylindrical geometry by Forbes [14], corresponding to 
outflow from a line source, and recently by Zhao et al. [15]. 
These flows also occur in spherical-type outflow from a 
point source, (see Forbes [16, 17]), where they have pos-
sible application to the formation of one-sided jet flows 
in astrophysics, observed by Gómez et al. [18]. The review 
article by Abarzhi [19] discusses Rayleigh–Taylor flows as 
mechanisms for fluid mixing, comparing and contrasting 
them with mixing due to turbulence.

Rayleigh–Taylor-type flows may also occur in porous 
media, perhaps in  situations where leaching fluid is 
pumped into an ore-bearing rock, in an attempt to dis-
solve and extract the ore [20]. In such cases, the density 
difference between the two fluids present in the rock 
would occur as a result of the presence of dissolved min-
erals or leaching lixiviants. The presence of such miner-
als in each fluid of a two-fluid system was taken into 
account explicitly by Trevelyan et al. [21], in their study 
of fluid instabilities in porous media. They used a Bouss-
inesq approach, combined with Darcy’s law relating the 
fluid seepage velocity in the porous medium, the gradient 
of the fluid pore pressure and the fluid density, and they 
invoked a type of equation of state in which the density 
varied linearly with the concentrations of two different 
chemical species dissolved in the fluid. These concentra-
tions followed prescribed convection–diffusion equations. 
They carried out detailed quasi-steady stability analyses of 

various scenarios and also obtained numerical solutions to 
the nonlinear equations, obtaining long unstable fingers 
of heavier fluid moving into the region formerly occupied 
by the lighter fluid. In a recent review article, Hewitt [22] 
discusses unstable fluid flows in porous media, under con-
ditions where convection strongly dominates diffusion. A 
state equation is considered, in which the fluid density 
may depend upon both the concentration of a dissolved 
chemical species and the temperature.

The present paper considers first the instability of a 
sharp interface between two horizontal layers of immisci-
ble fluid in porous material, when the medium is perfectly 
saturated. This is analogous to the classical Rayleigh–Tay-
lor problem, and we briefly discuss a linearized solution 
before considering the fully nonlinear saturated problem. 
A Boussinesq model is also discussed, and a numerical 
spectral method is introduced that allows us to generate 
accurate solutions for the evolution of very large ampli-
tude disturbances to an interfacial zone between two 
miscible fluids. Results of both models are presented in 
Sect. 4, and some concluding remarks are given in Sect. 5.

2 � Fully Saturated Flows

In this section, we consider two unbounded fluids in a 
porous medium such that a sharp interface y = �(x, t) sepa-
rates an upper heavier Fluid 1, in y > 𝜂 , from a lighter Fluid 2 
in the lower region y < 𝜂 . A Cartesian coordinate system is 
present, with its y-axis pointing vertically as in Fig. 1, and the 
acceleration g of gravity is directed downward. Each fluid is 
presumed to have the same viscosity, but the pore pressure 
and fluid density in upper Fluid 1 are p1 and �1, respectively, 
while in lower Fluid 2 the pressure is p2 and density is �2 . 
Each density is constant throughout its entire fluid domain, 

-

 x

 y

 Layer 1
 y =  (x,t)

 Layer 2

Fig. 1   Schematic diagram for dimensionless two-layer immiscible 
fluid system in fully saturated medium
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and for Rayleigh–Taylor instability, we have 𝜌1∕𝜌2 > 1 . 
According to Darcy’s Law [23, page 16], the fluid seepage 
velocities �1 and �2 in the two fluid regions are found from 
�1 = −K∇�1 and �2 = −K∇�2 , where �1 = p1 + �1gy and 
�2 = p2 + �2gy are the total hydraulic pressure heads in the 
two fluid domains. The constant K is an hydraulic conduc-
tivity and is sometimes expressed in the form K = A∕� , in 
which � is the dynamic viscosity of the fluid and A can be 
thought of as the cross-sectional area of a column of the 
porous medium through which the fluid percolates. For a 
fully saturated medium, the fluid incompressibility condition 
gives ∇ ⋅ �j = 0 , j = 1, 2 , with the result that the hydraulic 
heads �j satisfy Laplace’s equation ∇2�j = 0 , j = 1, 2 , in their 
respective fluid domains. The dynamic condition that the 
fluid pore pressure must be continuous at the fluid interface 
gives rise to the simple condition �1 = �2 +

(
�1 − �2

)
g� on 

the interface y = �(x, t).
Dimensionless variables are now introduced. If a periodic 

disturbance of fundamental wavelength � is made to the 
interface, then �∕(2�) is taken to be the length scale from 
now on. Speeds are referred to the quantity �2gK  , and then 
time is made dimensionless using the scale �∕

(
2��2gK

)
 . 

Pressures and the hydraulic heads are scaled with respect 
to the quantity �2g�∕(2�).

In these nondimensional quantities, Darcy’s law in lower 
fluid 2 becomes

and in upper fluid 1 it takes the form

The continuity condition for fully saturated rock gives 
Laplace’s equations

in each layer. There is only the one dimensionless constant 
D = �1∕�2 appearing in (2). On each side of the interface, 
each fluid must obey its own kinematic condition

representing the fact that neither fluid is able to cross this 
boundary. In addition, there is also a dynamic condition, 
corresponding to the fact that the pore pressures either 
side of the interface must be equal. In dimensionless form, 
this becomes

(1)
�2 ≡ u2� + v2� = −∇𝛷2

𝛷2 = p2 + y, in y < 𝜂(x, t),

(2)
�1 ≡ u1� + v1� = −∇𝛷1

𝛷1 = p1 + Dy, in y > 𝜂(x, t).

(3)∇2�j = 0, j = 1, 2

(4)vj =
��

�t
+ uj

��

�x
j = 1, 2 on y = �(x, t),

(5)�1 = �2 + (D − 1)� on y = �,

where the constant D = �1∕�2 is the ratio of densities, as 
previously.

2.1 � Linearized saturated solution

A linearized solution to the governing equations (1)–(5) 
can be obtained in a straightforward manner using clas-
sical methods. Accordingly, only a brief overview will be 
given here. If the interface �(x, t) is initially horizontal, 
but then subjected to a perturbation of small amplitude 
� , it is appropriate to seek a solution in the form

The true location y = �(x, t) of the interface is projected 
onto the undisturbed plane y = 0 , and as a result, condi-
tions (3) are now approximated with

The two kinematic conditions (4) at the interface become 
approximately

and the dynamic condition retains its same form (5), but 
now holds on the approximate plane y = 0 and involves 
the linearized functions introduced in (6).

For simplicity, we suppose that the initial perturba-
tion to the interface was in the form of a simple cosine 
function, of period 2� . Then, the appropriate linearized 
solutions to the Laplace equations (7) are

Now the two kinematic conditions (8) and the correspond-
ing linearized form of the dynamic condition (5) allow the 
unknown functions Q1(t) and Q2(t) in (9) to be determined, 
and a form for the linearized interface perturbation eleva-
tion �L(x, t) to be obtained. Combining this information 
with the expansion (6) therefore yields

(6)
�j(x, y, t) =��

L
j
(x, y, t) +O

(
�2
)
, j = 1, 2

�(x, t) =��L(x, t) +O
(
�2
)
.

(7)
∇2𝛷L

1
= 0 in y > 0

∇2𝛷L
2
= 0 in y < 0.

(8)
��L

�t
= −

��L
1

�y
= −

��L
2

�y
on y = 0

(9)
𝛷L

1
(x, y, t) =Q1(t)e

−y cos x, in y > 0

𝛷L
2
(x, y, t) =Q2(t)e

y cos x, in y < 0.
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for the final form of the linearized solution in the fully satu-
rated material.

2.2 � Nonlinear saturated solution

Equations (1)–(5) state the nonlinear mathematical prob-
lem to be solved, for the Rayleigh–Taylor instability in a 
completely saturated medium where a sharp interface is 
present between two immiscible fluids. Periodicity is again 
assumed in the x-coordinate, and so from (3), we seek non-
linear solutions

These expressions (11) become exact as the number N of 
Fourier modes becomes infinite, and in the numerical work 
to follow it will be necessary to take N as large as possible. 
Clearly, (11) satisfy Laplace’s equations (3) identically and 
represent the generalization of (10) to account for nonlin-
earity at the interface.

The three sets of coefficients An(t) , Bn(t) and Hn(t) in the 
assumed form (11) of the solution are to be found from the 
kinematic and dynamic conditions at the interface. The 
spectral method proposed by Forbes et al. [24] is chosen for 
this purpose, and we use here only the simpler of their two 
approaches.

To begin, the kinematic condition (4) is taken with j = 1 , 
representing the upper fluid in y > 𝜂 . The fluid velocity com-
ponents u1 and v1 in the x- and y-directions, respectively, are 
found directly from �1 in (11) by differentiation, according 
to (2). Thus,

(10)

𝛷1(x, y, t) =
1

2
𝜖(D − 1) exp

[
−y +

1

2
(D − 1)t

]
cos x

+O
(
𝜖2
)

in y > 0,

𝛷2(x, y, t) = −
1

2
𝜖(D − 1) exp

[
y +

1

2
(D − 1)t

]
cos x

+O
(
𝜖2
)

in y < 0,

𝜂(x, t) =𝜖 exp
[
1

2
(D − 1)t

]
cos x +O

(
𝜖2
)

(11)

𝛷1(x, y, t) =

N∑

n=1

An(t)e
−ny cos (nx) in y > 𝜂(x, t),

𝛷2(x, y, t) =

N∑

n=1

Bn(t)e
ny cos (nx) in y < 𝜂(x, t),

𝜂(x, t) =H0(t) +

N∑

n=1

Hn(t) cos (nx).

(12)

u1(x, t) =

N∑

n=1

nAn(t)e
−ny sin (nx),

v1(x, t) =

N∑

n=1

nAn(t)e
−ny cos (nx).

When these two series (12) are substituted into the first 
kinematic condition (4) with j = 1 , the use of the product 
rule enables this equation to be cast in the form

Following [24], it follows at once from this relation that

Theorem 1  The average interface elevation does not change 
with time.

Proof  We wish to show that

To do this, it is only required to integrate (13) over a sin-
gle period −𝜋 < x < 𝜋 , giving immediately the result 
H�
0
(t) = 0 . Thus, the average interface elevation �av = H0 

is constant, and the statement in (14) is proved. 	�  ◻

Equation (13) is also Fourier analyzed with respect to 
the � th mode, � = 1, 2,… ,N , by multiplying by the basis 
function cos (�x) and integrating over a single period. Inte-
gration by parts gives the expression

for the derivative of the � th Fourier coefficient in the 
expression for the interface shape.

These calculations may all be repeated for the second 
kinematic equation, obtained from (4) with j = 2 . Velocity 
components in lower fluid 2 are obtained by differentia-
tion of the series for �2 in (11), similarly to (12), and are 
obtained in the forms

These velocity components (16) are substituted into the 
second kinematic condition at the interface, to give a result 
analogous to (13). The � = 0 Fourier mode once again con-
firms Theorem 1, and the higher modes � = 1, 2,… ,N give

analogous to the result (15) for the upper fluid.

(13)
H�
0
(t) +

N∑

n=1

H�
n
(t) cos (nx) =

N∑

n=1

An(t)
�

�x
[
e−n�(x,t) sin (nx)

]
.

(14)
d�av

dt
= 0 where �av =

1

2� ∫
�

−�

�(x, t)dx = H0(t).

(15)H�
�
(t) =

�

�

N∑

n=1

S
(1)

�,n
(t)An(t)

(16)

u2(x, t) =

N∑

n=1

nBn(t)e
ny sin (nx),

v2(x, t) = −

N∑

n=1

nBn(t)e
ny cos (nx).

(17)H�
�
(t) = −

�

�

N∑

n=1

S
(2)

�,n
(t)Bn(t),
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Similar Fourier analysis is applied to the dynamic con-
dition (5). The series (11) are substituted directly into 
the condition, which is then evaluated at the interface 
y = �(x, t) . The expression is multiplied by the basis func-
tion cos (�x) , � = 1, 2,… ,N and integrated over a com-
plete period in x. This gives

In these expressions (15), (17) and (18), it has proven con-
venient to define

to simplify the notation.
The governing equations to be solved for the three sets 

of Fourier coefficients An , Bn and Hn are (15), (17) and (18). 
However, these form a differential–algebraic inclusion and 
are not convenient for numerical solution in this present 
form. We adapt the approach of Forbes et al. [24] and dif-
ferentiate both the second and third of these equations, to 
give a simple algebraic system of equations for the deriva-
tives A�

n
(t) , B�

n
(t) , H�

n
(t) of these coefficients. These are then 

solved, and the entire system of 3N ordinary differential 
equations is integrated forward in time using standard 
software.

The second kinematic condition (17) is subtracted from 
the first condition (15), and the resulting expression is dif-
ferentiated in time. After a little algebra, this yields

The dynamic condition (18) is similarly differentiated in 
time and so gives an expression in the form

(18)
N∑

n=1

C
(1)

�,n
(t)An(t) −

N∑

n=1

C
(2)

�,n
(t)Bn(t) = �(D − 1)H�

(t).

(19)

S
(1)

�,n
(t) =∫

�

−�

e−n�(x,t) sin (�x) sin (nx) dx

S
(2)

�,n
(t) =∫

�

−�

en�(x,t) sin (�x) sin (nx) dx

C
(1)

�,n
(t) =∫

�

−�

e−n�(x,t) cos (�x) cos (nx) dx

C
(2)

�,n
(t) =∫

�

−�

en�(x,t) cos (�x) cos (nx) dx

(20)

N∑

n=1

S
(1)

�,n
(t)A�

n
(t) +

N∑

n=1

S
(2)

�,n
(t)B�

n
(t)

= ∫
�

−�

[
v2u1 − v1u2

]
y=�

sin (�x) dx .

(21)

N∑

n=1

C
(1)

�,n
(t)A�

n
(t) −

N∑

n=1

C
(2)

�,n
(t)B�

n
(t)

= ∫
�

−�

[
v2u1 − v1u2

]
y=�

��

�x
cos (�x) dx + �(D − 1)H�

�
(t).

Now the three sets of equations (15), (20) and (21) repre-
sent a system of 3N ordinary differential equations for the 
derivatives of the Fourier coefficients, and we integrate 
these forward in time using the MATLAB routine for adap-
tive fourth–fifth-order Runge–Kutta integration. With 
N = 61 Fourier modes, this runs quickly on a quad-core 
desktop computer and is straightforward to implement 
and code.

3 � Partially saturated Boussinesq model

If the medium is not fully saturated, and there is in addition 
a degree of mixing of the fluid in upper layer 1 with that 
in lower layer 2, then the assumption of a sharp interface 
between them, as in Sect. 2, may not be appropriate. In 
that case, the simplest approach is the Boussinesq approxi-
mation, in which the fluid density is regarded as a continu-
ously varying function that changes smoothly but rapidly 
across an interfacial zone of narrow but finite width.

Returning briefly to dimensional variables, the density 
�(x, y, t) varies from its value �2 in lower layer 2 continu-
ously to the value �1 in upper layer 1, as y increases from 
a large negative value to a large positive one. Following 
Trevelyan et al. [21] and the recent article by De Paoli et 
al. [25], we regard the larger density �1 of the upper layer 
as being due to the presence of some additional solute in 
that upper layer, having concentration [C](x, y, t) such that 
[C] → C0 as y → ∞ . This is therefore relevant to a mineral 
leaching scenario similar to that envisioned by Forbes [20], 
for example, in which a mineral of interest is dissolved in 
situ by a leaching lixiviant. It is assumed here that the fluid 
density is related to the concentration of the dissolved sol-
ute according to the law

and that the solute itself obeys the convection–diffusion 
equation

Here, the constant D is a diffusion coefficient for the sol-
ute. The quantity � is the porosity of the material and is a 
dimensionless constant corresponding to a wetted frac-
tion in the medium. The fluid seepage velocity vector � is 
found from Darcy’s law in the form

(22)� = �2

(
1 +

(
�1 − �2

)

�2C0
[C]

)

(23)�
�[C]

�t
+ � ⋅ ∇[C] = �D∇2[C].

(24)
1

K
� = −∇p − �g�,
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replacing the earlier forms (1), (2) for the fully saturated 
model. As previously, the continuity equation

still holds true, for the fluid in the porous medium.
We return now to dimensionless variables, as previ-

ously, and these will be used from now on. As in Sect. 2, 
all lengths are referred to �∕(2�) , where � is the wave-
length of a periodic disturbance made to the interface. 
Speeds are again nondimensionalized by reference to 
�2gK  , but now it is convenient to make time dimen-
sionless relative to the timescale ��∕

(
2��2gK

)
 , so as to 

absorb the porosity � . The density function is referred to 
the density �2 of the lower fluid, and the pore pressure p 
is scaled with respect to the quantity �2g�∕(2�) . The con-
centration [C] of the solute is scaled relative to its value 
C0 in layer 1 far from the interface, and the new dimen-
sionless concentration is written simply as C(x, y, t) . In 
these nondimensional variables, the ‘state’ equation (22) 
becomes simply

and the solute concentration satisfies

obtained from (23). Darcy’s law (24) becomes simply

These equations (26)–(28) now involve the two dimension-
less parameters

The first of these is the density ratio, as before, and the sec-
ond is a dimensionless diffusion constant for the chemical 
solute.

From the continuity equation (25), it follows that a 
streamfunction � (x, y, t) exists, such that

It then follows from Darcy’s law (28) and the state equa-
tion (26) that

The mathematical task is therefore to solve the convec-
tion–diffusion equation (27) coupled with (31), for the two 
functions C(x, y, t) and � (x, y, t) . The fluid density is then 
recovered from the state law (26).

(25)∇ ⋅ � = 0

(26)� = 1 + (D − 1)C

(27)
�C

�t
+ � ⋅ ∇C = �∇2C .

(28)� = −∇p − ��.

(29)D =
�1

�2
and � =

2�

�

�D

�2gK
.

(30)u = −
��

�y
; v =

��

�x
.

(31)∇2� = −(D − 1)
�C

�x
.

3.1 � Linearized Boussinesq model

The Boussinesq approximation is predicated on the assump-
tion that the density function �(x, y, t) does not change 
much across the different fluid regions. Accordingly, the 
appropriate small parameter here is the (dimensionless) 
density difference (D − 1) between the top and bottom lev-
els of the fluid. We therefore postulate

When these approximations are substituted into the gov-
erning equations (27), (31) and terms retained only to the 
first order in (D − 1) , the linearized equations

are obtained. We seek a solution to these equations, that is 
2�-periodic in the x-coordinate. For the sake of simplicity, 
the y-domain will be restricted to the finite-sized interval 
−H < y < H , and the linearized concentration CL in equa-
tions (33) solved subject to the conditions

deep within lower fluid 2 and at the top of upper region 1, 
respectively. Standard methods now give the solution for 
the linearized concentration in equations (33) to be

where the additional constants

have been defined for convenience. Following Daripa and 
Hua [26], we observe that an initial condition in which only 
a single Fourier mode is perturbed continues to involve 
only that one mode for all later times in the linearized 
fully saturated model (10). In the Boussinesq model, how-
ever, even the linearized solution (35) involves an infinite 
but discrete spectrum of Fourier modes, when the finite-
width computational window −H < y < H is imposed; this 

(32)
� (x, y, t) =(D − 1)� L(x, y, t) +O(D − 1)2

C(x, y, t) =CL(x, y, t) +O(D − 1).

(33)
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=�

(
�2CL

�x2
+

�2CL

�y2

)

�CL

�x
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(
�2� L

�x2
+

�2� L

�y2

)

(34)CL(x,−H, t) = 0 ; CL(x,H, t) = 1

(35)

CL(x, y, t) =
1

2

( y

H
+ 1

)
+

∞∑

n=1

A0,n exp
(
−��2

0,n
t
)

sin
(
n�

2H
(y + H)

)

+

∞∑

m=1

∞∑

n=1

Am,n exp
(
−��2

m,n
t
)

cos (mx) sin
(
n�

2H
(y + H)

)
,

(36)�2
m,n

= m2 +
(
n�

2H

)2
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would, in fact, become a continuous spectrum of modes 
if H were allowed to become infinite (as is the case for the 
previous linearized solution in Sect. 2.1).

The linearized streamfunction is now obtained from the 
second of the equations in (33) and becomes

The coefficients Am,n in these solutions (35), (37) are 
obtained from initial conditions, and these are now 
discussed.

Consistent with the linearized saturated solution (10) 
in Sect. 2.1, we consider the discontinuous initial function

where we have chosen the initial interface shape to be

Fourier analysis of (35) gives the coefficients to be

It turns out that the integrals in these expressions can be 
evaluated in closed form, taking real and imaginary parts 
of the identity given in Abramowitz and Stegun [27, page 
360, formula 9.1.21]. After some algebra, we obtain

where Jk(z) denotes the Bessel function of the first kind 
of order k.

From the numerical point of view, the use of the dis-
continuous initial concentration profile (38), with the 
cosinusoidal profile (39) is undesirable because it gives 
Fourier coefficients (41) that decay as Ak,� ∼ 1∕� for large 
� . Consequently, Gibbs’ phenomenon [28] means that 
the Fourier series (35) cannot recreate the initial profile 
(38). Instead, it replaces the discontinuity with a region 

(37)
� L(x, y, t) = −

∞∑

m=1

∞∑

n=1

Am,n

m

�2
m,n

exp

(
−��2

m,n
t
)
sin (mx) sin

(
n�

2H
(y + H)

)
.

(38)C(x, y, 0) =

{
1, if y > 𝜂0(x)

0, if y < 𝜂0(x)

(39)�0(x) = KA cos x.

(40)
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2

��
cos (��) +

1

2�H ∫
�

−� ∫
H

−H

CL(x, y, 0)

sin

(
��
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)
dy dx

Ak,� =
1

�H ∫
�
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H

−H
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cos (kx) sin

(
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)
dy dx.

(41)

A0,� =
2

��
cos

(
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)
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��KA
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)

Ak,� =
4

��
cos

(
�

2
(k + �)

)
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(
��KA

2H

)
, k ≥ 1,

containing small-amplitude oscillations. To avoid this diffi-
culty, we use Lanczos smoothing of the Fourier coefficients 
(41), replacing them with new coefficients

The Lanczos parameter � is a small positive constant, and 
we have taken it to be � = 0.05 here. This process (42) 
can be shown to be equivalent to replacing the point 
value of the initial function (38) with a moving average 
over a window of width 2� centered at that point. Thus, 
the discontinuous initial condition (38) is replaced by a 
smoothed, continuous function. This is illustrated in Fig. 2, 
for an initial profile with KA = −0.2 and using M = N = 101 
modes in each coordinate. The density has been gener-
ated from the state law (26) with D = 1.2 , and as is evident 
from the diagram, a smooth but rapid transition from � = 1 
to � = D is obtained near the interfacial region. A careful 
examination shows that small wavelets of Gibbs type are 
still present near the interface, but are too small to be of 
concern. They can be eliminated entirely by increasing � 
slightly, although at the cost of diffusing the interfacial 
zone still further.

Figure 3 illustrates the linearized solution with con-
centration CL(x, y, t) calculated from (35) and then den-
sity obtained from the state law (26). The solution was 
evaluated using M = N = 151 Fourier modes on a grid 
of 601 × 601 points over the computational domain 
−𝜋 < x < 𝜋 , −H < y < H with H = 6 . Contours of the den-
sity � are shown at the four times t = 4 , 16, 28 and 40. In 
the first two diagrams, there are still some very small wave-
lets present, as a remnant of Gibbs’ phenomenon present 
in the choice of initial condition illustrated in Fig. 2; these 

(42)Am,n = Am,n

sin (n�)

n�
.

Fig. 2   Initial density profile, reconstructed from the Fourier series 
(35) with smoothed coefficients (42). The density function is then 
formed from the state equation (26). Here, KA = −0.2 and the den-
sity ratio is D = 1.2
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have no effect upon the solution, although the contouring 
routine in the graphics package nevertheless detects these 
small ripples and displays them as the fine corrugations 
visible at the first two times shown.

It is evident from Fig. 3 that the interfacial zone essen-
tially does not move at all, but remains in place and 
diffuses slightly due to the effect of the parameter � in 
equation (33). This is as expected, since the process (32) 
of linearization results in the (nonlinear) self-convection 
terms being removed, in the linearized approximation (33) 
for the concentration function CL and hence the density 
� . As a result, the linearized Boussinesq theory in this sec-
tion is possibly of only limited interest, and the nonlinear 
theory is now considered.

3.2 � Nonlinear Boussinesq model

We now consider extending the mathematical structure 
revealed by the linearized solution (35), (37) to the full 
nonlinear equations (26)–(28), thus creating a spectral 
semi-numerical solution process. An appropriate form for 
the nonlinear concentration function is

and the streamfunction is represented in the form

(43)

C(x, y, t) =
1

2

( y

H
+ 1

)
+

N∑

n=1

A0,n(t) sin
(
n�

2H
(y + H)

)

+

M∑

m=1

N∑

n=1

Am,n(t) cos (mx) sin
(
n�

2H
(y + H)

)
,

In these representations (43), (44) of the nonlinear solu-
tion, the integers M and N denote the numbers of Fourier 
modes able to be kept in a numerical implementation of 
these series; an ‘exact’ solution would require these num-
bers to become infinite. The constants �2

m,n
 are as defined 

in (36). Form (44) has been chosen because it automati-
cally satisfies the (linear) Poisson-type equation (31).

It merely remains to determine the coefficient functions 
Am,n(t) so as to satisfy the nonlinear convection–diffusion 
equation (27). The series (43), (44) are substituted in, and 
the resulting equation is subjected to standard Fourier 
analysis. After some algebra, this yields the system of non-
linear ordinary differential equations

To begin the computation, initial values A0,�(0) and 
Ak,�(0) are chosen, and in fact the values given in (41) 
are sufficient to generate the initial profile in Fig. 2. This 
system (45) of nonlinear differential equations is then 
integrated forward in time using the explicit adaptive 
Runge–Kutta–Fehlberg routine ode45 in the MATLAB pro-
gramming environment. The integrals on the right-hand 
sides of (45) are performed using the Gaussian quadrature 
package lgwt.m written by von Winckel [29] which, with 
the number of mesh-points used here, is effectively exact. 
The two velocity components u and v in the integrands 
are evaluated directly by differentiation of the streamfunc-
tion (44) using the results (30). Although MATLAB is not 
a particularly fast package, we nevertheless find that we 
are able to generate highly converged numerical results 
with M = N = 101 Fourier coefficients, and a numerical 
grid of 501 × 501 points over the computational domain, in 
about 21 hours run-time on a modest quad-core desktop 
computer. We have performed careful convergence tests 
using 51 and 81 Fourier modes and find that there are no 
significant differences between results with M = N = 81 
and M = N = 101.

(44)
� (x, y, t) = − (D − 1)

M∑

m=1

N∑

n=1

Am,n(t)
m

�2
m,n

sin (mx) sin
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(y + H)

)
.

(45)
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Fig. 3   Contours of the density � for the linearized Boussinesq solu-
tion, for the four dimensionless times t = 4 , 16, 28 and 40. Here, 
density ratio D = 1.2 , diffusion coefficient � = 0.001 and initial 
wave amplitude KA = −0.2 . The solution (35) was evaluated using 
M = N = 151 Fourier modes
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4 � Results

When the fully saturated, nonlinear model of Sect. 2.2 
is investigated, it is soon found that a disturbance to 
the interface initially grows rapidly, as predicted by the 
linearized saturated solution in Sect. 2.1, but then fails 
abruptly at some finite time. As observed by Sharp [3] for 
the traditional Rayleigh–Taylor instability, there does not 
appear to be anything pathological about the nonlinear 
interface profile at the time at which it fails, and it is only 
upon an examination of the interfacial curvature that a 
singularity is revealed, like that first predicted for the Kel-
vin–Helmholtz instability by Moore [4].

For density ratio D = 1.2 and the initial cosinusoidal 
disturbance (39) with amplitude parameter KA = −0.2 , the 
fully saturated nonlinear solution is able to progress up 
until about t = 1.2 , after which a singularity forms abruptly 
in the curvature, and the saturated solution fails. We show 
in Fig. 4 the nonlinear interface at that last time t = 1.2 , 
where it is sketched using a heavy dashed line. By way 
of comparison, we have overlaid this dashed curve on a 
field of contours of the density function �(x, y, t) obtained 
for the nonlinear Boussinesq model and computed from 
equations (43) and (26), with the same parameter values 
and the smoothed initial condition in Fig. 2. The agree-
ment between the results of these two different models 
is very good, and the interface curve for the fully satu-
rated case lies precisely along the mid-density contour 
� = (1 + D)∕2 obtained with the Boussinesq model. Never-
theless, the fully saturated results cannot continue signifi-
cantly past this early time t = 1.2 . This could no doubt be 

addressed using a ‘vortex blob’ approximation [9], which 
effectively smears the exact interface over a finite-width 
zone. It may also be possible to avoid singularity formation 
at the interface by adding extra viscous fluid layers there, 
as has been suggested by Daripa [30]. Such an approach is 
possibly equivalent to a ‘vortex blob’ method, to the extent 
that it effectively makes the interfacial zone of finite width, 
but might be more difficult to implement in a nonlinear 
problem. Alternatively, filtering methods and regulariza-
tion techniques can be used to suppress singularity for-
mation, and an excellent discussion of these is presented 
by Daripa and Hua [26]; regularization by apodization was 
in fact used in a viscous interface computation by Forbes 
et al. [7]. In this paper, however, we continue to later times 
using the Boussinesq model in Sect. 3.

A nonlinear Boussinesq solution is illustrated in Fig. 5, 
at the four dimensionless times t = 4 , 16, 28 and 40 (as for 
the linearized solution in Fig. 3). Contours of the density 

Fig. 4   Density contours for the nonlinear Boussinesq solution, 
for density ratio D = 1.2 , with � = 0.001 and initial amplitude 
KA = −0.2 , at dimensionless time t = 1.2 . The dashed line is the 
interface �(x, t) calculated with the fully saturated nonlinear model 
in Sect. 2.2. The scales on the axes are equal

- 0

-6

-4

-2

0

2

4

6

 y

t = 4

- 0

-6

-4

-2

0

2

4

6
t = 16

- 0

-6

-4

-2

0

2

4

6
t = 28

- 0

 x
-6

-4

-2

0

2

4

6
t = 40

Fig. 5   a Contours of the density � and b contours of the stream-
function �  , for the nonlinear Boussinesq solution, at the four 
dimensionless times t = 4 , 16, 28 and 40. Here, density ratio 
D = 1.2 , diffusion coefficient � = 0.001 and initial wave amplitude 
KA = −0.2 . The solution was computed using M = N = 101 Fourier 
modes
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� are shown in part (a) and were computed from (43) and 
(26) using M = N = 101 Fourier modes with 501 × 501 mesh 
points over the computational domain. The lower limit of 
the computational window was set to y = −H = −6 . As for 
the linearized solution shown in Fig. 3, the density ratio 
is D = 1.2 , the diffusion coefficient � = 0.001 and the ini-
tial wave amplitude is KA = −0.2 . The initial condition was 
the smoothed profile illustrated in Fig. 2. Contours of the 
streamfunction �  are illustrated in Fig. 5b; since this is an 
unsteady problem, there is no guarantee that these con-
tours match exactly to the streamlines, but they do serve 
at least as a guide as to how the fluid velocity patterns 
develop.

At very early times, the nonlinear solution matches 
closely to the linearized solution of Sect. 3.1. However, the 
process (32) of linearization removes the self-convection 
terms in (27), so that the linearized interface profile then 
merely remains in about its original position, as seen in 
Fig. 3. However, the nonlinear interface profiles shown 
in Fig. 5a exhibit a large-amplitude downward-moving 
tongue of the heavier fluid from upper layer 1, and to 
compensate, two bubbles of lighter fluid 2 moving upward 
either side of it. This is qualitatively similar to nonlinear 
interfacial behavior in the conventional Rayleigh–Tay-
lor instability [31], except that in the porous medium 
considered here, there is no pronounced overturning of 
the tongue near its tip. Some evidence of the very small 
amplitude ripples from the initial density profile sketched 
in Fig. 2 is still visible in Fig. 5a, and their appearance has 
been enhanced somewhat by the contouring routine. They 
are very small and have no effect on the numerical results.

Contours of �  for this same solution are drawn for 
the same four times in part(b). We shall refer to these 
as ‘streamlines’ subsequently, although this may not be 
exactly true for these unsteady flows. Clearly, this entire 
flow comes about as a result of the nonlinear convec-
tion terms in (27), and it can be seen from part (b) that 
the unstably growing tongue and bubbles in part (a) are 
associated with the formation of a pair of vortices in the 
flow. The strength of these vortices increases with time, 
as the unstable interface develops perturbations of larger 
amplitude.

In Fig.  6, we increase the density ratio to the value 
D = 1.5 . The diffusion coefficient � = 0.001 and initial wave 
amplitude parameter KA = −0.2 are as previously. Contours 
of the density � are displayed in part (a) and ‘streamlines’ 
are drawn in part (b), both for the same four times t = 4 , 
16, 28 and 40 as in Figs. 3 and 5. Small Gibbs phenomenon 
wavelets may be visible in the density contours in part (a), 
but again, they are of sufficiently small amplitude as to 
have no discernible effect on the numerical results.

At this greater value D = 1.5 of the density ratio, the 
instability is stronger and so the deformation of the 

interface is more extreme. By time t = 28, the downward-
moving spike of heavier upper fluid 1 takes up almost all 
the vertical computational domain −H < y < H with H = 6 , 
with a corresponding observation for the upward-moving 
bubbles of lighter fluid 2 either side of it. For interest, we 
have also included the numerical solution obtained with 
t = 40 for this case, since it demonstrates that there has 
now been complete inversion of the two fluid layers, with 
the lighter fluid 2 now occupying the upper portion and 
heavier fluid 1 the lower portions of the diagram. Never-
theless, it must be admitted that, while broadly correct, 
these last profiles at time t = 40 are possibly not entirely 
what would be observed for porous Rayleigh–Taylor 
instability in a finite-sized domain with a rigid bottom 
boundary, since the assumed form (43) still satisfies the 
original boundary conditions (34), in which C = 0 at the 
bottom y = −H of the region, and C = 1 at the top y = H . 
This explains the presence of the small vertical line from 
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Fig. 6   a Contours of the density � and b contours of the stream-
function �  , for the nonlinear Boussinesq solution, at the four 
dimensionless times t = 4 , 16, 28 and 40. Here, density ratio 
D = 1.5 , diffusion coefficient � = 0.001 and initial wave amplitude 
KA = −0.2 . The solution was computed using M = N = 101 Fourier 
modes
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the top of the structure in part (a), at t = 40 , connecting it 
to the top of the computational region. The streamlines, 
shown in part (b), again demonstrate how buoyancy 
effects create small vortices in the flow, which grow in size 
and strength as the instability develops.

So far, the initial condition (38) with the interface shape 
(39) has involved a single-mode perturbation. For interest, 
we consider now a multimode disturbance as the initial 
perturbation, and we choose to replace the simple cosi-
nusoidal shape (39) with the triangular initial perturbation

in which the constant q lies in the interval 0 < q < 1 . The 
triangular shape (46) is repeated periodically every 2� 
units along the x-axis. Admittedly, this periodic triangu-
lar initial perturbation (46) is somewhat unrealistic from a 
physical point of view, but it is multimodal and does also 
allow the coefficients of the initial Fourier representation 
to be calculated in closed form using (40). After some alge-
bra, the coefficients in the representation (43) at t = 0 are 
determined to be

Once again, these coefficients (47) are smoothed using 
(42), giving a smoothed initial profile and minimizing the 
effects of Gibbs’ phenomenon.

The triangular-shaped initial condition (47) with 
amplitude KA = 0.2 is used in Fig. 7 to generate porous 
Rayleigh–Taylor solutions for density ratio D = 1.2 , and 
some results are shown at the four times t = 4 , 16, 28 
and 40. Figure  7a presents contours of the density � 
and part (b) illustrates some streamlines at the different 
times. At the earliest time t = 4 shown, the triangular 
perturbation shape to the interface is still visible, but as 

(46)𝜂0(x) =
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(
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− 1
)
, if 0 < |x| < q𝜋
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k ≥ 1.

time progresses, it develops into a long finger extending 
downward. As previously, two upward-moving bubbles 
of the lighter lower fluid 2 are formed either side of it, 
so that the average interface location remains approxi-
mately constant; this is broadly consistent with Theo-
rem 1, even in spite of the fact that the theorem was 
derived for the previous fully saturated model.

The streamline patterns in Fig. 7b are similar to those 
obtained using the cosinusoidal initial condition (39) at 
earlier times, illustrated in Fig. 5b. The downward-mov-
ing spike is enabled by the formation of two vortices in 
the flow, as can be seen at the first two times t = 4 and 
t = 16 . However, at later times, each vortex further splits 
into two, giving a system of four vortices, associated with 
both the spike of heavy fluid moving down as well as the 
two bubbles moving up. These are visible in the last two 
frames in Fig. 7b.
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Fig. 7   a Contours of the density � and b contours of the stream-
function �  , for the nonlinear Boussinesq solution, at the four 
dimensionless times t = 4 , 16, 28 and 40. Here, density ratio D = 1.2 
, diffusion coefficient � = 0.001 and initial wave amplitude KA = 0.2 . 
The solution was computed using M = N = 101 Fourier modes, 
from the triangular initial perturbation (47) with q = 1∕3)
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For interest, we also include in Fig. 8 the similar solu-
tion to Fig. 7, except that now the density ratio has been 
increased here to the value D = 1.5 . Density contours are 
again shown in part(a) and streamlines are drawn in part 
(b), for the same four times t = 4 , 16, 28 and 40 as previ-
ously. As a result of the increased density ratio, the insta-
bility at the interface develops more rapidly, to the extent 
that the downward-moving spike has already reached 
the bottom of the computational region y = −H = −6 by 
time t = 28 . This is essentially a porous Rayleigh–Taylor 
flow in a confined region −H < y < H with an imperme-
able lower boundary at x = −H , although there is a very 
narrow boundary layer near both the top and the bottom 
of the region y = ±H where the solution reverses rapidly 
to its initial boundary conditions C = 0 at y = −H and 
C = 1 at y = H , since these are demanded by the form of 
the solution (43). Thus, the solutions at the last two times 
t = 28 and t = 40 will not correspond exactly to unstable 

flow in a confined region because of the presence of these 
boundary layers at top and bottom, although the other 
flow features are correct.

We show in Fig. 9 some contours of the density function 
� for the same solution as in Fig. 8, but now at the time 
t = 24 . The scale on the horizontal and vertical axes is the 
same, so that this droplet is as it would actually appear. 
This is close to the time at which the downward-moving 
spike of heavier fluid meets the bottom of the enclosure 
(or else the bottom y = −H of the computational domain), 
and it shows how additional, secondary droplets have 
formed either side of the main spike and are also being 
convected downward. Two bubbles of lower lighter fluid 2 
have also moved deeply up into the above heavier layer 1.

5 � Conclusions

This paper is part of a special issue on the general topic 
‘Interfaces, Mixing and Non-Equilibrium Dynamics,’ and the 
authors are grateful for this opportunity to contribute. The 
Rayleigh–Taylor instability is one of the three most familiar 
instabilities that can occur at an interface and is known in 
many applications and over vastly differing length scales 
[13] (the other two are the Kelvin–Helmholtz and the Rich-
tmyer–Meshkov flows). It is responsible for mixing of the 
two fluids, where it may eventually exhibit some similari-
ties to turbulent mixing [19].

We have examined two models for Rayleigh–Taylor 
unstable flow in porous media, both in a linearized approx-
imation in which disturbances to the otherwise horizontal 
interface are small, and in the fully nonlinear equations 
pertinent to that model. The first such model was one in 
which the medium was assumed to be fully saturated with 
the fluids, and there are strong similarities between that 
model and the classical Rayleigh–Taylor instability. The 
linearized theory in that case predicted an interface that 
is unstable for any density ratio D > 1 for which the upper 
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Fig. 8   a Contours of the density � and b Contours of the stream-
function �  , for the nonlinear Boussinesq solution, at the four 
dimensionless times t = 4 , 16, 28 and 40. Here, density ratio D = 1.5 
, diffusion coefficient � = 0.001 and initial wave amplitude KA = 0.2 . 
The solution was computed using M = N = 101 Fourier modes, 
from the triangular initial perturbation (47) with q = 1∕3

Fig. 9   Density contours for the 
nonlinear Boussinesq solution, 
for density ratio D = 1.5 , with 
� = 0.001 and initial amplitude 
KA = 0.2 , at dimensionless 
time t = 24 . The solution was 
started from the triangular 
initial pulse (46) with q = 1∕3 . 
The scale is the same on both 
axes
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fluid is heavier than the lower one, so that perturbations 
grow exponentially with time. The nonlinear results bear 
this out, but only for early times, since there is a finite time 
at which the interface develops a curvature singularity and 
the solution fails. This same behavior also occurs for the 
classical nonlinear Rayleigh–Taylor flow, as shown by Baker 
et al. [6].

The second model was one in which the rock is sup-
posed to be only partially saturated, but that a dissolved 
chemical in the upper fluid was responsible for making 
it more dense than the lower fluid. This again leads to a 
Rayleigh–Taylor situation with a heavy fluid above a lighter 
one, and we used a Boussinesq approximation with an 
interfacial zone of finite width to continue the numeri-
cal solution out for times far later than the critical time 
at which the corresponding fully saturated model would 
have failed. Elongated spikes of heavier upper fluid are 
found to form, alternating with upwardly moving bubbles 
of the lighter fluid. Unlike the classical Rayleigh–Taylor flow 
in which the spikes and bubbles form into mushroom-
shaped regions with strongly overhanging heads [31], the 
analogous structures formed here do not possess similar 
overturning regions near their heads.
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