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A B S T R A C T   

This paper introduces the CASINO (CAnopy backscatter estimation, Subsampling, and Inhibited Nonlinear 
Optimisation) algorithm for above-ground biomass (AGB) estimation in tropical forests using P-band (435 MHz) 
synthetic aperture radar (SAR) data. The algorithm has been implemented in a prototype processor for European 
Space Agency’s (ESA’s) 7th Earth Explorer Mission BIOMASS, scheduled for launch in 2023. CASINO employs an 
interferometric ground cancellation technique to estimate canopy backscatter (CB) intensity. A power law model 
(PLM) is then used to model the dependence of CB on AGB for a large number of systematically distributed SAR 
data samples and a small number of calibration areas with a known AGB. The PLM parameters and AGB for the 
samples are estimated simultaneously within pre-defined intervals using nonlinear minimisation of a cost 
function. The performance of CASINO is assessed over six tropical forest sites on two continents: two in French 
Guiana, South America and four in Gabon, Africa, using SAR data acquired during airborne ESA campaigns and 
processed to simulate BIOMASS acquisitions. Multiple tests with only two randomly selected calibration areas 
with AGB > 100 t/ha are conducted to assess AGB estimation performance given limited reference data. At 2.25 
ha scale and using a single flight heading, the root-mean-square difference (RMSD) is ≤ 27% for at least 50% of 
all tests in each test site and using as reference AGB maps derived from airborne laser scanning data. An 
improvement is observed when two flight headings are used in combination. The most consistent AGB estimation 
(lowest RMSD variation across different calibration sets) is observed for test sites with a large AGB interval and 
average AGB around 200–250 t/ha. The most challenging conditions are in areas with AGB < 200 t/ha and large 
topographic variations. A comparison with 142 1 ha plots distributed across all six test sites and with AGB 
estimated from in situ measurements gives an RMSD of 20% (66 t/ha).   

1. Introduction 

Our current understanding of the global carbon cycle and its role in 
climate warming is strongly limited by the large uncertainty in both the 
CO2 emissions from the land surface due to land use change (mainly 
tropical deforestation) and forest degradation, and the uptake of CO2 
from the atmosphere by forest growth. The most recent overview 
(Friedlingstein et al., 2019) indicates that land use change emissions 
have the largest relative uncertainty (exceeding 50%) of all the terms in 

the global carbon cycle, while the land uptake term has the largest ab
solute uncertainty. Intimately involved in both terms is forest biomass 
(approximately 50% of which is carbon), which is lost during land use 
change and gained by forest growth. This dual role of biomass in the 
climate system is why above-ground biomass (AGB) is recognised by the 
Global Climate Observing System (GCOS) as an Essential Climate Vari
able (GCOS, 2016). (Below-ground biomass is also important but is 
difficult to measure so is normally estimated using allometric relations 
or models, e.g., Thurner et al., 2014.) The primary objective of the 
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European Space Agency (ESA) 7th Earth Explorer Mission BIOMASS 
(ESA, 2008, 2012; Quegan et al., 2019) is therefore to determine the 
worldwide distribution of forest AGB in order to reduce these major 
uncertainties in calculations of terrestrial carbon stocks and fluxes 
(Herold et al., 2019). 

BIOMASS is scheduled for launch in 2023 and will provide near- 
global (subject to Space Object Tracking Radar restrictions; Carreiras 
et al., 2017) maps of forest AGB, height and disturbance. Achieving this 
involves several innovative technologies. It will carry the first space
borne synthetic aperture radar (SAR) sensor operating at P-band (435 
MHz), chosen because this frequency penetrates deep into forest canopies 
and provides access to the large branches and trunks making up most of 
the biomass (Hajnsek et al., 2009a; Sandberg et al., 2011; Dubois-Fer
nandez et al., 2012; Soja et al., 2013; Quegan et al., 2019). Moreover, 
these large forest elements are temporally more stable, which will allow 
BIOMASS to employ coherent techniques under a suitable repeat-pass 
orbit pattern (Albinet et al., 2012; Minh et al., 2014a; Monteith and 
Ulander, 2018; Tebaldini et al., 2019). As a result, the mission will pro
vide the first systematic spaceborne measurements of forest height with 
polarimetric-interferometric SAR (PolInSAR) (Quegan et al., 2019) and 
the first 3D measurements of forest backscatter using tomographic SAR 
(TomoSAR) (Tebaldini et al., 2019). The P-band frequency will also allow 
the first mapping of sub-forest topography in densely vegetated areas 
(d’Alessandro and Tebaldini, 2019; Gatti et al., 2011). 

While forest height can be measured at P-band using well-established 
techniques without the need for ground reference data (Cloude and 
Papathanassiou, 1998; Papathanassiou and Cloude, 2001), even in 
relatively sparse boreal forests (Garestier et al., 2008), AGB is a complex 
quantity determined not only by the geometric structure of the forest 
(tree architecture and distribution) and its dielectric properties, but also 
by wood density (Baker et al., 2004; Chave et al., 2008; Phillips et al., 
2019). Therefore, although effective AGB estimation from P-band SAR 
data has been demonstrated on many datasets (Le Toan et al., 2011; 
Quegan et al., 2019; Sandberg et al., 2011; Soja et al., 2013; Villard and 
Le Toan, 2015, and references therein), the development of a globally 
applicable algorithm or set of algorithms still presents a serious 
challenge. 

For BIOMASS, this challenge has several factors:  

• Deep penetration into the forest comes at the expense of significant 
contamination of the signal from the forest canopy by scattering from 
the ground, either as direct backscatter or through double-bounce 
interactions. This gives rise to variations in the return caused by 
topography and soil moisture, not AGB (Minh et al., 2014b; Monteith 
and Ulander, 2018; Soja et al., 2013; Ulander et al., 2018; Villard and 
Le Toan, 2015).  

• Airborne campaigns are costly and time-consuming, so the available 
experimental data are spatially and temporally sparse (Dubois-Fer
nandez et al., 2011; Hajnsek et al., 2008, 2009a, 2009b, 2017; 
Ulander et al., 2011). Hence, we have limited empirical knowledge 
about the effects of moisture, seasonal variations, and different forest 
types and biomes on P-band SAR polarimetric backscatter.  

• In situ inventories are essential for AGB estimation from space (Chave 
et al., 2019), but they are costly and time-consuming. Reference AGB 
data will only be available for a limited number of strategically 
located sites.  

• BIOMASS is planned to have an unusual orbit configuration, which is 
organised into two main phases, an initial 14-month TomoSAR phase 
and the subsequent PolInSAR phase. The latter will provide data 
derived from triplets of observations separated by 3 days, giving 
global coverage every 228 days (~7.5 months) until the end of the 5- 
year mission. Hence, successive global cycles will exhibit seasonal 
shifts. 

• The combination of ascending and descending orbits yields obser
vations with different geometries and observation patterns that vary 
with latitude and longitude.  

• There are difficulties in transferring inferences from airborne data to 
the BIOMASS case because of the steeper incidence angles (between 
23◦ and 34◦), the coarser spatial resolution (about 60 m and 8.3 m in 
ground range and azimuth, respectively, for single-look BIOMASS 
data), and the much larger coverage (about 150 km × 150 km in 
ground range and azimuth). 

These factors have all played a part in the conceptual development of 
AGB estimation algorithms for P-band SAR. 

The main aim of this paper is to introduce the CASINO (CAnopy 
backscatter estimation, Subsampling, and Inhibited Nonlinear Optimi
sation) algorithm for AGB estimation from P-band SAR backscatter, and 
to assess its performance across six tropical forest test sites in two 
countries: Gabon, Africa and French Guiana, South America. CASINO 
begins by minimizing topographic and soil moisture effects using a 
ground cancellation technique (d’Alessandro et al., 2020; Soja et al., 
2018), which isolates the scattering from the forest canopy. The depen
dence of canopy backscatter (CB) on AGB is then described using a power 
law model (PLM), which is supported by numerous empirical studies and 
asymptotic derivations from theoretical models (Le Toan et al., 2011; 
Quegan et al., 2019; Schlund et al., 2018; Soja et al., 2013, 2018). The 
PLM is fitted to CB data using constrained nonlinear minimisation of a 
cost function (Soja et al., 2017), calculated for a large number of data 
samples. AGB estimation bias is minimised using local calibration data 
and constraints on AGB and PLM parameter intervals and their spatial, 
temporal and polarisation variability (Soja et al., 2018). This paper 
shows that the combination of these principles leads to AGB estimation 
performance across all six test sites that is similar to other P-band studies, 
but using only two reference AGB measurements for calibration. As a 
result, the CASINO algorithm has been selected for initial implementa
tion in the BIOMASS ground processor (Banda et al., 2020). 

The paper is structured as follows. Section 2 introduces the corner
stones of the CASINO algorithm, while Section 3 describes the sites and 
the experimental data used to assess its performance. In Sections 4 and 5, 
the results are presented and discussed. Finally, Section 6 provides some 
implications for future use of CASINO with BIOMASS data. 

2. The CASINO algorithm 

The CASINO algorithm consists of three steps:  

1) estimation of canopy backscatter (CB) using a ground cancellation 
technique;  

2) estimation of power law model (PLM) parameters using samples of 
CB data and constrained nonlinear minimisation of a cost function; 

3) estimation of AGB for the entire scene from CB data using the esti
mated PLM parameters. 

2.1. Canopy backscatter estimation 

Canopy backscatter is estimated using a ground cancellation tech
nique (d’Alessandro et al., 2020), which decreases ground contributions 
to the signal arising from direct ground backscatter and double-bounce 
interactions between ground and vegetation. These contributions are 
strongly influenced by ground topography, moisture and roughness, 
which are independent of AGB and difficult to model (Minh et al., 
2014b; Monteith and Ulander, 2018; Soja et al., 2013; Ulander et al., 
2018; Villard and Le Toan, 2015). Several studies have shown that 
removal of ground-level backscatter yields higher correlation with AGB 
and better potential for AGB estimation (Blomberg et al., 2018; 
d’Alessandro et al., 2020; Minh et al., 2014b; Soja et al., 2018; Tebaldini 
et al., 2019). 

Given two co-registered single-look complex (SLC) images, one 
master and one slave, the ground-cancelled SLC image (sGC) is formed by 
subtracting the ground-steered SLC master image (sM) from the 
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corresponding SLC slave image (sS), where ground-steering refers to 
removal of the interferometric phase due to ground topography 
(d’Alessandro et al., 2020): 

sGC = sS − sM ≈ sM
(
eikzz − 1

)
= 2isMe

ikzz
2 sin

(
kzz
2

)

(1)  

where kz is the phase-to-height conversion factor (Papathanassiou and 
Cloude, 2001), and where it is assumed that sS ≈ sMeikzz, following the 
principles of SAR interferometry (Bamler and Hartl, 1998). 

The ground-cancelled intensity is then given by: 

|sGC|
2
= 4|sM|

2sin2
(

kzz
2

)

= 4|sM|
2sin2

(
πz
z2π

)

(2)  

where z2π = 2π
kz 

is the height-of-ambiguity (HOA), which is the height 
shift corresponding to a 2π shift of the interferometric phase. The 
squared sine modulation in (2) strongly attenuates scattering from ob
jects close to the ground and enhances targets located around HOA/2. 

The shape of the modulation function depends on kz, which depends 
on the baseline and acquisition geometry. To maximise the contribution 
of the canopy, the baseline should be selected so that the first maximum 
falls at the height within the canopy where the correlation and sensi
tivity to AGB is highest. The selection of such an optimal baseline is 
challenging for both airborne and spaceborne interferometric SAR sys
tems. In the airborne case, unstable flight trajectories and large inci
dence angle variations cause significant baseline fluctuations in the 
range and azimuth directions. In the spaceborne case, the incidence 
angle variability is smaller due to the higher altitude, and the flight 
trajectory is more stable because there is no perturbing atmosphere. 
However, the baselines are more difficult to control and are subject to 
complex latitudinal and longitudinal variations. 

To mitigate the effect of sub-optimal baselines, a technique called 
equalisation is employed (d’Alessandro et al., 2020). This uses all 
available SLC images within an interferometric or tomographic stack (i. 
e., a set of co-registered images of the same scene) to interpolate a 
synthetic SLC image with the required baseline relative to the master 
image. It also reduces baseline fluctuations within a scene caused by 
incidence angle variability and flight trajectory fluctuations. 

Finally, the ground-cancelled and equalised backscatter intensity | 
sGCE|2 is normalised to σ0 to provide an estimate of CB: 

σ0
cnp = c〈|sGCE|

2 〉cosψ (3)  

where c is a calibration constant, 〈⋅〉 denotes spatial averaging over a 
window, and ψ is the angle between the ground surface normal and the 
image plane normal, as depicted in Fig. 1 (Ulander, 1996). 

CB estimation is performed for each polarisation and stack of SLC 
images, and results in one CB image per polarisation and stack, inde
pendent of the number of images within the individual stacks. 

2.2. Estimation of power law model parameters 

The dependence of CB on AGB is described using a power law model 
(PLM), which is fitted to the data using an approach based on sampling 
the SAR data and constrained nonlinear minimisation of a cost function. 

2.2.1. The power law model (PLM) 
The PLM describes the dependence of σ0

cnp (3) on AGB (W, in t/ha) 
and the local incidence angle (ϑ, the angle between the range direction 
and the ground surface normal, see Fig. 1). It requires three parameters 
for each polarisation PQ: a scaling factor (APQ) and two exponents, one 
for AGB (αPQ) and one for the incidence angle normalisation (nPQ) 
(Banda et al., 2020; Quegan et al., 2019; Soja et al., 2018): 
(

σ0
cnp

)

PQ
= APQWαPQ cosnPQ ϑ (4) 

The PLM is well-supported by experimental results from nearly three 
decades of research (Le Toan et al., 2011; Quegan et al., 2019; Sandberg 
et al., 2011; Schlund et al., 2018; Soja et al., 2013, and references 
therein) and is an asymptotic form of more advanced theoretical models 
available in the literature. As an example, the model proposed in 
Truong-Loï et al. (2015) predicts direct canopy backscatter as the 
product of a power law function and an attenuation function: 
(

σ0
cnp

)

PQ
= APQWαPQ

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
power law

(

1 − exp
(

−
BPQWβPQ

cosθ

))

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
attenuation

cosθ (5)  

where BPQ and βPQ are polarisation-dependent model parameters and θ 
is the global incidence angle (the angle between the range vector and the 
vertical direction, see Fig. 1). This combines elements of two models 
commonly used to describe the dependence of backscatter on AGB: 

• A power law model, which is most commonly used for AGB estima
tion from backscatter at lower frequencies (Schlund et al., 2018). In 
the special case of backscattering from a single thin dielectric cyl
inder, backscatter intensity is proportional to the square of its vol
ume; this approximation has been used in the past to model low- 
frequency SAR backscatter from boreal forests (Brolly and Wood
house, 2012; Smith-Jonforsen et al., 2005).  

• An attenuation model, rooted in the water cloud model (Attema and 
Ulaby, 1978). The water cloud model is the basis for both the 
interferometric water cloud model, primarily used for AGB and stem 
volume estimation from interferometric SAR data (Askne et al., 
1997, 2013; Soja et al., 2017), and the random volume over ground 
model commonly used for forest height estimation from PolInSAR 
data (Cloude and Papathanassiou, 1998; Hajnsek et al., 2009a; 
Papathanassiou and Cloude, 2001). 

While the results in Truong-Loï et al. (2015) are promising, the 
approach used for parameter estimation requires substantial amounts of 
reference and simulation data, which makes it unsuitable for large-scale 
applications. One way to estimate the parameters is by fitting (5) to data 
acquired during airborne campaigns. Although this approach has given 
some positive results (Soja et al., 2018), further studies have concluded 
that it is numerically unstable, probably because of the interactions 
between the power law and attenuation parts. In fact, for reasonable 

Fig. 1. Geometry of the data acquisition for a left-looking SAR system: ϕ is the 
flight heading angle, θ is the global incidence angle, ϑ is the local incidence 
angle, and u and v are the ground slope and slope aspect angles. The angle 
between the image surface normal and the ground surface normal is referred to 
as ψ and is used for accurate calibration to σ0 (Ulander, 1996). 
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values of the parameters (non-negative and within limits supported by 
experimental studies and theoretical arguments), both parts of (5) are 
increasing functions of AGB, and separation of these effects is difficult. 

Two simpler asymptotic cases of (5) can be distinguished (Quegan 
et al., 2019). For high attenuation, i.e., when BPQWβPQ ≫ 1, the expo
nential vanishes, and the model transforms into a power law function 
(Soja et al., 2018): 
(

σ0
cnp

)

PQ
≈ APQWαPQ cosθ (6) 

Conversely, for low attenuation, i.e., when 0 < BPQWβPQ ≪ 1, a first- 
order Taylor expansion of the exponential term also yields a power law 
function, but without the cosine term: 
(

σ0
cnp

)

PQ
≈ A′

PQWα′

PQ (7)  

where A′

PQ = APQBPQ and αPQ
′ = αPQ + βPQ. 

The PLM in (4) can be seen as a generalised case of (6) and (7), with 
the exponent nPQ emulating the transition from the high-attenuation 
case (with nPQ = 1) to the low-attenuation case (with nPQ = 0). While 
not intended as a rigorous derivation, this is the motivation for selecting 
(4) as the basis of the algorithm. Note that in (4), the local incidence 
angle (ϑ) is used, while (5) and (6) use the global incidence angle (θ). 
This is a commonly used first-order correction for topographic effects 
(Small, 2011; Ulander, 1996; Villard and Le Toan, 2015). 

Fitting to data uses the log-transformed version of (4), which con
verts it to the simple form: 

sPQ = lPQ + αPQw + nPQc (8)  

where sPQ = 10 lg [kPQ(σ0
cnp)PQ] (with kPQ = 1 for the HH and VV 

channels and 2 for the HV channel), c = 10 lg (cosϑ), lPQ = 10 lg APQ, w 
= 10 lg W, and lg denotes base-10 logarithm. The polarisation weight 
kPQ is used to correctly account for the total backscattered power. 

Note that (8) is nonlinear when lPQ, αPQ, nPQ and w are all unknown 
parameters and the observed quantities are sPQ (one for each polar
isation) and c. Consequently, iterative methods are needed to simulta
neously estimate w and the three PLM parameters. Only in the special 
case when w is known (i.e., when reference AGB data are available) does 
the model become linear, whereupon the model parameters can be 
estimated using linear regression. 

2.2.2. The estimation approach 
The model (8) is fitted to data using constrained nonlinear mini

misation of a cost function J (e.g., the Python SciPy implementation of 
the BFGS algorithm; Nocedal and Wright, 2006), where the estimated 
values are constrained to lie in the ranges shown in Table 1. These in
tervals were selected based on physical interpretation of the PLM pa
rameters and the AGB levels expected for the studied forests; the 
minimum values for W and αPQ were found empirically to give better 
numerical stability. 

The cost function is expressed as the sum of squared differences 
between the CB coefficient modelled with (8) and the logarithm of the 
CB coefficient estimated from experimental data with (3). It is calculated 
for a large number of SAR data samples, which provide a good repre
sentation of the backscatter and incidence angle variability across the 
entire scene. Two types of sampling areas are used:  

• calibration (CAL) areas, consisting of a few areas with AGB available 
from a reliable external source (e.g., in situ measurements), 

• estimation (EST) areas, consisting of a large number of systemati
cally distributed areas with unknown AGB, but well-represented in 
terms of incidence angle and backscatter variability. 

Consequently, J can be expressed as the sum of two cost functions, 
one for the calibration areas (JCAL) and one for the estimation areas 
(JEST): 

J(l, α , n,w) = JCAL(l, α, n) + JEST(l, α, n,w) (9)  

where l = […, lPQ,…], α = […,αPQ,…] and n = […,nPQ,…] are vectors 
containing the PLM parameters for all polarisations PQ, and w = [w1,…, 
wi,…,wNEST] is a vector containing the AGB in decibels (i.e., w) for all 
NEST estimation areas. 

The cost functions for the calibration and estimation areas are: 

JCAL(l, α , n) =
1

NCAL

∑NCAL

i=1

∑M

j=1

∑

PQ

(
lPQ + αPQwCAL

i + nPQcCAL
ij − sCAL

PQij

)2

(10)  

JEST(l, α , n,w) =
1

NEST

∑NEST

i=1

∑M

j=1

∑

PQ

(
lPQ + αPQwi + nPQcEST

ij − sEST
PQij

)2

(11)  

where M is the number of independent stacks used to obtain the CB 
images, NCAL is the number of calibration areas, and superscripts CAL 
and EST are used to indicate the measured values for sampling area i and 
stack j (this includes w for calibration areas). Note that (10) and (11) 
assume that all calibration and estimation areas are covered by all stacks 
and all polarisations, and that the AGB and PLM parameters are the same 
for all stacks. If these assumptions become invalid, additional parame
ters and indexing need to be introduced in (10) and (11), but that is 
outside the scope of this paper. 

To obtain physically meaningful results, all parameters are con
strained within pre-defined intervals by parameterising each parameter 
p (where p can be any of lPQ, αPQ, nPQ, or wi) with a new, unconstrained 
parameter xp. The desired (constrained) parameter value is calculated 
from xp by: 

p
(
xp
)
= pmax + (pmax − pmin)sin2xp (12)  

where pmin and pmax are the smallest and largest permissible values of p, 
as per Table 1. The cost function J is minimised with respect to xp rather 
than p. The function (12) was selected because it is simple, easily 
differentiable, and has provided reliable results in this study. Other 
functions may be used, but selection of the optimal function is the 
subject of further study. 

2.2.3. Sampling considerations 
The proposed approach simultaneously estimates PLM parameters 

and AGB for the estimation areas. Although this involves a large number 
of unknown parameters, the even larger number of measured quantities 
and the additional constraints in the form of calibration data and pre- 
defined parameter intervals make this possible. In fact, assuming three 
polarisations, only one stack of SLC data (M = 1), and two calibration 
areas (NCAL = 2), the total number of observations is 3(2 + NEST) (one 
backscatter coefficient per polarisation for each calibration and esti
mation area), while the number of unknown parameters is NEST + 9 (one 
AGB value for each estimation area and one parameter value per 
polarisation for each of the three parameters). Hence, even with only 
two estimation areas (NEST = 2), the number of unknown parameters is 
smaller than the number of observables (11 and 12, respectively). 
However, practical applications require many more estimation areas to 
account for similarities between multiple observations and data imper
fections. We ensure NEST > 150, which was found to be a good trade-off 

Table 1 
Constraints imposed in the minimisation on AGB and PLM parameters for 
polarisation PQ.  

Parameter Unit Lower limit (pmin) Upper limit (pmax) 

AGB (W) t/ha 1 700 
lPQ dB − 60 0 
αPQ dB/dB 0.01 2.0 
nPQ 1 0.0 3.0  
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between computational efficiency and numerical stability for the reso
lution and spatial coverage of the SAR data used in this paper (see 
Section 3). 

The two terms in the cost function J (9) serve different purposes. By 
including many estimation areas in the minimisation, the forward model 
can be fitted to a wide range of different combinations of CB, AGB and 
local incidence angle across the scene, and thus provide a better repre
sentation of the spatial and polarisation variability in the data. More
over, the constraints applied during fitting restrict the predicted AGB 
values to a pre-defined, physically motivated interval, e.g., based on a 
priori knowledge of the studied forest. 

The cost function for the calibration areas is necessary to provide 
unbiased AGB estimation, as can be seen if only JEST in (11) is mini
mised. Then any value of w related to the logarithm of the true AGB, w0, 
by: 

w = q0 + q1w0 + q2c, (13)  

where q0, q1 and q2 are arbitrary, would be consistent with the known 
values of sPQ and c for an appropriate set of values of lPQ, αPQ and nPQ. 
This is easily verified by substituting (13) into (8): 

sPQ = lPQ + αPQw + nPQc = (lPQ + αPQq0) + αPQq1w0+

(αPQq2 + nPQ)c ≡ l
′

PQ + α′

PQw0 + n′

PQc (14)  

Unless dealt with, this ambiguity will cause biases in the AGB 
estimation. 

Including the calibration areas, for which the relation between w, w0 
and c is fixed, in the total cost function J can resolve this ambiguity. The 
approach is flexible with respect to calibration data, as there is no im
plicit requirement on the reference AGB data and the calibration is 
performed using all available information. It is also flexible with respect 
to available SAR data: the same formulation can be used with single and 
multiple SAR data stacks, both fully and partially overlapping (e.g., ac
quisitions from adjacent orbits or acquisitions from the ascending and 
descending directions), and fully polarimetric data are not strictly 
required (although having multiple polarisations is recommended). 
Finally, AGB and PLM parameter constraints can be easily enforced in 
the proposed formulation. 

The four main challenges of the approach are a complex algorithm, a 
high computational load, numerical instabilities related to the nonlinear 
fitting, and uncertainties related to the availability and quality of cali
bration data. The first three challenges can be addressed with adequate 
computational implementation, so they will not be addressed further in 
this paper. The fourth issue is more critical, as it relates to the available 
reference AGB measurements, which are costly and time-consuming to 
acquire. As it is paramount that the algorithm performs well with the 
available reference data, this is the main focus of what follows. 

A different way to resolve the ambiguity expressed in (13) is to es
timate the three parameters q0, q1 and q2 using a set of calibration data 
with known values for w, w0 and c. Once the three parameters are 
estimated, (13) can be used to post-calibrate the obtained AGB estimates 
for all estimation areas. However, with this approach it is difficult to 
enforce constraints on the AGB and PLM parameter estimates. Moreover, 
to estimate the three parameters in (13), a minimum of three indepen
dent calibration measurements is needed. As shown later, the proposed 
approach can provide reliable AGB estimates using only two calibration 
measurements. 

2.3. AGB estimation 

Once the PLM parameters lPQ, αPQ and nPQ are known for all polar
isations, the AGB can be estimated for any area with available mea
surements of sPQj and cj using: 

ŵ =
∑

PQ

∑M

j=1
λPQ ŵPQj (15)  

where 

ŵPQj =
sPQj − lPQ − nPQcj

αPQ
(16)  

is the estimated AGB in decibels for polarisation PQ and stack j, obtained 
by solving (8) for w, and 

λPQ =
α2

PQ

M
∑

PQ
α2

PQ
(17)  

is the weight for polarisation PQ. Note that the estimate of the AGB (in 
dB) in (15) is a weighted sum of the individual estimates obtained for 
each polarisation and stack, where the weight is determined by 
parameter α, i.e., the sensitivity of the particular polarisation to the 
logarithm of AGB. Effectively, the polarisations and stacks with better 
sensitivity to AGB make a greater contribution to the final estimate. 

The final AGB estimates are obtained by transforming (15) back to 
linear units (t/ha) and correcting for logarithmic bias (Finney, 1941) 
using the method proposed by Snowdon (1991): 

Ŵ = ρ⋅100.1ŵ (18)  

where the multiplicative correction factor ρ is estimated from CAL data 
using: 

ρ =

∑NCAL
i=1 WCAL

i
∑NCAL

i=1 Ŵ
CAL
i  

where Ŵ
CAL
i is the AGB estimate (in t/ha) for CAL area i, obtained by 

transforming the results from (15) back to linear units, and where Wi
CAL 

is the corresponding reference AGB estimate. 

3. Data 

3.1. Test sites 

This study uses data from two test sites in French Guiana (Paracou 
and Nouragues), South America, and four located in Gabon, in equato
rial Africa (Lopé, Mabounié, Mondah, and Rabi), see Fig. 2. 

3.1.1. French Guiana 
Nouragues (4.06◦N, 52.68◦W) is situated about 105 km south- 

southwest of Cayenne, French Guiana. For the parts of the test site 
relevant to this paper, altitude above sea level varies between 26 and 
280 m, with rolling hills causing significant topographic variations. The 
site contains about 145 tree species per hectare and is covered by both 
high-canopy, old-growth forest and other forest types, including peri
odically flooded forest. The forest is protected and no major distur
bances have occurred in the last 100 years. 

Paracou (5.27◦N, 52.93◦W) is situated roughly 75 km west- 
northwest of Cayenne. Altitude above sea level varies between 5 and 
45 m and the topographic variations are somewhat gentler than in 
Nouragues. There are about 140 tree species per hectare and the site is 
dominated by moist evergreen rainforest. 

3.1.2. Gabon 
Lopé (0.20◦ S, 11.59◦ E) is located approximately 250 km east- 

southeast of Libreville. Topographic variations are moderate, with alti
tudes above sea level varying between 200 and 600 m. The site consists 
of an undisturbed, primary forest-savanna mosaic that is part of a pro
tected national park with an average species density of 35 ha− 1. 

Mabounié (0.76◦S, 10.56◦E) is located roughly 180 km south-east of 
Libreville. Altitudes above sea level vary between 25 and 230 m, with 
significant topographic undulations. The site has a species density of 
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about 55 ha− 1 and the landscape is mostly forested, with areas of sub
stantial forest degradation. 

Mondah (0.57◦N, 9.35◦E) is located roughly 25 km north-west of 
Libreville. Most of the test site has altitude less than 50 m above sea 
level. The site has a similar species density to Lopé and the landscape 
consists of varying vegetation types, including mixed and Aucoumea- 
dominated forests. 

Rabi (1.92◦ S, 9.88◦ E) is located roughly 260 km south of Libreville. 
Altitudes above sea level vary between 30 and 80 m. Vegetation is 
dominated by lowland tropical rainforest with a species density of about 
85 ha− 1. 

3.2. Insitu data 

Field inventories were carried out for all six test sites, but on different 
occasions, by different research groups, following different protocols, 
and acquiring slightly different measurements. All field data were later 
jointly analysed using the same approach (Labrière et al., 2018). For 
consistency, only trees with diameter at breast height (dbh) greater than 
10 cm were selected for the analysis. AGB estimates were obtained for 
each tree using the measured dbh, species-specific wood density, and an 
AGB estimation model available within the R BIOMASS package (Réjou- 
Méchain et al., 2017). AGB values for all trees within plots were then 
aggregated to plot-level estimates. For this study, only plots with size 1 ha 
were included. Additional information about the plot-level data can be 
found in Table 2 and in Hajnsek et al. (2017) and Labrière et al. (2018). 

3.3. ALS-based AGB maps 

For all six test sites, airborne laser scanning (ALS) surveys were 
conducted within a few years of the field inventories and/or SAR ac
quisitions. Somewhat different methodologies were used for the 
different datasets, and point densities varied between 2.4 m− 2 for Lopé 
and 30.5 m− 2 for Mondah. The returns were first classified as ground or 
vegetation, and then a digital terrain model (DTM) and a canopy height 
model (CHM) were created on a 1 m × 1 m grid. From the CHM, a mean 
canopy height (MCH) map was created with a grid posting of 50 m × 50 
m. Using the plot-level AGB estimates described in Section 3.2 and the 
associated MCH values, one empirical MCH-AGB relationship was 
established for the six test sites described in Section 3.1 (Labrière et al., 
2018). For each test site, this empirical model was then used to create a 
50 m × 50 m AGB map for the entire area covered by ALS data. The 
estimated root-mean-square error of the MCH-AGB relationship for the 
1 ha in situ plots was 47.5 t/ha and the estimated bias was 2.1%. 
Additional information about the ALS data and AGB maps can be found 
in Table 2 and in Hajnsek et al. (2017) and Labrière et al. (2018). 

3.4. SAR data 

Airborne P-band SAR data were collected at Nouragues and Paracou 
in August 2009 (Table 2) by the SETHI system from the French Aero
space Lab (ONERA) as part of the ESA TropiSAR campaign (Dubois- 
Fernandez et al., 2011). The SETHI system was left-looking and used a 
centre frequency of 440 MHz, a bandwidth of 70 MHz, and it covered 
incidence angles between 24◦ and 62◦. Polarimetric SAR data were ac
quired with various temporal and/or spatial baselines over four test 
sites, of which Nouragues and Paracou were selected for this study due 
to the availability of multi-baseline data acquired on the same day. 
These provided one data stack for each test site. Due to calibration un
certainties observed in near range in the TropiSAR data (Banda et al., 
2020), only data with incidence angles above 33∘ in Nouragues and 30∘ 

in Paracou were used. 
The Lopé, Mabounié, Mondah and Rabi data were collected in 

February 2016 by the F-SAR system from the German Aerospace Center 
(DLR) as part of the AfriSAR campaign (Hajnsek et al., 2017). The F-SAR 
system was right-looking and used a centre frequency of 435 MHz, a 
bandwidth of 50 MHz, and it covered a swath with incidence angles 
between 25◦ and 55◦. Over 80 polarimetric SAR datasets with various 
baselines and multiple headings were acquired over the four test sites. 
We considered only multi-baseline data acquired on the same day, 
resulting in four stacks with different flight headings for Lopé and one 
each for the other three test sites. 

A total of nine SAR data stacks were therefore available, and these 
were organised into seven datasets (Table 2). Six single-heading datasets 
were created, one for each test site. In Lopé, the single-heading dataset 
consisted of four stacks with different flight headings, while in the 
remaining five test sites, each dataset consisted of one stack. Addition
ally, one dual-heading dataset was created in Lopé, consisting of all pairs 
of the four stacks, which resulted in a total of six stack pairs with unique 
flight heading combinations. For the single-heading datasets, AGB esti
mation was performed individually for each stack, while for the dual 
heading dataset in Lopé, AGB estimation was performed individually for 
each stack pair. 

In order to simulate BIOMASS data, each image was filtered to 6 MHz 
and multi-looked to a resolution of 50 m in both ground range and az
imuth directions, which is close to that of the 6-look BIOMASS data 
(Quegan et al., 2019). A DTM was then estimated from P-band SAR 
tomography using the approach described in d’Alessandro and Tebal
dini, 2019. Ground cancellation with equalisation was applied following 
the algorithm described in d’Alessandro et al., 2020, where the esti
mated DTM was used for ground steering. A HOA of 100 m was used 
during equalisation for all nine stacks, which was found to be a good 
trade-off between ground rejection performance and susceptibility to 

Fig. 2. The locations of the six studied test sites (blue triangles) in (a) French Guiana and (b) Gabon and the locations of the respective capitals Cayenne and 
Libreville (red diamonds). 
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Table 2 
Summary of the seven datasets used in this study, which were constructed from the nine SAR data stacks, individually or in pairs. Two datasets are available in Lopé: a single-heading dataset (Lo) consisting of four 
independent stacks made with different flight headings, and a dual-heading dataset (Lo-2), consisting of six different pairs of these stacks. The datasets for the other five test sites each consists of one single-heading stack. 
The table gives key information about the SAR and ALS data, the ALS-based AGB maps, and the sampling and calibration set-up of the CASINO algorithm. “Acq. date” is the date on which the stack of SAR data was 
acquired. “No of stacks” indicates the number of independent TomoSAR or PolInSAR stacks used (1 for single-heading datasets, 2 for dual-heading). “Stack size” is the number of co-registered, polarimetric SLC images 
within each stack. “Heading(s)” is the ϕ angle (or angles) depicted in Fig. 1 and measured relative to true north. “Inv. year(s)” is the in situ inventory year (or years). “No of plots” is the number of 1 ha in situ plots covered by 
the relevant stack or stacks (in parenthesis: the total number of plots available within the test site). “Plot stats” are the statistics for in situ plots covered by the relevant stack, given in the following format: mean (min, 
median, max). “Acq. year” is the year of ALS data acquisition. “Area” is the total area covered by ALS data and at least one SAR acquisition. “Dens.” is the point density of the original ALS dataset (in parenthesis: ground 
return density). “Map stats” are the statistics for the area of the AGB map covered by either of the SAR acquisitions over the test site, given in the following format: mean (5th percentile, median, 95th percentile). “Size” is 
the dimension of the square sampling areas, while “Grid” is the separation of the sampling areas in both directions. NEST and NCAL are the number of estimation and calibration areas, respectively. “No of tests” is the total 
number of unique calibration datasets.     

SAR data In situ data (1 ha plots) ALS data & AGB map Subsampling and calibration setup 

Dataset 
ID 

Stack 
ID(s) 

Test 
site 

System Acq. 
date 

No of 
stacks 

Stack 
size 
(s) 

Inc. 
angles 

[◦] 

Heading 
(s) [◦] 

Inv. year(s) No of 
plots 

Plot stats 
[t/ha] 

Acq. 
year 

Area 
[km2] 

Dens. 
[m− 2] 

Map stats 
[t/ha] 

Size 
[m] 

Grid 
[m] 

NEST NCAL No of 
tests 

No 1 Nouragues 

ONERA 
SETHI  

1 

5 33–49 179 2010, 2012 
16 

(33) 
376 (255, 
370, 577) 

2012 13.3 
19.9 
(0.3) 

360 (168, 
381, 465) 

150 

250 236 

2 500 

Pa 2 Paracou 2009- 
08-24 

6 30–50 8 2009 79 
(89) 

359 (239, 
368, 465) 

2009 9.1 5.7 
(0.1) 

345 (294, 
345, 398) 

200 279 

Lo 

3 

Lopé 

DLR  
F-SAR 

2016- 
02-15 

3 

19–56 

124 

2016 

4 (9) 179 (0, 
172, 370) 

2015 16.0 2.4 
(0.1) 

277 (6, 
339, 436) 

200 230 

4 230 

5 (9) 
205 (0, 

312, 370) 

250 209 

5 275 250 212 

6 320 200 300 

Lo-2 

3 & 4 

2 3 & 3 

124 & 
230 

4 (9) 179 (0, 
172, 370) 

200 214 

3 & 5 124 & 
275 

200 223 

3 & 6 124 & 
320 

200 174 

4 & 5 230 & 
275 

5 (9) 205 (0, 
312, 370) 

250 204 

4 & 6 230 & 
320 

200 282 

5 & 6 
275 & 
320 200 299 

Ma 7 Mabounié 
2016- 
02-11 

1 

4 21–57 180 2012 7 (12) 
309 (175, 
312, 465) 2007 77.1 

4.3 
(0.1) 

307 (211, 
311, 383) 550 222 

Mo 8 Mondah 
2016- 
02-04 11 22–57 90 2016 

10 
(15) 

94 (2, 74, 
264) 2011 40.8 

30.5 
(2.3) 

208 (31, 
181, 434) 400 213 

Ra 9 Rabi 
2016- 
02-07 4 23–51 310 2010–2012 

25 
(25) 

314 (222, 
310, 533) 2015 9.1 

2.5 
(0.05) 

277 (184, 
280, 358) 200 161  

M
.J. Soja et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 253 (2021) 112153

8

ambiguities for the tropical forests studied in this paper. The data were 
then calibrated to σ0 using the ψ angle calculated from the estimated 
DTM, and interpolated onto the same coordinate systems as the ALS- 
based AGB maps described in Section 3.3. All other angles (local inci
dence angle ϑ, slope angle u, and slope aspect angle v, see Fig. 1) were 
also calculated from the estimated DTM. 

3.5. AGB estimates 

The PLM parameters and AGB were estimated from single-heading 
data for all six test sites and the dual-heading data available only for 
Lopé. 

3.5.1. Single-heading datasets (all test sites) 
For each of the nine stacks, a square grid of square sampling areas 

was created within the region covered by both the SAR data and the AGB 
map. The size and spacing of the sampling areas were chosen to give 
between 150 and 300 areas per stack (found to be a good compromise 
between computational efficiency and AGB estimation performance) 
and at least 50 m separation between them (to decrease the risk of 
correlation between adjacent samples). This led to the sampling areas 
having size 150 m × 150 m for all stacks, and the spacing of their centres 
varying between 200 m × 200 m for the smaller stacks (Rabi, Paracou 
and two headings in Lopé) and 550 m × 550 m for the largest stack 
(Mabounié), see Table 2. For each of the sampling areas, CB and local 
incidence angle data were extracted from the images by averaging the 
corresponding nine pixels in the 50 m × 50 m images of σ0

cnp (in linear 
units) and ϑ. 

For each stack, 500 independent tests were carried out with different 
sets of calibration and estimation areas. In each test, two sampling areas 
were chosen at random and treated as calibration areas with AGB known 
from the ALS-based AGB maps. The AGB in the other sampling areas was 
then estimated. A different pair of calibration areas was used for each 
test and all calibration areas were required to have AGB > 100 t/ha. The 
number of estimation areas, NEST, varied across the stacks (Table 2). 

In each test, the PLM was fitted using the approach described in 
Section 2.2 to yield the nine PLM parameters (three parameters for each 
of the three polarisations) and NEST estimates of AGB (in decibels), 
which were converted to linear units (t/ha) and corrected for logarith
mic bias using (18). AGB maps with 50 m resolution were created from 
the CB and local incidence angle images using the approach described in 
Section 2.3. 

The single-heading results were grouped into six datasets: one with 
500 tests for each of the five test sites with one available flight heading 
(Nouragues, Paracou, Mabounié, Mondah and Rabi), and one for Lopé 
with 2000 tests, consisting of 500 tests for each of the four flight 
headings. 

3.5.2. Dual-heading dataset (Lopé only) 
For the dual-heading case, six pairs of stacks were available at Lopé. 

The estimation procedure was as in Section 3.5.1, except that the sam
pling areas were required to be covered by SAR data from both stacks, 
and the estimated AGB map was only created for the area of overlap 
between the two stacks. This resulted in fewer sampling areas and/or 
smaller separation between them than in the single-heading case. The 
results were grouped into a single dataset of 3000 tests, consisting of 500 
tests for each of the six pairs. 

4. Results 

This section evaluates the performance of the CASINO approach 
using the data described in Section 3. Section 4.1 addresses the influence 
of calibration data on AGB estimation, while Section 4.2 investigates the 
impact of different AGB levels, local incidence angles, ground slope 
angles, and test sites. In Section 4.3, the AGB mapping potential is 

studied using selected tests with good AGB estimation results, while 
Section 4.4 assesses AGB estimation performance against in situ AGB 
estimates at 1 ha plots. The relation between AGB estimation perfor
mance and test site properties is studied in Section 4.5. Finally, the 
stability of the estimated PLM parameters is studied across test sites and 
polarisations in Section 4.6. 

The following statistical measures, defined in Table 3, are used for 
quantitative analysis:  

• bias (t/ha);  
• absolute root-mean-square difference (RMSD, in t/ha);  
• relative RMSD, measured in percent (%) of the average reference 

AGB;  
• coefficient of determination (R2). 

4.1. Overall performance across calibration sets 

For each dataset, each test yields values of AGB for each of the NEST 
150 m × 150 m (2.25 ha) estimation areas. Forming the difference be
tween these estimates and the reference AGB in each estimation area 
allows the bias and RMSD for that test to be calculated. A distribution of 
bias, RMSD and relative RMSD is then formed from all tests for each of 
the seven datasets. These distributions are shown in Fig. 3 as boxplots, 
which indicate the median and the 5th, 25th, 75th, and 95th percentile 
values for each metric and each dataset. 

For all datasets, the median bias is small (Fig. 3(a)). In the single- 
heading case, bias dispersion is smallest for Mondah and Lopé, where 
for 90% of the tests it lies in the range − 46 to 56 t/ha and − 56 to 63 t/ 
ha, respectively. In Rabi and Mabounié, the spread is larger, and larger 
still for the French Guiana sites. In Nouragues, 90% of tests have bias 
between − 143 t/ha and 85 t/ha, with similar values for Paracou. The 
dual-heading case for Lopé results in 90% of the tests having bias be
tween − 48 and 55 t/ha, which is better than for the single-heading case. 

The smallest single-heading RMSDs are observed in Lopé and Mon
dah (Fig. 3(b)): for 75% of the tests, RMSD ≤ 68 t/ha for Mondah and 
RMSD ≤ 82 t/ha for Lopé. As before, the largest differences are seen in 
Nouragues and Paracou, with RMSD ≤ 120 t/ha and 116 t/ha, respec
tively, for 75% of the tests. For the dual-heading Lopé case, RMSD ≤ 71 
t/ha is observed for 75% of the tests, which is significantly better than 
for the single-heading case in Lopé. 

The relative RMSD is similar for all datasets (Fig. 3(c)). In the single- 
heading case, the median relative RMSD lies between 20% and 27% for 
all test sites. In Rabi, 75% of all tests have relative RMSD ≤ 29%, while 
the corresponding values are 32% for Mondah, 33% for Paracou and 
Lopé, 34% for Nouragues, and 35% for Mabounié. The dispersion is 
highest in Paracou and Mabounié, with 5% of the tests showing RMSD ≥
61% and 56%, respectively. In the dual-heading Lopé case, the median 
relative RMSD is 22%, and 75% of the tests have an RMSD ≤ 28%, which 
is significantly better than the single-heading case. 

Fig. 4 shows the distributions of bias and RMSD for the CASINO al
gorithm and two simplified cases in which the PLM parameters were 
estimated from CAL data only: one with constraints on PLM parameters 

Table 3 
Definitions of the performance metrics: W are the AGB estimates, W0 are the 
reference AGB values, 〈⋅〉 denotes averaging over the given set of measurements, 
and RMSD is root-mean-square difference.  

Quantity Unit Formula 

Bias t/ha 〈W − W0〉  
Absolute RMSD t/ha ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈(W − W0)
2 〉

√

Relative RMSD % 100
〈W0〉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈(W − W0)
2 〉

√

Coefficient of determination (R2) % 
100

⎛

⎝1 −
〈(W − W0)

2 〉
〈(W0 − 〈W0〉 )2 〉

⎞

⎠
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and one without. To avoid unrealistic AGB estimates in both simplified 
cases, the obtained AGB values were truncated to the interval shown in 
Table 1. Due to the low number of CAL areas, the simplified cases could 
only be used with the dual-heading Lopé case (Lo-2, see Table 2). In both 
simplified cases, the results are worse than for the CASINO algorithm. 
For the simplified case with constraints on PLM parameters, the median 
bias is 8 t/ha and the bias lies between − 147 and 66 t/ha for 90% of the 
calibration datasets. For 75% of the tests, the RMSD is below 89 t/ha (or 
36% of the average AGB). When no constraints are applied, the per
formance is much worse: the median bias is significantly larger (48 t/ 
ha), for 90% of the calibration datasets the bias is between − 44 and 261 
t/ha, and for 75% of the tests, the RMSD is below 210 t/ha (84%). 

4.2. Performance under different conditions 

Fig. 5 shows the dependence of bias and absolute and relative RMSD 
on AGB, local incidence angle, ground slope angle, and ground slope 
direction relative to the SAR antenna. Each variable is divided into three 
groups, as indicated in Fig. 5, and the performance metrics are calcu
lated for each group and dataset, using all tests and available 150 m ×
150 m estimation areas. Histograms of occurrence frequency of the 
variables across the groups are also shown. Values are only displayed in 
Fig. 5(a-l) when the occurrence frequency is at least 10%. 

For all datasets except Nouragues and Mabounié, the bias is between 
±25 t/ha and there is no strong dependence on any of the reference 
parameters (Fig. 5(a-d)). In Nouragues, AGB is significantly under
estimated for high incidence angles (ϑ > 45∘), large slopes (u > 8∘), and 
slopes away from the antenna. These three effects are connected: large, 
away-facing slopes will lead to an increased local incidence angle. 
Overestimation is observed for small slopes (u < 4∘), which occur in 
around 10% of all samples. There is similar underestimation for away- 
facing slopes in Mabounié, but no clear trends with either incidence 
angle or ground slope. Note that Nouragues and Mabounié have the 
most marked topographic variation amongst all the test sites (Fig. 5(o)). 

The RMSD tends to be higher in Nouragues, Paracou and Mabounié, 

which have the highest average AGB levels (Fig. 5(e-h) and Table 2), and 
it typically increases with increasing AGB, increasing ground slope, and 
decreasing incidence angles. In Lopé, the RMSD is about 10 t/ha lower 
for dual-heading than for single-heading data. 

The relative RMSD has similar levels for all six test sites (Fig. 5(i-l)), 
and there is a clear dependence on AGB: for AGB < 200 t/ha, the relative 
RMSD is between 50% and 80% for Lopé and Mondah (the only test sites 
with a significant contribution to this group), while for AGB > 200 t/ha, 
the relative RMSD is between 18% and 33% for all six test sites. The use 
of dual-heading data at Lopé improves the relative RMSD from 25% and 
21% for the medium- and high-AGB groups to 21% and 18%, respec
tively. For Mondah, relative RMSD increases from up to 25% for ϑ < 45∘ 

to 51% for ϑ > 45∘. 

4.3. Examples of best-case performance 

Figs. 6–8 show some of the best AGB mapping results for each of the 
seven datasets. This evaluation was done to investigate the potential of 
CASINO for mapping of spatial trends in AGB with only two CALs, as 
compared with the ALS-based AGB maps. For each dataset, a single test 
was manually selected for which the absolute bias ≤ 5 t/ha and relative 
RMSD ≤ 20%, and the spatial features visually matched each other as 
well as possible. The results are shown as maps and scatterplots, 
together with performance metrics, for both the 2.25 ha estimation areas 
and for the 0.25 ha pixels. Canopy backscatter for HV polarisation (sHV) 
is also shown. 

The visual features in the estimated and reference AGB maps for 
Nouragues are comparable (Fig. 6(a)), but there is large pixel-to-pixel 
variability and a tendency to overestimate AGB for AGB < 300 t/ha. 
Nevertheless, AGB estimation was successful for the two calibration 
areas in Nouragues, as indicated by the scatterplot in Fig. 6(a). The 
coefficient of determination for the 0.25 ha pixels is low (27%) and the 
RMSD is 84 t/ha (23%). For Paracou (Fig. 6(b)), the RMSD is only 63 t/ 
ha (18%), but few features are correctly represented. However, the 
reference map covers only a narrow range of AGB, as indicated in 

Fig. 3. Distributions of (a) bias in t/ha, (b) absolute RMSD in t/ha, and (c) relative RMSD in percent, across the seven datasets. The boxplots show the statistics for 
each of the three performance metrics (Table 3). The centrelines indicate the medians, boxes indicate the 25th and 75th percentiles, and whiskers indicate the 5th and 
95th percentiles, calculated from 2000 (Lo), 3000 (Lo-2) or 500 (No, Pa, Ma, Mo, Ra) individual values for each metric. Whisker values outside the scale are indicated 
with red digits, while the black vertical lines separate the single-heading results from the dual-heading results. 

Fig. 4. Comparison between the CASINO algorithm (using both CAL and EST data to estimate AGB) and two simplified cases in which the PLM parameters are 
estimated directly from CAL data, with and without constraints on the PLM parameters. The figures show the distributions of (a) bias in t/ha, (b) absolute RMSD in t/ 
ha, and (c) relative RMSD in percent, as defined in Table 3. The centrelines indicate the medians, boxes indicate the 25th and 75th percentiles, and whiskers indicate 
the 5th and 95th percentiles, calculated from 3000 individual values for each metric. Whisker values outside the scale are indicated with red digits. For the two 
simplified cases using only CAL data, AGB estimates were truncated to the interval given in Table 1. The results for CASINO are the same as those for the Lo-2 dataset 
in Fig. 3. 
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Fig. 5. The dependence on AGB, local incidence angle, ground slope angle, and ground slope direction (2.25 ha scale) for: (a-d) bias in t/ha; (e-h) absolute RMSD in 
t/ha; (i-l) relative RMSD in percent. (m-p) Distribution of samples across the groups. In (a-l), only results from groups with at least 10% of all samples are included; 
the 10% occurrence threshold is marked with red lines in (m-p). 

Fig. 6. Best-case AGB estimation results in (a) Nouragues and (b) Paracou, in French Guiana. The leftmost plots show the 150 m × 150 m estimation (EST) areas, two 
150 m × 150 m calibration (CAL) areas, and the 1 ha in situ plots. The next three plots show the canopy backscatter for HV polarisation (sHV), the reference AGB map 
from ALS data, and the best-case AGB map estimated from SAR with CASINO. The rightmost plots show 2D histograms created using all pixels from the reference and 
estimated AGB maps, with the colour scale indicating the number of pixels; these plots include performance metrics for the 2.25 ha EST areas (bottom right corner) 
and the 0.25 ha pixels (top left corner). The red dots in the scatterplots show estimation results for the two CAL areas. The SAR data were acquired with the left- 
looking SETHI system. 
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Table 2. 
For the Gabon single-heading datasets (Fig. 7), the estimated AGB 

maps match most of the large-scale features within the reference scenes, 
but there is some residual local incidence angle dependence in 
Mabounié (Fig. 7(b)) and unexplained fine-scale noise-like variability in 
the estimated AGB maps for Lopé, Mabounié and Mondah. The RMSDs 
for the 0.25 ha pixels are 87 t/ha (34%) for Lopé, 76 t/ha (24%) for 
Mabounié, 57 t/ha (27%) for Mondah, and 55 t/ha (19%) for Rabi. For 
the two test sites with the largest AGB intervals, Mondah and Lopé, the 
coefficients of determination for pixel-level AGB estimates are 82% and 
71%, respectively. 

The dual-heading Lopé data (Fig. 8) yield better results than the 
single-heading data (Fig. 7(a)), with an RMSD for the 0.25 ha pixels of 

60 t/ha (24%) and a coefficient of determination of 86%. The fine-scale 
variability is less pronounced and there is less variability for AGB > 300 
t/ha. 

4.4. Assessment against in situ data 

Fig. 9 compares AGB estimates for the 1 ha plots shown in Figs. 6–7 
and derived from: (i) in situ measurements (Section 3.2); (ii) ALS-based 
AGB maps (Section 3.3); and (iii) single-heading SAR-based AGB maps 
for the best-case tests (Section 4.4). The AGB estimates derived from the 
50 m × 50 m maps were formed by first block-averaging to 100 m × 100 
m and then linearly interpolating to the plot centres. 

When compared with ALS-based AGB estimates, the best-case single- 

Fig. 7. Best-case AGB estimation results in (a) Lopé (heading: 275 deg), (b) Mabounié, (c) Mondah, and (d) Rabi, in Gabon. The leftmost plots show the 150 m × 150 
m estimation (EST) areas, two 150 m × 150 m calibration (CAL) areas, and the 1 ha in situ plots. The next three plots show the canopy backscatter for HV polarisation 
(sHV), the reference AGB map from ALS data, and the best-case AGB map estimated from SAR with CASINO. The rightmost plots show 2D histograms created using all 
pixels from the reference and estimated AGB maps, with the colour scale indicating the number of pixels; these plots include performance metrics for the 2.25 ha EST 
areas (bottom right corner) and the 0.25 ha pixels (top left corner). The red dots in the scatterplots show estimation results for the two CAL areas. The SAR data were 
acquired with the right-looking F-SAR system. 
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heading SAR estimates for all six test sites give an RMSD of 46 t/ha 
(14%) and a coefficient of determination of 70% (Fig. 9(a)). When SAR- 
based estimates are compared with in situ AGB, the RMSD increases to 
66 t/ha (20%) and the coefficient of determination decreases to 58% 
(Fig. 9(b)). Note that the comparison between ALS and in situ AGB is only 
slightly better (Fig. 9(c)), with an RMSD of 59 t/ha (18%) and a coef
ficient of determination of 67%. Both SAR and ALS overestimate AGB for 
nearly all plots when in situ AGB < 200 t/ha. 

4.5. The impact of test site properties on AGB estimation performance 

Sections 4.1–4.3 show that the best AGB estimation results were 
obtained at Lopé and Mondah, while the performance was worst at 
Paracou. Moreover, performance was affected by conditions such as 
AGB level and topography. Here the AGB estimation performance is 
assessed with respect to properties of each test site. For compactness, we 
only discuss relative RMSD for estimation areas where the reference 
AGB > 200 t/ha. 

Fig. 10 shows scatterplots, for all six test sites, of median relative 
RMSD and its range between the 5th and 95th percentiles against: (i) 
average slope, calculated as the mean ground slope angle u; (ii) average 
AGB, calculated as the mean AGB; and (iii) AGB range, calculated as the 
difference between the 5th and 95th percentiles of AGB. Scatterplots in 
Fig. 10 show those cases where systematic behaviour was observed. The 
test site properties were calculated at 2.25 ha scale for all estimation 
areas, including those with AGB < 200 t/ha, and the dual-heading re
sults for Lopé are included. 

The median relative RMSD increases with increasing slope and 
increasing average AGB (Fig. 10(a-b)), while its range increases with 
increasing average AGB but decreases with increasing AGB range 

(Fig. 10(c-d)). The use of two flight headings at Lopé significantly re
duces the median relative RMSD, but gives only a small improvement in 
the relative RMSD range (although the single heading Lopé estimates 
already have the smallest range amongst all sites). 

4.6. Parameter variability across sites 

Fig. 11 shows the distributions of the estimated PLM parameters for 
different datasets and polarisations, together with the permissible 
parameter intervals (Table 1). In the single-heading case, 2000 PLM 
parameter sets were derived for Lopé and 500 sets for the remaining five 
test sites. In the dual-heading Lopé case, 3000 sets were derived. 

For Nouragues, Lopé, Mabounié and Rabi, the median values for APQ 
lie between − 45 dB and − 30 dB, while for Paracou and Mondah, they 
are occasionally higher (Fig. 11(a-c)). For all test sites except Paracou, 
APQ is a few dB lower for HV than for HH and VV. No clear differences 
are observed between the single- and dual-heading cases in Lopé. 

For all seven datasets, the median sensitivity, αPQ, of CB to AGB is 
typically between 0.5 and 1.5 dB/dB (Fig. 11(d-f)). The lowest sensi
tivity and largest dispersion occur for Paracou. There is little depen
dence on polarisation except for Paracou, where VV has lower sensitivity 
to AGB than both HH and HV. The differences between the single- and 
dual-heading cases in Lopé are insignificant. 

For all single-heading datasets except Paracou, the highest values for 
nPQ are obtained for HH, mainly between 2 and 3, and the maximum 
permissible value of 3 is often reached (Fig. 11(g-i)), while nPQ ≈ 2 for 
HV and VV. For Paracou, the lowest median value (0.6) is observed for 
HH, a higher value (1.2) is observed for HV, and the highest value (2.7) 
is observed for VV. For Lopé, nPQ is clearly different between the single- 
and dual-heading cases, with respective values of 2.7 and 1.5 for HH, 1.8 

Fig. 8. Best-case AGB estimation results in Lopé, Gabon using dual-heading data (heading pair: 230∘ and 320∘). The leftmost plot shows the 150 m × 150 m 
estimation (EST) areas, two 150 m × 150 m calibration (CAL) areas, and the 1 ha in situ plots. The next three plots show the canopy backscatter for HV polarisation 
(sHV), the reference AGB map from ALS data, and the best-case AGB map estimated from SAR with CASINO. The rightmost plot shows 2D histograms created using all 
pixels from the reference and estimated AGB maps, with the colour scale indicating the number of pixels; these plots include performance metrics for the 2.25 ha EST 
areas (bottom right corner) and the 0.25 ha pixels (top left corner). The red dots in the scatterplots show estimation results for the two CAL areas. The SAR data were 
acquired with the right-looking F-SAR system. 

Fig. 9. Scatterplots showing pairwise comparisons of best-case single heading SAR-, ALS- and in situ-based AGB estimates for the 1 ha plots located within the six test 
sites, together with the associated performance metrics (bottom right corner). The SAR and ALS maps and in situ plots are shown in Figs. 6–7. AGB estimates were 
extracted from SAR and ALS maps by first averaging them to 100 m × 100 m and then linearly interpolating the AGB data to plot centres. Subplots show: (a) SAR AGB 
vs. ALS AGB, (b) SAR AGB vs. in situ AGB, and (c) ALS AGB vs. in situ AGB. 
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and 1.5 for HV, and 1.8 and 1.5 for VV. 

5. Discussion 

Section 4 indicates that using only two calibration areas with refer
ence AGB > 100 t/ha, the CASINO algorithm can provide AGB estima
tion results with low bias and a relative RMSD at 2.25 ha resolution 
better than 22% in 25% of the tests, better than 27% in 50% of the tests, 
and better than 35% in 75% of the tests. These results are better than 
when the power law model is fitted directly to the calibration data 
without subsampling or constraints on AGB (Fig. 4). Other studies using 
P-band SAR in tropical forests can achieve similar AGB estimation per
formance only by using much larger reference datasets for model 
training (Villard and Le Toan, 2015) and, in the case of Minh et al., 
2014b and Tebaldini et al. (2019), SAR tomography. 

5.1. Calibration and validation methodology 

Throughout this paper, we used the term “root-mean-square differ
ence (RMSD)” rather than “root-mean-square error (RMSE)” to highlight 
the fact that the reference data are themselves estimates and prone to 
measurement errors. Under the assumption that the errors in the two 

types of estimate are uncorrelated, the expected value of the RMSD2 is 
given by 

〈RMSD2〉 = (be − br)
2
+ Ve + Vr (19)  

where be and br are the biases in the AGB estimates and the reference 
data respectively, and Ve and Vr are the corresponding error variances. 
Eq. (19) indicates that the accuracy of the estimates is likely to be better 
than the values suggested by the RMSD, except in cases when bias is the 
dominant source of error. 

For calibration, this study used AGB maps derived from ALS data, 
while validation used both the AGB maps and in situ measurements. 
Calibration with ALS-based AGB maps allowed us to assess the perfor
mance of the CASINO algorithm against a variety of different calibration 
datasets and to investigate whether it reproduced spatial features seen in 
the reference AGB maps. However, the ALS estimates of AGB are prone 
to significant biases, e.g., in topographic areas (Labrière et al., 2018; 
Leitold et al., 2015), which may be transferred to the SAR-based maps 
when the ALS data are used for calibration. This manifested itself as 
similar biases observed when the ALS- and SAR-based AGB estimates 
were compared with 1 ha plot measurements (Fig. 9). Meanwhile, direct 
comparison between ALS- and SAR-based estimates showed closer 
agreement. For this reason and in line with Chave et al., 2019, we 

Fig. 10. Scatterplots of median RMSD against (a) average ground slope angle and (b) average AGB and relative RMSD range against (c) average AGB and (d) AGB 
range for all 6 test sites. The AGB statistics were calculated for estimation areas with AGB > 200 t/ha and the average test site properties were estimated at 2.25 
ha scale. 

Fig. 11. Distributions of the estimated PLM parameters across datasets and polarisations. The number of PLM parameter sets varied from 500 (No, Pa, Ma, Mo, Ra) to 
2000 (Lo) and 3000 (Lo-2). The centrelines indicate the medians, boxes indicate the 25th and 75th percentiles, and whiskers indicate the 5th and 95th percentiles. 
The grey background indicates the permissible parameter intervals (Table 1), while the black vertical lines separate the single-heading and dual-heading results. 
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recommend that the global AGB estimation scheme for BIOMASS relies 
on calibration with AGB estimates from in situ inventories, which are less 
prone to systematic errors (although random errors with standard de
viation of 10% or more are possible in the tropics, see Chave et al., 
2005). Note that this study disregarded temporal offsets between the 
SAR, ALS and/or in situ measurements, which could be as high as nine 
years (for the ALS and SAR data in Mabounié). Therefore, temporal 
changes due to logging, forest degradation and growth could have 
contributed to the observed discrepancies. 

5.2. Variability across test sites 

Overall, the test sites in French Guiana gave poorer results than those 
in Gabon, but it is unclear if this reflects different properties of South 
American and African forests or the particularities of each test site, most 
notably topography and AGB distribution within the scene. The least 
ideal conditions were in French Guiana: Nouragues has the most sig
nificant topographic variation, while Paracou has the narrowest range of 
AGB. The two test sites with the smallest topographic variation and 
largest AGB intervals were both in Gabon (Lopé and Mondah). 

The best and most consistent performance across different calibra
tion datasets was found for test sites with a large AGB interval within the 
scene and an average AGB around 200–250 t/ha. Large AGB intervals 
give a wide range of canopy backscatter, making it easier to fit the PLM 
to the sampled data. In addition, the sensitivity to AGB tends to be larger 
away from the highest levels of AGB. The large variability in estimation 
performance with different calibration datasets in Paracou is mainly due 
to the narrow AGB interval and high average AGB. In contrast, there is 
good performance at Lopé and Mondah, where the AGB intervals are 
large (> 400 t/ha) and the average AGB levels are in the interval 
200–250 t/ha. 

AGB estimation performance was worse in areas of significant 
topography and/or AGB < 200 t/ha. This effect was most prominent in 
Nouragues, where a clear overestimation trend was observed at low AGB 
levels (Fig. 6(a)). Topographic variation is well-known to hinder low- 
frequency SAR mapping of forests. Even after ground cancellation, 
some topographic effects remain, especially in sparse forests where 
attenuation by the forest canopy is small. The selection of the height-of- 
ambiguity (HOA) during equalised ground cancellation also plays a role 
(d’Alessandro et al., 2020). For consistency, a constant HOA of 100 m 
was used throughout the paper, emphasising scattering from objects 
located about 50 m above ground. However, in forest whose height is 
significantly less than 50 m (which is typical when AGB < 200 t/ha), the 
relative contribution of the canopy is then reduced, which is likely to 
worsen the AGB estimation. This suggests that forest height, which can 
be estimated from the data used in ground cancellation, should be used 
to select the HOA best matched to the forest being observed. Addition
ally, the PLM only contains a simple, first order correction for topo
graphic effects, which is not effective for the test sites with most marked 
topography (Nouragues and Mabounié) (Small, 2011; Villard and Le 
Toan, 2015). In the case of Nouragues (Fig. 6(a)), the PLM was not able 
to correctly model AGB variability in the ground-cancelled data across 
the entire AGB interval, so it adapted to the AGB levels of the calibration 
data. Further work with ground cancellation and topographic correc
tions in the PLM is therefore needed to improve algorithm performance 
in hilly terrain. 

This study also showed relatively large intervals of estimated PLM 
parameter values (Fig. 11). However, it is difficult to compare these 
values due to the varying forest properties (moisture, wood density and 
structure), AGB distributions, topographic conditions, and SAR systems 
used in the AfriSAR and TropiSAR campaigns. Physical interpretation of 
the parameters is also challenging, as the PLM is a simplified case of a 
more complex scattering model (Truong-Loï et al., 2015), generalised to 
cover both the low- and high-attenuation cases. As shown in Banda et al., 
2020, the same PLM parameters can in some cases provide good AGB 
estimation results at different test sites, while in other cases the 

estimated parameters are clearly site-specific. In the future, algorithmic 
stability of CASINO could be improved through stricter constraints on 
the PLM parameters, e.g., based on their physical interpretation and/or 
empirical outcome. 

5.3. Algorithm implementation 

Even with a single flight heading, the AGB estimation performance at 
Lopé was better than for most other datasets, but it improved further 
when two headings were combined. This was mainly because of better 
estimation of the parameter nPQ, which is related to topographic 
correction, and which was the only parameter with significantly 
different statistics when two headings were used. In contrast, using two 
headings did not decrease the variability in the AGB estimates induced 
by different calibration datasets. This is important for BIOMASS, which 
will acquire both ascending and descending data, but their separation in 
time may cause variation in the PLM parameters that will need to be 
accounted for in the global algorithm. 

We also investigated whether there are any clear criteria that cali
bration areas must satisfy. For compactness, this paper focussed on AGB 
estimation with only two calibration areas. A larger number of cali
bration areas will improve estimation performance and bring it closer to 
the median values shown in Fig. 3. Also, with more calibration areas, 
multiple tests with subsets of calibration data can be used to provide 
insight into AGB estimate variability. Based on empirical tests, an 
important requirement on calibration data was that AGB > 100 t/ha, 
largely because forests of less 100 t/ha are typically sparse and/or short. 
As discussed earlier, ground cancellation with 100 m HOA will not be 
effective in this case and the measured backscatter will contain a sig
nificant contribution from the ground. No other investigated criteria led 
to significant improvements in AGB estimation performance. 

This paper highlights the importance of including many estimation 
samples with unknown AGB in the cost function. At least two reasons 
emerge: it allows us to apply constraints on both the PLM parameters 
and the predicted AGB, and it allows the algorithm to separate incidence 
angle trends from AGB trends, without requiring extensive calibration 
data. The latter occurs because with many estimation samples, it is likely 
that there are multiple measurements with the same AGB but different 
incidence angles. If there are at least two estimation samples with the 
same AGB, then q2 in (13) can be estimated without knowing w0, i.e., the 
reference AGB. Therefore, the CASINO algorithm can estimate three 
model parameters per polarisation using only two reference AGB mea
surements and single-heading data. Although in the dual-heading case 
the PLM parameters could be estimated directly from the calibration 
data (Fig. 4), the CASINO algorithm still provided better results because 
constraints could be applied to the estimated AGB. 

An important issue is to identify pathways to improve the perfor
mance of the algorithm in the lead-up to the launch of BIOMASS, and at 
least four possible avenues should be explored:  

• Exploit more fully the physical content of the scattering model: A tacit 
assumption of the approach used in this paper is that the model given 
by (5) is a complete description of the scattering from the canopy, so 
all the physical effects are captured by the parameters of the model. 
However, as explained in Truong-Loï et al. (2015), this is a simpli
fication of more complex models in which the links to the scattering 
physics (dielectric and geometry) are made explicit (e.g., Saatchi and 
Moghaddam, 2000). It may be productive to evaluate whether use of 
a more complete model can provide better AGB estimation perfor
mance and/or improve understanding and mitigation of topographic 
and moisture effects (Soja et al., 2013).  

• Impose other constraints on the problem: Santoro and Fransson, 2019, 
describe an approach in which a variety of ancillary datasets are used 
to adapt the parameters of the water cloud model (Attema and Ulaby, 
1978) to local or regional conditions; a similar approach may be 
possible with the model used here. Other BIOMASS products and 
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remote sensing data may be used to constrain model parameters and/ 
or for calibration, including forest height and tomographic profiles 
from BIOMASS and spaceborne lidar data from the Global Ecosystem 
Dynamics Investigation (GEDI) mission (Dubayah et al., 2020).  

• Expand the datasets available for algorithm calibration: The range of 
available in situ and ALS data is continually expanding, not least 
because of the calibration and validation requirements of space 
missions devoted to forest structure and biomass (Chave et al., 2019; 
Herold et al., 2019). It is essential to keep abreast of these de
velopments and work them into a global approach to algorithm 
calibration for BIOMASS.  

• Study and improve optimisation approaches: We have not investigated 
whether the observed performance of the algorithm is affected by the 
particular solution scheme being used or is an inherent feature of the 
problem. 

6. Conclusion 

The analysis in this paper indicates that the CASINO algorithm for 
AGB estimation from P-band SAR can provide reliable estimates of AGB 
with as few as two calibration measurements. The best results were 
obtained for areas with large AGB variability and small topographic 
variation. 

These observations provide the basis for the CASINO algorithm 
currently implemented in the prototype ground processor of the 
BIOMASS satellite (Banda et al., 2020). In fact, the BIOMASS data will 
have properties that are better suited to CASINO than the airborne data 
used here, including lower variability in incidence angle, more stable 
baselines and larger coverage, resulting in less spatial variability caused 
by the SAR system and more variability induced by the forest (e.g., larger 
AGB variability). However, BIOMASS data will also present new chal
lenges: the incidence angles will be steeper than for airborne geometries, 
giving higher levels of ground scattering and more pronounced topo
graphic effects, while the larger coverage will result in more spatial 
variability of moisture and forest type. Ground cancellation perfor
mance will also differ for BIOMASS, due to different geometries and 
acquisition patterns. Further research should focus on improving AGB 
estimation performance in hilly areas and forests with AGB < 200 t/ha. 
Additionally, follow-up studies should address AGB estimation in 
temperate and boreal forests, as well as the effects of canopy moisture 
variations. 

Although further work is needed before P-band SAR can provide the 
global wall-to-wall AGB maps needed by various stakeholders (Herold 
et al., 2019), CASINO is a viable initial approach, with good potential for 
future development and which minimises the reliance on large quanti
ties of reference data. 
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Norden, N., Riéra, B., Charles-Dominique, P., 2008. Above-ground biomass and 
productivity in a rain forest of eastern South America. J. Trop. Ecol. 24, 355–366. 
https://doi.org/10.1017/S0266467408005075. 

Chave, J., Davies, S.J., Phillips, O.L., Lewis, S.L., Sist, P., Schepaschenko, D., Armston, J., 
Baker, T.R., Coomes, D., Disney, M., Duncanson, L., Hérault, B., Labrière, N., 
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