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Abstract
The modern Very Long Baseline Interferometry (VLBI) relativistic delay model, as documented in the IERS Conventions, refers to the time
epoch when the signal passes one of two stations of an interferometer baseline (selected arbitrarily from the pair of stations and called the
‘reference station’ or ‘station 1’). This model consists of the previous correlation procedure used before the year 2002. However, since 2002 a
new correlation procedure that produces the VLBI group delays referring to the time epoch of signal passage at the geocenter has been used.
A corresponding correction to the conventional VLBI model delay has to be introduced. However, this correction has not been thoroughly
presented in peer reviewed journals, and different approaches are used at the correlators to calculate the final group delays officially published
in the IVS database. This may cause an inconsistency up to 6 ps for ground-based VLBI experiments between the group delay obtained by
the correlator and the geometrical model delay from the IERS Conventions used in data analysis software. Moreover, a miscalculation of the
signal arrival moment to the ‘reference station’ could result in a larger modelling error (up to 50 ps). The paper presents the justification of
the correction due to transition between two epochs elaborated from the Lorentz transformation and the approach to model the uncertainty
of the calculation of the signal arrival moment. Both changes are particularly essential for upcoming broadband technology geodetic VLBI
observations.
Keywords: IVS – broadband Very Long Baseline Interferometry (VLBI) – relativity – Geodesy – Lorentz transformation – reference radio
sources
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1. Introduction

The Very Long Baseline Interferometry (VLBI) technique mea-
sures the difference between the arrival times of a signal from a
distant radio source at two radio telescopes (Schuh & Behrend
2012). The signal is recorded at each radio telescope together with
timemarks from independent hydrogenmasers. Due to separation
of the radio telescopes by a few hundred or thousand kilometres,
the plain wave front passes first telescope earlier then the second
one. This difference in the arrival time of the signal at both radio
telescopes is known as time delay, and the frequency shift due
to the relative motion of the telescopes around the geocentre is
known as delay rate.

The time delay and delay rate are found during cross-
correlation of the two independent records. There are two types
of correlators (XF and FX) based on the order of the mathemati-
cal operations – cross-correlation (X) and Fourier transformation
(F). Baseline-based correlators are designed as XF-type correla-
tors, and station-based correlators are FX-type correlators. For
the baseline-based XF-type MarkIII correlator used before 2002,
the observables referred to the position of one of the two stations
(station 1). For the station-based FX-type MarkIV correlator all
observables for all baselines at one single multi-baseline scan are
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referred to the geocentre as a common reference point. As 1 ps
precision is required for the time delay calculation, all first-order
and second-order effects of special relativity should be taken into
account.

One of the goals of the International VLBI Service activities
is to achieve 1-mm accuracy from the analysis of routine geode-
tic VLBI sessions. The accuracy of the daily scale factor improved
dramatically in 2002 when the MarkIII correlator was replaced by
MarkIV correlator (Titov & Krásná 2018b). However, so far this
value varies about 3–4 mm despite technological developments
since 2002.

One possible reason for the lack of improvement in accuracy is
the inconsistency between the VLBI observable group delays and
the relativistic delay model developed in 1980–1990s, published
in the IERS Conventions 2010 (Petit & Luzum 2010). The tran-
sition from the MarkIII to MarkIV correlator was not followed
by any changes in the IERS Conventions model that still refers to
the epoch of the wavefront passage of station 1. Thus, it remains
consistent with the XF-type correlators. To make the output delay
of the FX-correlator consistent with the IERS Conventions 2010
model (XF-type), an additional correction needs to be applied.
Unfortunately, this correction has not been officially presented
in explicit form. This conversion difference was called ‘subtle’
(Whitney 2000); however, it reaches 20 ns, which is quite signifi-
cant. Corey (2000) developed a simple geometric approach under
assumption of the finiteness of the speed of light to obtain this
correction, but his final equation comprised a major term only,
while several minor terms were not included.
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In this paper, it is emphasised that the relativistic correction
due to the change of the reference epoch definition should be
derived from the Lorenz transformation to secure the 1-ps accu-
racy. Therefore, the final equation of the recommended group
delay should include someminor relativistic terms due to coupling
of the barycentric and geocentric velocities of the radiotelescopes
to be added to the version by Corey (2000). A detailed devel-
opment of the correction based on the Lorenz transformation is
given in the Appendix. This correction is essential from the theo-
retical point of view; however, its impact on the geodetic results is
negligible for ground-based baselines (less than 1 mm).

A more serious problem is caused by the uncertainty in the sig-
nal arrival time as calculated by the correlators, even if the problem
of the epoch calculation is fixed. Within the adopted procedure,
for a single multi-station scan, this time is common for all stations
and is usually rounded to integer number of seconds. Meanwhile,
for a multi-station scan, the factual signal arrival time is individ-
ual for each station, the output group delay is converted to the time
common for all stations within one scan using a reasonable poly-
nomial approximation. Therefore, the final output delay for each
baseline is referred to the common time of scan. Theoretically,
this output delay should be perfectly consistent to the delay at the
time of the signal arrival to the ‘reference station’ of each baseline.
However, this is not guaranteed due to the uncertainty of the ref-
erence epoch definition (discussed in the Appendix) and hidden
numerical issues during the polynomial approximation.

To estimate an additional correction, the standard parametri-
cal model should be extended. For each scan, we have a time of the
signal arrival (common for N stations) and a set of N(N − 1)/2
time delays for all baselines. Instead of seeking for N(N − 1)/2
errors in the delays themselves, it would be easier to treat the
signal arrival time as the parameter to be updated assuming that
the delays are errorless. A possible approach to model this type of
inconsistency is presented analytically in Finkelstein, Kreinovich,
& Pandey (1983). A second-order term in Equation (A15) may be
generalised at 1-ps accuracy in the form

δτ12 = (b · s)
c2

((εw1 +w2) · s)
1+ ε

. (1)

The case ε = 0 corresponds to the selection of the reference
clock at station 1, and the case ε = ∞ corresponds to the selec-
tion of the reference clock at station 2. The relativistic group
delay model from the IERS Conventions has an intrinsic assump-
tion that ε = 0. A violation of this assumption results in a small
deviation of the ε from zero. For a small value of ε, it could be
parametrised with the partial derivative

∂δτ12

∂ε
= (b · s)((w1 −w2) · s)

c2
. (2)

By its analytical representation, this new parameter ε should be
referred to the group of parameters to model the clock instabil-
ity (offset, rate, 2nd derivative, etc). In total, (N − 1) parameters
should be added to the traditional procedure of the VLBI delay
modelling.

The parameters ε could be estimated with Equation (2) by
the least squares individually for each VLBI station clock except
to the clock at the network ‘reference station’ that is assumed
to be errorless. Then for two arbitrary stations (i and j), the
corresponding delay is calculated as follows:

δτij = (εi − εj)
(bij · s)((wi −wj) · s)

c2
. (3)

2. Data analysis

The second term in Equation (A15) (of the Appendix) is the diur-
nal variation of the Earth scale’s factor that replaces the diurnal
aberration applied for the traditional astronomical observations.
This is the only term due to the Earth’s rotation implemented
by the FX-correlator software developers (in accordance to Corey
2000). However, a more accurate approach based on the Lorenz
transformation (A9) reveals additional minor terms in Equation
(A15) due to coupling of the two velocities V and w2. The first
term in Equation (A15) is the coordinate term due to the trans-
formation from the barycentric to the geocentric reference frame,
and it could be ignored for the scope of this paper.

We used one of the recent VGOS experiments (VT9290,
2019 October 17) for more detailed analysis. This 24-h exper-
iment included five radio telescopes (WETT13S, ONSA13NE,
ONSA13SW, GGAO12M and KOKEE12M) equipped with the
broadband receivers. Observations were performed in four bands
with dual linear polarisation (3 000–3 480 MHz, 5 240–5 740
MHz, 6 360–6 840 MHz and 10 200–10 680 MHz) (Alef et al.
2019).

Figure 1 shows the contribution of the three ‘missed’
terms in Equation (A15) to the total delay for two base-
lines: KOKEE12M – GGAO12M (7 405.4 km) and KOKEE12M –

Figure 1. Contribution of the three third-order terms from Equation (A8) for base-
lines KOKEE12M – GGAO12M (7 405 km) (top) and WETTZ13S – KOKEE12M (10 358 km)
(bottom).
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Table 1. Estimates of the parameter ε (units 10−3) for six VGOS station in 2019.

MJD GGAO12M KOKEE12M ONSA13NE ONSA13SW RAEGYEB WESTFORD

58 534.2499 0.015± 0.049 0.055± 0.045 0.164± 0.053 – 0.127± 0.051 −0.135± 0.047

58 547.2499 −0.186± 0.049 0.265± 0.043 0.258± 0.053 – 0.173± 0.053 −0.337± 0.049

58 561.2499 −0.425± 0.081 0.051± 0.060 0.243± 0.077 – 0.106± 0.068 −0.150± 0.060

58 575.2500 0.016± 0.054 0.078± 0.047 0.117± 0.057 – 0.312± 0.054 −0.042± 0.064

58 589.2497 −0.252± 0.061 0.262± 0.050 0.233± 0.055 – – −0.278± 0.057

58 603.2497 −0.330± 0.062 0.290± 0.051 0.221± 0.058 – – −0.333± 0.061

58 617.2497 −0.109± 0.058 0.117± 0.051 0.038± 0.065 – – −0.097± 0.062

58 632.2494 −0.563± 0.122 – −0.202± 0.074 – – –

58 659.2497 0.049± 0.076 0.058± 0.061 0.166± 0.067 – – −0.178± 0.069

58 673.2499 −0.085± 0.180 – −0.068± 0.107 – – –

58 687.2496 0.015± 0.080 −0.068± 0.091 0.008± 0.077 0.001± 0.076 – 0.024± 0.066

58 701.2499 −0.068± 0.068 0.069± 0.059 0.255± 0.074 0.223± 0.074 0.155± 0.072 −0.237± 0.060

58 715.2498 −0.282± 0.050 – 0.066± 0.055 0.068± 0.054 0.145± 0.059 0.025± 0.049

58 732.2499 −0.160± 0.047 0.099± 0.041 −0.002± 0.048 −0.037± 0.048 0.056± 0.050 −0.025± 0.039

58 743.2499 −0.206± 0.045 0.128± 0.038 0.204± 0.046 0.153± 0.045 0.311± 0.046 −0.124± 0.036

58 757.2497 −0.171± 0.053 0.147± 0.042 0.173± 0.048 0.226± 0.050 – −0.145± 0.044

58 774.2493 −0.885± 0.071 0.892± 0.079 −0.220± 0.072 −0.128± 0.073 – –

58 785.2496 −0.214± 0.051 0.194± 0.031 0.153± 0.038 0.143± 0.038 – –

58 802.2498 0.106± 0.062 −0.034± 0.035 −0.007± 0.047 −0.004± 0.048 – –

58 813.2500 −0.135± 0.046 0.150± 0.036 0.206± 0.048 0.195± 0.048 – −0.189± 0.044

58 827.2497 −0.211± 0.056 – 0.182± 0.042 0.183± 0.042 – −0.135± 0.041

58 844.2499 – 0.472± 0.073 −0.018± 0.074 −0.148± 0.074 – −0.223± 0.049

58 858.2498 −0.072± 0.066 – −0.123± 0.051 −0.058± 0.052 – 0.048± 0.047

WETTZ13S (10 357.6 km). As expected, the correction in Figure 1
is essential for long baselines (up to 6 ps).

Standard geodetic VLBI observations operated in two frequen-
cies, 2.3 GHz (S-band) and 8.4 GHz (X-band), are not sensitive
to the effect of the time of signal arrival. Therefore, we used the
new broadband VLBI data (VGOS project) to estimate the param-
eter ε. Due to the higher sample rate and the broader bandwidth
of the recorded data, the formal accuracy of the VGOS geodetic
results is better than for standard S/X observations by an order of
magnitude.

The VGOS data files were processed using the OCCAM soft-
ware (Titov, Tesmer, & Boehm 2004) (version 6.3) in two modes.
A first solution produces a standard set of parameters for esti-
mating – (i) corrections to the positions of radio telescopes in
the ITRF2014 frame (Altamimi et al. 2016), (ii) Earth orienta-
tion parameters, (iii) wet troposphere delay and two gradients, (iv)
three parameters to model the clock instability for each station
except the reference (clock offset, clock rate and second derivative)
and (v) corrections to the ICRF3 positions of several radio sources
that expose a high level of astrometric instability in the past. A sec-
ond solution was used to estimate the parameter ε for all stations
except for the reference.

Estimates of the parameter ε for six VGOS stations operating
during 2019 are shown in Table 1. About half of the estimates are
statistically significant. This means that typically, the time of the
radio wave arrival to the reference station is not calculated by the
correlator with sufficient accuracy. The resulting group delay cal-
culated by Equation (3) for baseline GGAO12M – KOKEE12M

Figure 2. Systematic group delay for baseline KOKEE12M – GGAO12M (7405 km) in
accordance with (3).

at the same session (2019 October 17, MJD= 58 744) is shown
in Figure 2. We selected this baseline because for both stations in
this experiment, the estimates of ε are larger than usual (−0.885×
10−3 for GGAO12M and 0.892× 10−3 for KOKEE12M). The
range of the peak-to-peak variations is about 80 ps. This results
in additional, hidden, source of systematic error for all other
parameters.
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Figure 3. Daily corrections to the ICRF3 coordinates of the radio source 0552+398 (up:
right ascension bottom: declination). Black circles – standard solution, white circles –
solution included the parameter ε.

2.1. Analysis of astrometric results

A comprehensive analysis of geodetic parameters is beyond the
scope of this paper. Herewith we discuss only effect of the addi-
tional parameter on the astrometric positions of two well-known
reference radio sources, namely 0552+398 and 1156+295. Both
sources were observed in twenty 24-h broadband VLBI experi-
ments during 2019, with a large number of observations. As a
result, their formal positional errors for both components are
less than 50 μas for almost all experiments. Therefore, statistical
investigation of the astrometrical results would demonstrate the
advantage of the new VLBI technology application and the effect
of the inclusion of the additional modelling parameter.

2.1.1. Radio source 0552+398
Radio source 0552+398 is one of the most actively observed radio
sources by geodetic VLBI since 1979 due to its strong flux den-
sity and good astrometric stability. It was included to the list of
reference radio sources of ICRF1, (Ma et al. 1998), ICRF2 (Fey
et al. 2015) and ICRF3 (Charlot et al. 2020). It was also treated
as a ‘stable’ one after independent verification by Feissel-Vernier
(2003). The source 0552+398 has no apparent structure at S- and
X-bands images. However, its imaging at higher frequencies (24
and 43 GHz) discloses a sub-milliarcsec jet in the east direction
from the core (Charlot et al. 2010). Recently, a second compo-
nent was revealed by Bolotin et al. (2019) from the analysis of the
broadband observations during the CONT17 campaign.

Figure 4. Difference between two solution corrections for the radio source 0552+398
(up: right ascension bottom: declination).

While the daily estimates of the corrections to the declination
component in Figure 3 vary around the original ICRF3 catalogue
position within 0.6 mas, the estimates of the correction to right
ascension (RA = 05h 55m 30s.80561207) (Charlot et al. 2020)
show a non-zero offset of approximately 0.2 mas. The available
post-ICRF3 catalogues (e.g. the celestial reference frame solution
aus2020a published by International VLBI Service (IVS)) includ-
ing S/X observations during 2019–2020 do not detect any essential
offset of the 0552+398 positions with respect to the ICRF3 cata-
logue coordinates. This potentially indicates that the jet observed
at high frequencies (24 and 43 GHz) is also essential for frequen-
cies between 2 and 11 GHz, even though it is not detected on
the S/X images. We conclude that the broadband VLBI obser-
vations are more sensitive to the sub-milliarcsec structure than
the traditional S/X VLBI observations as also hinted by Bolotin
et al. (2019). Therefore, the positions of the reference radio sources
observed by the new broadband technology are not necessary to be
coincided with the S/X data positions.

2.1.2. Radio source 1156+295
Radio source 1156+295 has activelymonitored for the last 30 years
over a wide range of frequencies. Despite its extended structure
in S- and X-bands with an elongated jet in the north direction
(e.g. Kellermann et al. 1998), the radio source 1156+295 demon-
strates a moderate range of astrometric instability. At the same
time, no structure was reported in 24 and 43 GHz (Charlot et al.
2010). Therefore, it was selected as one of the defining reference
sources in the second ICRF realisation (ICRF2) (Fey et al. 2015),
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Figure 5. Daily corrections to the ICRF3 coordinates of the radio source 1156+295 (up:
right ascension bottom: declination). Black circles – standard solution, white circles –
solution included the parameter ε.

Figure 6. Difference between two solution corrections for the radio source 1156+295
(up: right ascension bottom: declination).

although not included to the list of the ICRF3 reference sources.
Our analysis of the broadband VLBI results highlights a higher
range of astrometric instability in declination than right ascension
time series (Figure 5) during 2019, presumably induced by the jet
oriented to the north direction. The average declination compo-
nent is shifted approximately 0.2 mas south with respect to the
ICRF3 catalogue position.

The difference between the two sets of daily estimates in
Figures 4 and 6 does not reveal any noticeable astrometric signa-
ture due to inclusion of ε to the list of estimated parameters. For
both sources, the peak-to-peak variations do not exceed 0.25 mas
in both components. Therefore, for radio sources 0552+398 and
1156+295, the inclusion of new parameter does not change the
source position estimates essentially. However, for rare observed
radio sources, this difference may cause a substantial change in
the final catalogue positions.

3. Discussion and conclusion

The transition from the XF-type to FX-type correlators for pro-
cessing geodetic VLBI data requires a corresponding revision of
the relativistic group delay in the IERS Conventions to secure
a match between the correlator output and the theoretic model.
Alternatively, a special correction needs to be done at the final
step of the post-correlation data processing. In Equation (A15),
we show in the four last terms the relativistic correction due to
the time transformation from the epoch of the geocenter to the
epoch of station 1. This correction is derived from the modified
version of the Lorenz transformation in Equation (A9). Missing
of the three minor terms in Equation (A15) can lead to a discrep-
ancy of the group delay model at a level of 6 ps for long baselines.
This is, in particular, pertinent for the intensive experiments for
rapid estimation of Universal Time because a typical observational
network consists of 2 or 3 radio telescopes separated by a long
baseline (>7 000 km). We would like to recommend this equation
be applied for the post-processing analysis of VLBI data at the
modern FX-correlators.

Another effect, though may not be directly linked to the first
one, is the uncertainty of the time of signal registration for each
telescope as measured by the local clock (hydrogen maser) at the
reference station and extrapolated during the process of corre-
lation. This effect also refers to the difference of the geocentric
velocities of the both radio telescopes, but it could be introduced as
the extension of the clock instability model. The additional param-
eter describes how far the actual time of the signal arrival deviates
from the time presented in the VLBI data file. Our analysis of
broadband VLBI data over 2019 reveals that the parameter is sta-
tistically significant in many cases (Table 1). The corresponding
systematic effect is up to 100 ps in time delays and up to 0.25 mas
in estimates of daily radio source positions.

It is not yet clear whether the source structure effect directly
links to the problem of precisely determining the time of the sig-
nal arrival to the radio telescopes. The algorithm of the numerical
calculation of the signal arrival time always relies on the assump-
tion that the phase reference point of the target source is the same
for all frequency bands. However, with a broadband receiver, we
may have four different phase reference points at the four fre-
quency bands. Therefore, four signals in each band may arrive to
the receiver at four different times even from a point-like radio
source. A standard calibration may not compensate this incon-
sistency perfectly, mostly due to the non-linear behaviour of the
phase during the fringe-fitting process. In addition, an extended
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radio source may have four different phase reference points at
four frequencies referring to the celestial reference frame. Thus,
the actual differences between the signal arrival times for four
frequency bands could change unpredictably. As a result, the sig-
nal arrival time presented in the broadband VLBI data file as a
single value has some level of uncertainty making the additional
parameter ε feasible for routine application using Equation (3).
While it was not essential for the traditional S/X VLBI observa-
tions, the broadband VLBI observations are more accurate, and
more advanced parametrical model should be used to match these
observations.
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A. Development of the relativistic group delay models for
the epoch of geocenter and for the epoch of the reference
station

A.1. The conventional geocentric delay model

The equation for the relativistic group delay model has been
developed in the 1980–1990s (e.g. Hellings 1986; Kopeikin 1990;
Klioner 1991; Soffel et al. 1991) to approximate the observed VLBI
data at the 1-ps level of accuracy. The conventional group delay
model was finally adopted Petit & Luzum (2010)

τg =
− (b·s)

c

(
1− 2GM

c2R − |V|2
2c2 − (V·w2)

c2

)
− (b·V)

c2

(
1+ (s·V)

2c

)
1+ (s·(V+w2))

c

, (A1)

where b is the vector of baseline b= r2 − r1, s is the barycentric
unit vector of the radio source, V is the barycentric velocity of
the geocenter, w2 is the geocentric velocity of station 2, c is the
speed of light, G is the gravitational constant, M is the mass of
the Sun and R is the geocentric distance to the Sun, and (·) is
the dot-product operator of two vectors. The reference epoch
is the UTC epoch of the wavefront passage at the reference
station. In accordance with the assumption, station 1 is treated
as the reference station, and the geocentric velocity of station 2
is presented in Equation (A1) explicitly. A modern revision (e.g.
Soffel, Kopeikin, & Han 2017) is to add some smaller terms (less
than 1 ps), but the analytical model Equation (A1) is still valid for
the analysis of VLBI data.

A.2. Lorentz transformation

The radio signal is received by two radio telescopes on the sur-
face of the rotating Earth, and their coordinates are presented in
the Geocentric Celestial Reference System (GCRS) comoving with
the Earth. Positions of reference radio sources emitting the sig-
nals are in the Barycentric Celestial Reference System (BCRS).
So, a detailed transformation of the coordinates from BCRS to
GCRS is traditionally based on the metric tensor of the Solar
System at the first and second post-Newtonian levels (e.g. Hellings
1986; Kopeikin 1990; Klioner 1991; Soffel et al. 2017). However,
many lower order effects are not observable; therefore, a simplified
approach could be developed for the relativistic model delay.

The conventional Lorenz transformation is given by

x′ = x+ (γ − 1)
(V · x)V

|V|2 − γVt

t′ = γ

(
t − (V · x)

c2

)
,

(A2)

where γ = (
√
1− |V|2

c2 )−1 is the Lorentz ‘gamma-factor’ (Mansouri
& Sexl 1977; Will 1992). It should be noted that this factor here is
not the parameter γ of the Post-Newtonian formalism (PPN) used
in general relativity Will (1971).

Transformation Equation (A2) links the geocentric reference
system S’(x′, t′) that is moving with velocity V around the Solar
System Barycentre (SSB) and the barycentric reference system
S(x,t) located at the SSB. It could be shown (Titov & Krásná 2018a)
that the time delay derived from Equation (A2) may be presented
in the form

τg0 =
− (b·s)

c

(
1− |V|2

2c2

)
− (b·V)

c2

(
1+ (s·V)

2c

)
1+ (s·V)

c

. (A3)
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Whether an astronomical instrument with a reference clock
were placed in the Earth’s geocenter and the Solar gravitation
were ignored, the Equation (A3) would be applied to reduction
of the geodetic VLBI data. However, further complications will be
discussed in two next subsections.

A.2.1. Space and time transformation including gravitational
potential

The relativistic model (A3) does not include the term proportional
to the Solar gravitational potential 2U

c2 , where U = GM
R , and few

terms with the geocentric velocity w2 presented in (A1). Hellings
(1986) showed that the former term appears due to the Solar
gravitational field (in the Schwarzschild metric) at the Earth geo-
centre. Therefore, Hellings (1986) has developed new equations
for the relationships between intervals of physical distance and
time, measured in a moving reference geocentric frame, and the
intervals, given in the barycentric coordinate system including the
gravitational field of the Sun is given by

x′ =
(
1+ 2U

c2

)
x−

(
1+ 2U

c2

)
(γ − 1)

(V · x)V
|V|2 −

−
(
1− 2U

c2

)
γVt (A4)

t′ = γ

((
1− 2U

c2

)
t −

(
1+ 2U

c2

)
(V · x)
c2

)
.

Transformation (A4) reduces to the Lorenz transformation
(A2) if the Solar potential U = 0.

The corresponding equation for the relativistic group delay
includes the Solar gravitational potential at the geocenter of the
Earth.

τgU =
− (b·s)

c

(
1− 2U

c2 − |V|2
2c2

)
− (b·V)

c2

(
1+ (s·V)

2c

)
1+ (s·V)

c

. (A5)

Titov & Girdiuk (2015) showed that the term proportional to
2U
c2 in (A5) could be unified with the general relativity effect of the
gravitational delay. Therefore, we will not include it into further
analysis; however, we discuss it here as it is a part of the conven-
tional geometric part of the relativistic delaymodel (Petit & Luzum
2010).

A.2.2. Lorenz transformation referring to the epoch of
first station

Physical clocks (hydrogen masers) used for VLBI observations
are located at the Earth surface rather than at the geocenter. As
two clocks separated by a long baseline are involved for a rou-
tine observational experiment, one of them should be selected as
‘reference’ clock. This choice is completely arbitrary, though, once
it is made, the geocentric velocity of the second (‘no reference’)
clock appears explicitly in the analytical equations. The standard
approach is to consider a difference between barycentric coordi-
nates of two radio telescopes, r1(t1) and r2(t2), measured at the
two epochs t1 and t2, to expand the vector r2(t2) as follows

r2(t2)= r2(t1)+w2(t1)(t2 − t1), (A6)
where w2 =w2(t1) is the geocentric velocity of the second station
at epoch t1. Denoting B(t1) a difference between two barycentric
vectors at the same epoch B= B(t1)= r2(t1)− r1(t1), one could
get for the time difference (t2 − t1)

c(t2 − t1)= −(B · s)− (w2 · s)(t2 − t1). (A7)

It should be noted here that B is a formal three-component
vector rather than a meaningful physical value, though it links
to the physical distance between two terrestrial positions of radio
telescopes on the Earth at t1.

Equation (A7) could be obtained by alternative way. Let us
introduce of a new geocentric reference frame S′′ = S′′(x′′, t′′) with
the reference epoch referred to station 1 in a such way that
two geocentric reference frames S′′ and S′ are linked by new
transformation

x′′ = x′

t′′ = t′ − (w2 · x′)
c2

.
(A8)

Transformation (A8) could be easily combined with the
Lorentz transformation (A2)

x′′ = x+ (γ − 1)
(V · x)V

|V|2 − γVt

t′′ = γ

(
t − (V · x)

c2

)
− (w2 · x)

c2
− (A9)

− (γ − 1)
(V · x)(V ·w2)

c2 · |V|2 + γ
(V ·w2)t

c2
.

It is obvious that the transformations (A8) and (A9) are perti-
nent only for an individual pair of two radio telescopes equipped
with their own high precision clocks, one of which is a reference
clock and the second clock is moving with instantaneous veloc-
ity w2. The transformation (A9) is fully consistent with the special
relativity postulates and reflects the situation when the position
of the reference clock is not at the reference frame origin (geo-
centre). For a classical astronomic instrument, the reference frame
origin and position of the reference clock are referred to the same
topocentric position of the instrument on the Earth surface. In this
scenario, the geocentric velocity of the instrument is simply added
to the barycentric velocity in the formulae of the Lorenz trans-
formation, i.e. the velocity V is replaced by the sum V +w2 in
(A2) followed by a substantial change in (A3). From the observa-
tional point of view, this results in the appearance of the classical
diurnal aberration effect. In geodetic VLBI, there is no the diur-
nal aberration effect at all. Instead of that, as it will be shown
later, the geocentric velocity w2 contributes to the diurnal varia-
tion of the scale factor with magnitude up to 20 ns (or 6m in the
linear scale) for a standard baseline of 6 000 km in length and a
geocentric velocity of 300 ms–1.

For calculating the group delay from (A9), one needs to
develop the corresponding velocity transformation. As both ref-
erence frames S′′ and S′ are geocentric, the time component is
only changed due to transition from (A2) to (A9). Traditionally,
authors proceed to the equation of the relativistic time delay (A3)
consistent with the XF-type correlator directly (e.g. Hellings 1986;
Kopeikin 1990; Soffel et al. 2017). Therefore, these two transfor-
mations (A2) are (A8)merged together and the difference between
the delays (A1) and (A3) is lost. However, for the FX-type corre-
lators, this procedure must be separated into two steps to provide
a proper relativistic conversion between observables produced by
the XF and FX correlators.

To elaborate Equation (A1) (without the 2U
c2 term) from

transformation (A9), let us consider the velocity transformation
v′′
x = dx′′

dt′′
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v′′
x = dx+ (γ − 1) (V·dx)V

|V|2 − γVdt

γ
(
(1+ (V·w2)

c2 )dt − (V·dx)
c2
)− (w2·dx)

c2 − (V·dx)(V·w2)
2c4

(A10)

or, denoting vx = dx
dt within the 1 ps level of accuracy

v′′
x = vx + (V·vx)V

2c2 −V(
1+ (V·w2)

c2 − (V·vx)
c2
) (

1+ |V|2
2c2

)
− (w2·vx)

c2

. (A11)

Now apply for a standard transition to the radio source vector
cs= −vx

s′′ = s+ (V·s)V
2c2 + V

c(
1+ (V·s)

c + (V·w2)
c2
) (

1+ |V|2
2c2

)
+ (w2·s)

c
(A12)

and, after reduction of negligible terms,

s′′ = s+ (V·s)V
2c2 + V

c

1+ (V·s)
c + (V·w2)

c2 + |V|2
2c2 + (w2·s)

c

. (A13)

This equation could be converted to the form consistent with
the conventional group delay model at 1-ps level after inclusion of
the Solar gravitation term (A5)

s′′ =
s
(
1− 2U

c2 − |V|2
2c2 − (V·w2)

c2

)
+ V

c
(
1+ (V·s)

2c
)

1+ ((V+w2)·s)
c

. (A14)

Development of the time delay from (A14) as τ = − (b·s")
c pro-

vides the conventional group delay model (A1). Now it is obvious
that this model is based on the modification of the Lorentz trans-
formation (A9) in which the transformation of time is presented
in a non-standard way because our reference clocks are physically
located at the Earth surface rather than at the geocenter.

Equation (A3) misses the terms including the velocity of the
second radio telescope in (A1). At the 1 ps level of accuracy, this
difference δτ = τg − τg0 comprises five terms

δτ =2(b · s)U
c3

+ (b · s)(w2 · s)
c2

+

+ (b · s)(V ·w2)
c3

+ (b ·V)(w2 · s)
c3

− (A15)

− 2(b · s)(V · s)(w2 · s)
c3
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