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Abstract
The plastic strain caused by principal stress rotation is one of the most important factors contributing to substantial
deformation under earthquake, wave or traffic loading. The original Pastor–Zienkiewicz Mark III model, a well-known
model for the analysis of the dynamic response under cyclic loading, is unable to consider the effects of principal stress
orientation as well as state-dependent dilatancy. In this article, a new constitutive model for sand is developed to con-
sider both aforementioned effects based on the original Pastor–Zienkiewicz Mark III model. There are 14 model para-
meters in total for the static condition and three extra parameters for cyclic loading, and a corresponding calibration
method of model parameters is proposed. The predictive capability of the proposed model is verified with the results of
a series of experiments on sand, including undrained monotonic tests in different fixed principal stress orientations and
undrained cyclic rotational shear tests. The comparisons indicate that the proposed model can effectively incorporate
the effects of principal stress orientation and state-dependent dilatancy.
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Introduction

The phenomenon of principal stress rotation is very
common in sea-floor sediments under wave loading
and foundations under earthquake loading or traffic
loading.1,2 However, models formulated under the tra-
ditional plasticity theory in principal stress space can-
not reflect the principal stress rotation effect. For
example, such models indicate that plastic strain will
not be produced by the pure principal stress rotation
when the magnitude of the cyclic deviatoric stress
remains unchanged, but the direction of principal stress
rotates progressively. Many experimental results3–5

have shown that either the principal stress rotation in
cyclic rotational shear tests or the fixed principal stress
orientation variation in monotonic loading tests has a
significant impact on stress–strain behaviour of sand.

These effects are collectively referred to as the effects of
principal stress orientation.

Only a few soil constitutive models in the literature
reflect the effects of principal stress orientation. Sassa
and Sekiguchi6 developed a new model (the Sassa
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model) to consider principal stress rotation under two-
dimensional (2D) plane strain conditions based on the
Pastor–Zienkiewicz Mark III (PZ3) model by introdu-
cing the principal stress angle. In recent years, new
models and methods7–9 have been proposed to investi-
gate the principal stress rotation and the property of
anisotropy that are considered to be the most likely
reason for the effects of principal stress orientation. In
general, the Sassa model is simpler in practice and
employs fewer equations and parameters that are rela-
tively easily formulated and calibrated. However, there
is still room for improvements and enhancements.
First, the Sassa model can only be used in simple 2D
plane strain problems, as the out-of-plane stress, which
could be important in determining the plastic flow con-
dition, was neglected. Second, the effects of unloading
and reloading are not considered for principal stress
rotation. Finally, the Sassa model is not able to con-
sider the effects of state-dependent dilatancy directly
because it is formulated for a single initial void ratio.
Thus, the Sassa model requires different sets of model
parameters for the same type of sand consisting of dif-
ferent relative densities.

The theory of state-dependent dilatancy was pro-
posed by Wood et al.10 and expanded upon by Manzari
and Dafalias,11 Li and Dafalias12 and Li.13 The theory
states that the constitutive behaviour of sand is closely
related to state parameter, which depends on the cur-
rent physical state such as void ratio and stress states,
including confining pressure. Although the theory of
state-dependent dilatancy has been recognized and
some state-dependent constitutive models have been
proposed, most of them have not considered the effects
of the principal stress orientation.

In this article, the PZ3 model was used as the base
model to develop a new constitutive model for sand fol-
lowing the hierarchical approach proposed by Desai.14

The PZ3 model developed by Pastor et al.15,16 based on
the generalized plasticity theory17 is a well-known
model for the analysis of the dynamic response under
cyclic loading such as that due to earthquakes and
wave loading. In the proposed model, additional fea-
tures are included hierarchically by introducing further
hardening rules into the PZ3 model while preserving all
the features of the base model such as many validated,
relevant stress paths when the new feature is not active.
This approach avoids a complete reformulation of the
constitutive models and only requires the additional
features to be validated. This method has proven to be
successful and effective by Manzanal et al.,18 who
developed a new model that can consider the dilatancy
of sand based on the PZ3 model.

Following this course of studies and within the
framework of generalized plasticity, a new constitutive
model to reflect both the effects of principal stress
orientation and state-parameter dependency is

proposed and formulated in section ‘Model descrip-
tion’. The calibration method for model parameters is
proposed. The predictive capacity of this new model is
verified through comparison with the results of fixed
principal stress orientation monotonic tests3 and cyclic
rotational shear tests5,19 and reported in section ‘Model
evaluation’ together with further discussion. The key
conclusions of this article are then given in section
‘Discussion and conclusion’.

Model description

Before establishing the constitutive model, the principal
stress orientation and the stress variables in the pro-
posed model are defined in sections ‘Definition of the
principal stress orientation’ and ‘Inclusion of three
stress invariants’, respectively. Then, the theory of
state-dependent dilatancy is introduced in section
‘Introduction of the state-dependent dilatancy’. The
basic equations of the model are given in section ‘Basic
equations’, and the calibration method is illustrated in
section ‘Model calibration’.

Definition of the principal stress orientation

The principal stress orientation can be defined in the

2D plane s0z�s0x
2
� tzx

h i
using the angle of the major

principal stress orientation from the vertical axis as
shown in Figure 1, which can be expressed as

tan 2cð Þ= 2tzx

s0z � s0x
ð1Þ

Figure 1. Principal stress angle c.

2 International Journal of Distributed Sensor Networks



Inclusion of three stress invariants

The intermediate principal stress was not considered in
the Sassa model. However, the coefficient of intermedi-
ate principal stress b= s2 � s3ð Þ= s1 � s3ð Þ is a very
important control factor in the experiments; therefore,
the influence of the Lode angle should not be neglected.
In this article, the mean effective stress p0 and general-
ized shear stress q are used in the new model.
Meanwhile, the Lode angle u is also considered;
therefore

p0=
1

3
s0x +s0y +s0zÞ=

1

3
I1

�
ð2Þ

q=
ffiffiffiffiffiffiffi
3J2

p
=

1ffiffiffi
2
p ððs0x � s0yÞ2 + ðs0x � s0yÞ2

+ ðs0x � s0yÞ2 + 6ðt2
xy + t2

yz + t2
zxÞÞ

1
2 ð3Þ

sin 3u= � 3
ffiffiffi
3
p

2

J3

J2ð Þ
3
2

= � 27J3

2q3
ð4Þ

where J3 =(s0x � p0) � (s0y � p0) � (s0z � p0)+ 2txytyztzx

�(s0x �p0)t2
yz � (s0y � p0)t2

zx � (s0z � p0)t2
xy, here, I1, J2

and J3 are the three stress invariants. p0, q and u are the
functions of I1, J2 and J3, respectively; therefore, they
are also stress invariants.

Introduction of the state-dependent dilatancy

The theory of state-dependent dilatancy has been suc-
cessfully used in the modelling of sand behaviour. In
the theory of constitutive model for sands, one of the
fundamental issues is to describe dilatancy d correctly.
Rowe20 suggested that the dilatancy d was simply a
unique function of the stress ratio

d = d(h)=M � h ð5Þ

where M is the critical stress ratio. However, it was
soon found that the dilatancy was not only related with
stress ratio h= q=p0 but also with the material internal
state. Based on the aforementioned observations and
the critical state constitutive framework, Li and
Dafalias12 proposed a new expression for dilatancy,
which was the function of the stress ratio h and state
parameter u, expressed as

d = d(h,u)= d0 emu � h

M

� �
ð6Þ

where u is a state parameter to reflect the current state
of sand and m is a material parameter. State parameter
u was defined by Been and Jefferies.21 Based on the lin-
ear representations of the steady-state line for sand by
Li and Wang22 shown in Figure 2, state parameter u
can be expressed as

u= e� ec = e� eG � lc
p0

pa

� �k� �
ð7Þ

where e is the current void ratio; ec is the critical void
ratio, which is a function of the confining pressure p0;
and model parameters eG, lc, k and pa represent atmo-
spheric pressure.

Basic equations

Within the framework of generalized plasticity, the
yield surface and plastic potential need not be explicitly
defined. Instead, the loading direction vector n and the
plastic flow direction vector ng are used. With appro-
priate laws, which can be obtained by tests for the plas-
tic flow, loading direction and plastic moduli, some
salient or special behaviours of sand can be described.

In the original PZ3 model, the loading direction vec-
tor n=(nv, ns)

T and the plastic flow ng =(ngv, ngs)
T are

defined. Based on the PZ3 model, the vectors n and ng
are developed and expanded to reflect the influence of
the Lode angle u, the orientation of principal stress c

and the state parameter u on the basis of experimental
regularities.

The loading direction vector n can be defined as
follows

n= nv, ns, nu, nc, nu
� �T ð8Þ

The plastic flow direction vector ng can be defined as
follows

Figure 2. Definition of state parameter.
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ng = ngv, ngs, ngu, ngc, ngu
� �T ð9Þ

The incremental stress tensor can be expressed as

ds0ij = De
ijkl �

De
ijmn : ng � n : De

stkl

HL,U + n : De
stkl : ng

� �
: dekl ð10Þ

where De
ijkl is the elastic stiffness tensor (detailed in

Appendix 1).
In the original PZ3 model, nv and ns are assumed to

take the following forms

nv = 1+að Þ Mf � hð Þ; ns = 1 ð11Þ

and ngv and ngs are assumed to take the following forms

ngv = 1+að Þ Mg � h
� �

; ngs = 1 ð12Þ

here, the critical stress ratio Mg can be obtained by an
undrained triaxial test, and the model parameter Mf is
calculated by a simple approximate relation where
Mf =Dr �Mg. Dr is the relative density. This assumption
leads to the limitation that the PZ3 model regards sands
of the same type with different initial relative densities
and confining pressures as different materials, which
means that the PZ3 model requires different parameters
for a single type of sand with different relative density
under different confining pressures. Furthermore, the
principal stress orientation is not considered.

In this study, the state parameter u and principal
stress orientation c are both introduced into the pro-
posed model based on the following experimental evi-
dence and the theory of state-parameter dependency:

1. Contractive soil behaviour continues until the
state of phase transformation becomes more
marked with increasing u.

2. Contractive soil behaviour continues until the
state of phase transformation becomes more
marked with increasing c.

3. Slope of the phase transformation line decreases
with increasing u.

4. Slope of the phase transformation line decreases
with increasing c.

5. Critical state is unique.

Based on these experimental results, ngv and ngs are
redefined in the following forms

ngv = 1+a cð Þð Þ Mg u,c,uð Þ � q=p0
� �

; ngs = 1 ð13Þ

where

Mg u,c,uð Þ=Mg0 u,uð Þ � U cð Þ � a �Mg0 u,uð Þ ð14Þ

Mg0(u,u)=
18

18+ 3 (1� sin 3u)
Memu ð15Þ

a cð Þ=a0 + g � U cð Þ ð16Þ

U cð Þ= 1� cos (2c)

2
ð17Þ

here, a0, a, g and m are the model parameters. M is the
critical stress ratio.

nv and ns are redefined in the following forms

nv = 1+a cð Þð Þ Mf u,c,uð Þ � q

p0

� �
; ns = 1 ð18Þ

where

Mf u,c,uð Þ=Mf0 u,uð Þ � U cð Þ � a �Mf0 u,uð Þ ð19Þ

Mf0(u,u)=
18

18+ 3 (1� sin 3u)
Me�nu ð20Þ

here, n is a model parameter.
Then, the loading direction tensor n can be obtained

as follows

nv¼ 1þa cð Þð Þ Mf u;c;uð Þ � q=p0ð Þ
ns¼1

nu¼� q

Mf0 u;uð Þ
∂Mf0 u;uð Þ

∂u

nc ¼ U 0ðcÞ�
a �Mf0 u;uð Þ � p0 � 1þ 1

a cð Þ

� �
þ g

a cð Þ
q

1þa cð Þ þ X2 � ln X2

X1

� �n o
nu¼� q

Mf0 u;uð Þ
∂Mf0 u;uð Þ

∂u

8>>>>>>>><
>>>>>>>>:

ð21Þ

The details of X1 and X2 can be found in equations
(41) and (42) of Appendix 1.

The plastic flow direction vector ng can be obtained
as follows

ngv¼ 1þa cð Þð Þ Mg u;c;uð Þ � q=p0
� �

ngs¼1

ngu¼� q

Mg0 u;uð Þ
∂Mg0 u;uð Þ

∂u

ngc ¼ U 0ðcÞ
�faMg0 u;uð Þ � p0 � ð1þ 1

a cð ÞÞ þ
g

a cð Þ ð
q

1þa cð Þ þ Y2 � ln Y2

Y1
Þg

ngu¼� q

Mg0 u;uð Þ
∂Mg0 u;uð Þ

∂u

8>>>>>>>><
>>>>>>>>:

ð22Þ

The details of Y1 and Y2 can be found in equations (43)
and (44) of Appendix 1.

The plastic modulus for loading should also depend
on c and u

HL =H0 � p0 1� h u,c,uð Þ
h�f

� �4

1� q=p0

Mg u,c,uð Þ +b0b1 exp �b0jð Þ
� �

� DM

ð23Þ

where H0, b0 and b1 are the model parameters and

h u,c,uð Þ= q

p0
+ 1� U cð Þð Þ � a �Mg0 u,uð Þ ð24Þ
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h�f = Mf0 uð Þ � a �Mg0 uð Þ
� �

1+
1

a0 + g

� �
ð25Þ

j=

ð
dj =

ð
depq

			 			 ð26Þ

here, j is the accumulated deviatoric plastic strain.
Regarding the reloading process, it is necessary to

consider the history of past events. Thus, a discrete
memory factor DM was introduced as follows

DM =
zmax

z

� �gd

ð27Þ

where z is defined as

z = p0 1� 1+a cð Þ
a cð Þ

� �
� q=p0

Mg c,uð Þ

� �1=a cð Þ
ð28Þ

and gd is the model parameter.
The plastic modulus HU for unloading is assumed to

be

HU =
HU0

Mg c,uð Þ
q=p0

� �gu

for
Mg c,uð Þ

q=p0

			 			.1

HU0 for
Mg c,uð Þ

q=p0

			 			ł 1

8<
: ð29Þ

where HU0 and gu are the original model parameters.

Model calibration

There are 14 model parameters in total for static condi-
tions and 3 extra parameters for cyclic conditions with
a, g, m and n introduced on top of the parameters of
the original PZ3 model. It should be noted that when
a= g = 0, there will be no effect due to principal stress
rotation and when n=m= 0, there will be no effect
due to state-dependent dilatancy. Therefore, when
those four parameters are equal to zero at the same
time, the current model will reduce to the original PZ3
model, thus confirming the hierarchical approach.

a, g, m, n, eG, lc, k and M are eight parameters not
found in the original PZ3 model. eG, lc, k and M can
be determined directly by fitting the triaxial test data
for the critical state line in the ½e� p0� plane.

Parameter m can be calculated by the undrained
monotonic loading shear test at a principal stress angle
of c= 08 and a Lode angle u= 08 (coefficient of inter-
mediate principal stress b= 0:5). In the phase transfor-
mation state, the dilatancy d is equal to zero, as follows

d =
∂g=∂p

∂g=∂q
= 1+a0ð Þ Mg 0, 0,u�ð Þ � h�

� �
= 0 ð30Þ

here, the state parameter and stress ratio denoted by
superscript * represent measured values by the corre-
sponding experiments.

Both a0 and g parameters are positive; therefore

Mg 0, 0,u�ð Þ=h� ð31Þ

Because the Lode angle u= 08, using equations (14)
and (15), the parameter m can be obtained as

m=
1

u�
ln

7

6M
� h� ð32Þ

a and g are the parameters of the principal stress
orientation. After m is obtained, a can be calculated
through the undrained monotonic loading shear test at
a principal stress angle of c= 458 and Lode angle
u=0. In the phase transformation state, the dilatancy
d is equal to zero

d =
∂g=∂p

∂g=∂q
= 1+a0 + gð Þ Mg 0, 458,u�

� �
� h�

� �
= 0

ð33Þ

Hence

Mg 0, 458,u�
� �

=h� ð34Þ

After m is obtained, the parameter a can be obtained
using equation (14) as follows

a= 2 1� 7h�

6Memu�

� �
ð35Þ

a0 and g can be calculated through drained mono-
tonic loading shear tests. Ignoring the small elastic
deformations, we get

dev
deq

’
depv
depq

=d=
∂g=∂p

∂g=∂q
= 1+a(c)ð Þ Mg u,c,uð Þ � q

p0

� �

ð36Þ

Therefore, from equation (30), the parameter a0 can
be identified using the dilatancy d at principal stress
angle c= 08 and Lode angle u= 08. For example,
choosing the dilatancy dp at the peak stress ratio, equa-
tion (30) yields

a0 =
dp

Mg(0, 0,u�)� h�
� 1 ð37Þ

After a0 is calculated, the parameter g can be
obtained using the same method, but at c= 458, equa-
tion (33) yields

g =2 � dp

Mg(0, 0,u�)� h�
� 1� a0

� �
ð38Þ

The parameter n cannot be easily calibrated directly
and must be determined by fitting the stress–strain
curve.

In addition to a0, there are still five model para-
meters that are shared with the original PZ3 model

Wang et al. 5



under static conditions. Ling and Liu23 suggested a
method of calibrating these five model parameters. H0

can be determined by fitting the curves of p0 and q ver-
sus the axial strain, which can also be found by match-
ing the plot of q versus p0 for undrained tests. b0 and
b1 can be determined by matching the stress–strain
curves, but b0 is generally suggested to take the value
of 4.2 and b1 of 0.2 by Pastor et al.16 The elastic para-
meters G0 and n can be obtained by observing the ini-
tial behaviour of the stress–strain relationship.

There are extra three model parameters, HU0, gu

and gd, for cyclic conditions. HU0 is determined by fit-
ting the results to the initial slope of the first unloading
stress–strain curve; gu is obtained by fitting the first
unloading stress–strain curve. gd can be obtained by
matching both the hysteretic loops in the stress–strain
curve and ½q� ev� curve.

Model evaluation

To evaluate the predictive capability of the proposed
model, one element response was analysed with the
new model implemented into the finite element method
(FEM) platform of DIANA–SWANDYNE II,24 and a
series of simulations were carried out to compare with
published experimental results in different stress
conditions.

Monotonic loading, different fixed principal stress
orientation

Nakata et al.3 performed a series of monotonic loading
experiments using the torsional cylinder shear appara-
tus to investigate the undrained deformation behaviour
of Toyoura sand (Gs = 2:643, emax= 0:973, emin= 0:635)
with different relative densities subjected to the change
of principal stress orientation. In this study, three sets
of tests in different principal stress angles
c= 158, 308, 458, 608, 758 with different initial relative
densities Dr = 90%, 60%, 30% are simulated. The
stress path in different principal stress angles is shown
in Figure 3, displaying that the direction of principal
stresses is fixed and the stress path in the ½s0z�s0x

2
� tzx�

plane is a line.
The model parameters a, g, m and n are the most

important parameters and are calibrated by using the
method described in section ‘Model calibration’. For
the other 10 model parameters, refer to the work by
Manzanal et al.18 Some minor adjustments are made to
achieve better simulation results. The model parameters
are summarized in Table 1.

Figures 4–6 show the experimental results. Figures
7–9 show the simulated results by the proposed model.
Both numerical simulation and experimental results dis-
play the following: (1) for the same initial relative

density, as the principal stress angle becomes larger, the
behaviour clearly becomes softer and more contractive;
and (2) for the same principal stress angle, the contrac-
tive behaviour of sand decreases with an increase in the
initial relative density.

To illustrate the effects of principal stress orientation
and state parameter by the proposed model, the experi-
ments of Nakata et al.3 are simulated with
a= g =m= n= 0 and a= g = 0.

Case 1: a= g =m= n= 0

In this case, the proposed model is reduced to the origi-
nal PZ3 model; therefore, both of the effects of princi-
pal stress orientation and the effects of state parameters
cannot be reflected. The other parameters are identical
to those in Table 1. The results shown in Figure 10 indi-
cate that at the different principal stress orientations of
c= 15o, 30o, 45o, 60o, 75o and different initial relative
ratios of Dr = 30%, 60%, 90%, all of the stress paths
and the stress–strain behaviour curves are identical.

Case 2: a= g = 0

In this case, the proposed model is reduced to a state-
parameter model considering the dilatancy of sand,
which is similar to the model of Manzanal et al.18

However, the effects of principal stress orientation
are not reflected. The other parameters are identical to
those in Table 1. The results shown in Figure 11
indicate that (1) for the same relative density, at
the different principal stress orientations of
c= 15o, 30o, 45o, 60o, 75o, the stress path and the
stress–strain behaviour curves are identical; and (2)
the effects of relative density can be reflected through
the state parameter.

Figure 3. Stress paths in the ½s0z�s0x
2 � tzx� plane for monotonic

loading tests in different directions of principal stress.

6 International Journal of Distributed Sensor Networks



The prediction of the proposed model agrees reason-
ably well with experimental result by Nakata. The com-
parison confirms the validity of the proposed model in
undrained monotonic loading experiments in different
fixed directions of principal stress and state parameters.

Undrained cyclic rotational shear

Two sets of cyclic rotational shear experiments have
been simulated to display the effects of principal stress

orientation by the proposed model. The corresponding
stress path is a circle in the s0z�s0x

2
� tzx

h i
plane (see

Figure 12) and a point in the principal stress plane,
which indicates that the total principal stresses remain
constant but the principal stress orientation continues
rotating.

Yang et al.5 conducted a series of undrained cyclic
rotational shear experiments on Toyoura sand. One of
his experiments, Series I, was simulated and investi-
gated first. The proposed model parameters for
Toyoura sand are summarized in Table 1 and had an
initial void ratio e0 = 0:707, q= 34:65kPa. For com-
parison, the line elastic model and the PZ3 model are
also employed to simulate the same stress path. The
PZ3 model parameters are identical to the proposed
model without the parameters of the principal stress
orientation and state parameter.

The simulated hysteretic curve (Figure 13(b)) from
the proposed model agrees well with the experimental
curve (Figure 13(a)). The results of the linear elastic
model and the PZ3 model are shown in Figure 13(c)
and (d), respectively. It is seen that when we use the lin-
ear elastic model or the PZ3 model to simulate the
undrained cyclic rotational shear experiment, the
stress–strain behaviour is a straight line rather than a
hysteretic curve, and the magnitude of the strain is
negligible.

The effects of the principal stress orientation may
not have been reflected clearly because the experiment

Table 1. Model parameters of the proposed model for Toyoura sand.

M a0 G0 n H0 b0 b1 m n eG lc k a g HU0 gu gd

1.25 0.45 125 0.2 125 4.2 0.2 0.3 0.8 0.934 0.019 0.7 0.05 0.1 175 2.0 1.0

Figure 4. Measured shear properties on Toyoura sand under undrained conditions in different directions of principal stress with
Dr = 90%.3

Figure 5. Measured shear properties on Toyoura sand under
undrained conditions in different directions of principal stress
with Dr = 60%.3

Wang et al. 7



Figure 6. Measured shear properties on Toyoura sand under undrained conditions in different directions of principal stress with
Dr = 30%.3

Figure 7. Predicted shear properties on Toyoura sand under undrained conditions in different directions of principal stress with
Dr = 90%.

Figure 8. Predicted shear properties on Toyoura sand under undrained conditions in different directions of principal stress with
Dr = 60%.

8 International Journal of Distributed Sensor Networks



Figure 10. Simulated results when a= g=m= n= 0.

Figure 11. Simulated results when a= g= 0.

Figure 9. Predicted shear properties on Toyoura sand under undrained conditions in different directions of principal stress with
Dr = 30%.

Wang et al. 9



of Yang has only 35 cycles. Therefore, the simulations
have been performed on Luan et al.’s19 experiments
which are similar to Yang’s experiments but have more
cycles (approximately 200 cycles) and on Fujian stan-
dard sand, which is often used as the standard experi-
mental sand in China and has a mean diameter
d50 = 0:34mm, uniformity coefficient Cu = 1:542, spe-
cific gravity Gs = 2:634, maximum void ratio
emax= 0:848 and minimum void ratio emin = 0:519.

The selection of model parameters for Fujian stan-
dard sand refers to the work by Liu and Song, and the
model parameters are summarized in Table 2 (initial
void ratio e0 = 0:76).

The simulation results with the proposed model
shown in Figure 14 indicate that the higher the number
of cycles, the higher the plastic strain. The magnitude
of the simulated plastic strain is consistent with the
experimental results shown in Figure 15, though there
is some difference in the shape of hysteresis loops.

Discussion and conclusion

Using a hierarchical approach, a new constitutive
model is developed in this article by introducing

Figure 12. Stress paths in the s0z�s0x
2 � tzx

h i
plane for the

undrained cyclic rotational shear tests.

(a) (b)

(c) (d)

Figure 13. Shear strain ezu and shear stress tzu relationship in the undrained cyclic rotational shear tests on Toyoura sand: (a)
measured test result,5 (b) predicted result using the proposed model, (c) predicted result by the linear elastic model and (d)
predicted result by the PZ3 model.
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principal stress angle and state parameter into the PZ3
model. The feature of stress–strain behaviour due to
the change of principal stress orientation can be reason-
ably reflected when compared with the experiment.
Meanwhile, the inclusion of state parameters makes it
feasible to use the same set of parameters to predict the
results of undrained monotonic loading tests in differ-
ent initial confining pressures or initial void ratios. The
new model uses void ratio e and critical stress ratio M
as independent variables, which allows for more expli-
cit physical meanings in the determination of the model
parameters. Even though this new feature of the model
was validated on undrained monotonic loading tests,
which do not involve the change of void ratio during
the test, the inclusion of the state parameter would
allow the model to successfully simulate drained triax-
ial tests that involve a continuous change in the void
ratio. Furthermore, a systematic model parameter cali-
bration procedure is proposed, which enhances the
practicality of the new model.

The capability of the model simulation is verified
with the experimental results obtained from two differ-
ent types of experiment involving both monotonic and
cyclic loading. In accordance with experimental results,
the proposed model can reasonably reflect the effects
of principal stress orientation and the state-dependent
dilatancy, especially in the stress condition of the pure
principal stress rotation.

The current model only allows rotation of principal
stress direction in a 2D plane. Nevertheless, this would
already allow the use of the model to investigate prob-
lems involving saturated soil, pore fluid interactions
and wave-induced dynamic responses of level seabeds

with or without structures. However, in order to inves-
tigate 3D problems, the model should be extended by
introducing two more principal stress angles or using
the Cartesian stress components as base variables.
However, it would be difficult to perform experiments
with two different rotations of principal axes for model
validation. One possible future direction is to split the
one direction rotation of principal axis of hollow cylin-
der testing into two by rotating the coordinate system,
which can be used to test future models involving more
than one rotation of principal axes. Finally, because
natural soil is layered due to the deposition, principal
stress rotation in anisotropic soil should also be consid-
ered in the future.
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Table 2. Model parameters of the proposed model for Fujian standard sand.

M a0 G0 n H0 b0 b1 m n eG lc k a g HU0 gu gd

1.23 0.3 134 0.25 134 4.2 0.2 1.2 2.5 0.802 0.028 0.68 0.2 0.3 28 2.0 1.0

Figure 14. Predicted shear strain ezu and shear stress tzu

relationship using the proposed model in undrained cyclic
rotational shear tests on Fujian standard sand.

Figure 15. Measured shear strain ezu and shear stress tzu

relationship in undrained cyclic rotational shear tests on Fujian
standard sand.19
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Appendix 1

The elastic stiffness tensor De
ijkl in equation (10) is

expressed as follows

De
ijkl =Kdijdkl +G dijdkl + dildjk �

2

3
dijdkl

� �
ð39Þ

in which K and G are the elastic bulk and shear moduli.
The shear modulus G is dependent on the mean effec-
tive stress p0 and reference mean effective stress p00

G=G0
p0

p00

K =G
2(1+ v)
3(1�2v)

(
ð40Þ

where G0 is the reference shear modulus and n is
Poisson’s ratio.

X1 and X2 defined in equation (21) are as follows

X1 =Mf0 � p0 � 1+
1

a cð Þ


 �
ð41Þ

X2 = 1+
1

a cð Þ


 �
� p0 �Mf cð Þ � q ð42Þ

Y1 and Y2 defined in equation (22) are as follows

Y1 =Mg0 � p0 � 1+
1

a cð Þ


 �
ð43Þ

Y2 = 1+
1

a cð Þ


 �
� p0 �Mg cð Þ � q ð44Þ
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