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Abstract. The non-appearance of predicted superparticles in high-energy particle experi-
ments has placed severe constraints on candidate models of supersymmetry; in particular on
the masses of the superpartners of known particles. Drawing on our earlier work investigating
quadratic deformations of Lie superalgebras we present in this paper our recent findings that for
certain extensions of space-time supersymmetries, namely the conformal superalgebra, there are
representations without any superpartners (see J. Phys. A: Math. Theor. 51 (2018) 145203).
This possibility arises due to a remarkable coincidence of the allowable quadratic extensions
of the algebra, where one demands that a generalisation of the PBW theorem holds, and the
minimal polynomial identity satisfied by the even subalgebra.

1. Introduction
As an extended symmetry principle, supersymmetry places within a single algebraic framework a
model of particles and their interactions, enlarging the standard model to include the prediction
of superparticles. In its simplest form, each particle of the standard model would be accom-
panied by a single superpartner. The appeal of supersymmetry is the improved behaviour of
supersymmetric quantum field theories with respect to infinities and renormalization. However,
in spite of ever increasing energy thresholds in experimental particle physics, up to and including
the first run of the Large Hadron Collider, predicted superparticles of the known particles in the
standard model have not appeared, pushing upwards the bounds on superparticle masses and
significantly constraining candidate models [1].

At the technical level, the application of symmetry principles in theoretical physics goes
hand-in-hand with the investigation of related algebraic structures. Within these structures, the
symmetry itself is realised via the specific (non-commutative) multiplicative relations between
algebraic elements and the study of invariants, representations and topological properties pro-
vides important (physical) information such as prediction of the spectrum of particle states. In
this context, the investigation of physics beyond the standard model, or indeed beyond stan-
dard supersymmetric models, necessarily involves variations, extensions or deformations of the
corresponding algebraic structures.

Above sufficiently high (unification) energy thresholds, candidate symmetry groups are
unbroken and therefore restricted by established no-go theorems, namely the Coleman-Mandula
Theorem [2] and its supersymmetric extension, the Haag−Lopuszański−Sohnius (HLS) theorem
[3]. At lower energy scales, however, symmetry breaking is imperative, both in the standard
model as, for example, a mechanism for mass generation, and in the context of supersymmetry
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to lift the mass degeneracy for pairs of superpartners. In this regime, non-linear algebraic
structures such as quantum groups, W-algebras and other deformations of the classical groups
are candidate algebraic frameworks in which to investigate symmetry principles beyond the
standard model.

It is in this context that we investigate a class of quadratic deformations of the universal
enveloping algebra of ordinary Lie superalgebras, termed quadratic superalgberas. Originally
introduced by Jarvis et. al [4], these algebras are generated by an underlying Z2-graded vector
space L = L0̄ ⊕ L1̄. The defining relations satisfy non-linear graded commutation relations of
the form

[L0̄, L0̄] ⊂ L0̄ [L0̄, L1̄] ⊂ L1̄ {L1̄, L1̄} ⊂ (L0̄ ⊗ L0̄) + L0̄ + C, (1)

in addition to fulfilling an analogue of the usual (graded) Jacobi identities. In this paper we
review key results concerning quadratic superalgebras, in particular the existence of so-called
zero-step modules. We apply these results in the context of spacetime conformal supersymmetry
exploiting the occurrence of zero-step modules to provide new insights into the predicted particle
spectrum. The paper concludes with a short appendix containing a brief overview of the theory
of quadratic algebras.

2. Quadratic Superalgebras
Let L = L0̄ +L1̄ be a finite-dimensional Z2-graded complex vector space. Take the even and odd
subspaces L0̄ and L1̄ to be spanned by basis elements x1, i = 1, 2, ..., n, and yr, r = 1, 2, ...,m,
respectively. The tensor algebra T (L) =

⊕∞
n=0⊗n(L) ∼= C ⊕ L ⊕ L ⊗ L ⊕ · · · inherits the

Z2-grading in the natural way.
Imposing the multiplicative conditions (1) we have in terms of basis elements

[xi, xj ] = cij
kxk [xi, yp] = c̄ip

qyq {yp, yq} = dpq
klxk ⊗ xl + bpq

kxk + apq, (2)

where the arrays of complex numbers cij
k, c̄ip

q, bpq
k and dpq

kl take the role of generalised
structure constants. Demanding that [ , ] and { , } fulfill the standard (graded)
commutation relations we obtain a set of quadratic relations I ⊂ L ⊗ L + L + C spanned
by the set

xi ⊗ xj − xj ⊗ xi − cijkxk;
xi ⊗ yp − yp ⊗ xi − c̄ipqyq;
yp ⊗ yq − yq ⊗ yp − dpqklxk ⊗ xl − bpqkxk − apq.

(3)

Let us demand that the relations (2) satisfy the ordinary graded Jacobi identities. Let
{wi, i = 1, · · · ,m + n} be a fixed homogeneous basis for L such that |i| = 0 and |i| = 1
denote the even and odd grading respectively. In this basis the quadratic relations (3) take the
form

wiwj − (−1)|i||j|wjwi − dij lmwlwm − ckijwk − aij , (4)

where dij
lm and aij are non-vanishing only when both |i| = |j| = 1 and |l| = |m| = 0. The

graded Jacobi identities are

[wi, [wj , wk]] = [[wi, wj ], wk] + (−1)|i|.|j|[wj , [wi, wk]], (5)

where nested brackets of the form [{yp, yq}, wi], for which the inner bracket contains quadratic
terms, are defined by

[{yp, yq}, wi] ≡ dpqlo (xl[xo, wi] + [xl, wi]xo) + ckpq[xk, wi].
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In terms of the generalised structure constants the Jacobi identities (5) take the form

cij
lclk

o = cik
lclj

o + cjk
lcli

o;
cij

lc̄lp
q = c̄ir

q c̄jp
r − c̄jrq c̄ipr;

cin
kdpq

nl + cin
ldpq

kn = c̄ip
sdsq

kl + c̄ip
sdsq

kl,
bpq

ocio
n = c̄ip

sbsq
n + c̄iq

sbps
n,

c̄op
sbqr

o + c̄oq
sbrp

o + c̄or
sbpq

o = 0,

c̄op
sdqr

ol + c̄oq
sdrp

ol + c̄or
sdpq

ol = 0.

(6)

Definition 2.1 (Quadratic Superalgebra). Let L = L0̄ + L1̄ be a finite-dimensional Z2-graded
complex vector space satisfying the multiplicative relations (2) and the Jacobi identities (6)
above. Let (I) be the two-sided ideal in the tensor algebra T (L) generated by the set of qudratic
relations I as in (3). The subalgebra of the tensor algebra defined by U(L) = T (L)/(I) is called
the quadratic superalgebra associated with I.

Remark. L0̄ is a Lie algebra and L1̄ in an L0̄-module. When dpq
kl = bpq = 0 then U(L) =

T (L)/(I) is the universal enveloping algebra of the ordinary Lie superalgebra L = L0̄ +L1̄. The
imposition of the Jacobi identities turns out to have a key role in determining the existence of a
Poincaré-Birkhoff-Witt (PBW) basis. If the odd module L1̄ is a real representation of the even
part then we call U(L) a balanced quadratic superalgebra. These may be further categorised
into type I′ and type II where the former admit a decomposition L1̄ = L+ + L−, where L+ is
an irreducible L0 representation and L− is its contragredient, with {L±, L±} = 0 imposed to be
consistent with type I Lie superalgebras.

Theorem 2.2 (PBW basis theorem). As before let {wi, i = 1, · · · ,m + n} be a fixed homoge-
neous basis for L, and consider the defining relations (4) which generate the ideal (I). Then the
quadratic superalgebra U(L) = T (L)/(I) has a basis of ordered monomials if an index ordering
exists such that only those dij

lo are nonvanishing for which both l and o precede i and j.

Proof. We outline two methods of proof.

Method 1. This method involves the explicit construction of the ordered monomial elements
followed by a proof of their linear independence via induction on the monomial degree. The
linear independence depends explicitly on satisfaction of both the Jacobi identity (6) and the
ordering condition. This method mirrors classical proofs of the PBW theorem for Lie algebras,
see Lemma 2.9 [5] for the complete proof.

Method 2. This method employs techniques from the theory of quadratic algebras (see the
appendix for a brief overview). These include a generalised PBW theorem and a special case
of the so-called diamond lemma which is used verify the linear independence of the derived
(Grobner) basis, see Lemma 2.8 [6] for full details.

Theorem 2.3 (Structure of gl2(n/1) ). Take L0̄ = gl(n) with (Gel’fand) basis Eab a, b = 1, ..., n
satisfying [Eab, E

c
d] = δcbE

a
d − δadEcb. Take L1 = L−1 + L+1

∼= {1}+ {1} where {1} and {1}
are the fundamental and fundamental contragredient L0̄-representations with bases Q

a
and Qa

respectively. These satisfy

[Eab, Q
c
] = δcbQ

a
[Eab, Qc] = −δacQb.

The most general solution of the anticommutator {Qa, Qb} ⊂ L0 ⊗ L0 + L0 + C such that
gl2(n/1) ≡ L0̄ + L1̄ is a quadratic superalgebra is (up to an overall scaling)

{Qa, Qb} = (E2)ab − Eab(〈E〉 − α)− 1

2
δab
(
〈E2〉 − 〈E〉2 + (n− 1 + 2α)〈E〉

)
+ δabc, (7)
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where α is a free parameter, c is a central charge, and 〈E〉 and 〈E2〉are the linear and quadratic
Casimir operators respectively.

Proof. See section 4 [4] and section 4.1 [6].

The close relationship between gl2(n/1) and Lie superalgebra sl(n/1) is revealed by a simple
re-parametrisation. Let gl2(n/1)λ, c denote the quadratic superalgebra resulting from an overall
rescaling of (7) by λ ≡ 1

α , explicitly

{Qa, Qb} = Eab − δab〈E〉+ λ
[
(E2)ab − Eab〈E〉− 1

2δ
a
b

(
〈E2〉−〈E〉2+(n−1)〈E〉 − 2c

)]
.

Lemma 2.4 (Contraction limit of gl2(n/1)λ, c( [6], Lemma 2.2)). The ordinary Lie superalgebra
sl(n/1) is obtained from gl2(n/1)λ, c in the contraction limit λ→ 0.

Since the even part is an ordinary Lie Algebra, the representation theory of quadratic
superalgebras can be developed in a manner analogous to that of Lie superalgberas. This includes
the method of induced Kac-modules for which there exists a class of truncated irreducible
modules called atypical modules. Atypicality arises in Lie superalgebras due to the fact that for
certain highest weight L0-modules V0(λ), there exists v ∈ V0(λ) such that

T+T−.v = 0, (8)

where T± ≡
∏
yi∈L± yi. As a consequence of (8), the induced module, V (λ), contains non-trivial

submodules which must be factored out to obtain the corresponding irreducible L-module with
highest weight λ [7]. An alternative method, due to Gould [8], takes a more constructive
approach, employing the theory of characteristic identities and the related theory of tensor
projection operators [9,10] to determine the set of even modules which comprise a given L-module
of highest weight λ. One of the unique features of quadratic superalgebras is the existence of
completely degenerate atypical modules; these are zero-step atypical modules which comprise a
single irreducible L0-module, that is V (λ) = V0(λ). This occurs due to the remarkable possibility
that for certain representations V0(λ), the right-hand-side of the anticommutator coincides with
a quadratic characteristic identity and is therefore identically zero. We illustrate some finite-
dimensional zero-step modules below; a class of infinite-dimensional examples appears in the
subsequent section.

Example 2.5 (Finite-dimensional zero-step modules). The (minimal) degree of the polynomial
identity satisfied by the array of Gel’fand generators E is determined, in the case of finite-
dimensional representations V0(λ), by the number of distinct dominant integral weights in the
sequence, λ+ϕ1, λ+ϕ2, ..., λ+ϕn, where ϕi = −εi comprise the weight space of the fundamental
contragredient representation of gl(n) [11,12]. In order to illustrate a class of zero-step modules,
we fix

λ = (kr, 0n−r) ∼=

k columns︷ ︸︸ ︷  r rows,

for which the Casimir operators, evaluated on V0(λ), take the eigenvalues

〈E〉 = rk 〈E2〉 = rk(k + n− r).

Given the requirement that λ+ϕi be dominant integral, it is evident the only rows from which
a single box may be removed are the rth and nth. These correspond to the addition of ϕn−r+1
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and ϕ1 respectively. The resulting quadratic gl(n)-polynomial identity, whose roots are given
by ai = λi + n− 1, is

E(E − (k + n− r)) = 0. (9)

Zero-step modules will occur whenever (9) coincides with the right-hand side of the
anticommuator (7). This leads to the following constraints on the central charge for n ≥ 3,

c =
1

2
r(r − 1)k(k + 1). (10)

The following table is easily computed and gives concrete instances for the restricted case α = 0.

n 3 4 5 5 6 7 7 7 8 9 9 9 10 10
r 2 2 2 3 2 2 3 4 2 2 3 5 2 4
k 1 2 3 1 4 5 2 1 6 7 3 1 8 2

c 2 6 12 6 20 30 18 12 42 56 36 20 72 36

Zero-step atypicals (α = 0): gl2(n/1) Kac modules V (kr, 0n−r) for n = 3, 4, ..., 10

3. Quadratic Conformal Supersymmetry
Our aim in this section is to illustrate how the existence of zero-step modules provides for
new possibilities in extended models of supersymmetry. In particular, we show that for a
certain quadratic deformation of the algebra of N = 1 space-time conformal supersymmetry, the
zero-step modules are precisely the class of massless representations of the even part su(2, 2).
Due to the degeneracy of these supermultiplets, the corresponding particles of the standard
model, those descended from massless multiplets at unification energies, are not accompanied
by superpartners.

We begin by introducing L = su2(2, 2/1), a real from of the quadratic superalgebra gl2(4/1).
The even part is L0̄

∼= u(2, 2) ∼= su(2, 2)+gl(1) and the odd part is the L0-module L1̄
∼= {1}+{1}.

We use the same basis as gl2(4/1) (see Theorem 2.3), however, in this non-compact case, the
requirement of having unitary representations imposes the hermiticity conditions,

(Eab)
† = ηbb′E

b′
a′η

a′
a, (Qa)

† = ηab′Q
b′
,

where η =diag(−1,−1, 1, 1) 1. Due to Lemma 2.4, su(2, 2/1) is obtained in the appropriate
contraction limit of su2(2, 2/1).

Representations of the conformal superalgebra are induced from representations of the even
subalgebra. In the case of massless representations, these supermultiplets are shortened to
remove the even submodules which are themselves not massless [13]. The (positive energy)
unitary irreducible representations of the conformal group have been classified by Mack [15]
and are characterised by their energy, mass and spin/helicity. These are infinite-dimensional
modules possessing a lowest weight λ = (d;−j1,−j2) where d, j1 and j2 relate to eigenvalues of
the Cartan elements,

H0 ≡ 1
2(E1

1 + E2
2 − E3

3 − E4
4)

H1 ≡ 1
2(E1

1 − E2
2)

H2 ≡ 1
2(E3

3 − E4
4).

(11)

1 This basis may be brought into correspondence with that of [13, 14]. Set La
b = Ea

b − 1
4
δab〈E〉 and define

T a
b = ηaa′La′

b′ η
b′

b satisfying [T a
b, T

c
d] = ηadT

c
b − ηcbT a

d.
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These action of these on the lowest weight vector |λ〉 is

H0|λ〉 = d|λ〉, H1|λ〉 = −j1|λ〉, H2|λ〉 = −j2|λ〉.

The unitary irreducible representations comprise the following five classes [15]:

(Trivial) (1) d = j1 = j2 = 0.

(Massive) (2) j1 6= 0, j2 6= 0, d > j1 + j2 + 2 s = |j1 − j2|...j1 + j2

(3) j1j2 = 0, d > j1 + j2 + 1 s = j1 + j2

(4) j1 6= 0, j2 6= 0, d = j1 + j2 + 2 s = j1 + j2

(Massless) (5) j1j2 = 0, d = j1 + j2 + 1 helicity = j1 − j2.

In the present (non-compact) case, the determination of the minimal polynomial identity
satisfied by E is a difficult problem since the unitary representations are infinite-dimensional and
the fundamental contragredient representation is non-unitary. This problem has been solved in
principle through the analysis of Kostant [11] and Gould [16], although in practice it still requires
a subtle understanding of the structure of each module. Drawing on the detailed analyis of the
representation theory of su(2, 2) due to Yao [17, 18], we have shown in [6] that E satisfies the
following quadratic minimal identity for representations V0(λ) belonging to the class of massless
representations satisfing (class (5) above),

E(E − (2j1 − 2j2 + 1) = 0. (13)

In particular, this result depends on the so-called maximal degeneracy of the massless
representations which, in this context, means that the entire module can be decomposed into
a sum of finite-dimensional modules of the maximal compact subgroup where each submodule
occurs with unit multiplicity (see Lemma 4.1 [6] for details). This leads to the main result.

Lemma 3.1 (Massless multiplets are zero-step modules (Lemma 4.2 [6])). The anticommutator
for su2(2, 2/1) may be brought into correspondence with a quadratic minimal polynomial identity
for massless representations of the even subalgebra. The coincidence occurs for the parameter
value α = −3 and for central charge c = 0.

Proof. We begin by noting that for α = −3 and c = 0 the anticommutator (7) may be expressed
in the form

{Qa, Qb} = p(E)ab + δabTr[p(E)],

where p(E) = E(E−(〈E〉+3)). It remains to show that p(E) coincides with a quadratic identity
of the massless representations. Using (11), the eigenvalue of the linear Casimir 〈E〉 is easily
determined to be 2j1 − 2j2 − 2. The result is obtained by comparison with (13).

4. Conclusion
In this work we identify a class of non-linear algebras, natural extensions of standard
supersymmetric algebras, in which supersymmetry principles may be imposed without the
need for each particle of the standard model to be accompanied by a superpartner. Non-
linear algebraic structures such as these have a natural and established place in theoretical
physics. Quantum groups and related non-linear structures such as Yangians and W-algebras
have found numerous applications since their advent in the early 1980’s [19, 20] and they arise
as symmetries in very elementary systems [21]. This work builds upon initial investigations of
‘supersymmetry without superpartners’ [22] where similar results were obtained in the restricted



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012115

IOP Publishing

doi:10.1088/1742-6596/1194/1/012115

7

setting of oscillator representations of the even subalgebra. While all oscillator representations
of su(2, 2) are known to be massless representations [23, 24], in this work we are at pains to
provide an algebraic foundation for the results, and as such provide a robust framework for
detailed model implementations. Future work includes the investigation of both a coproduct
for quadratic superalgebras as well as the potential relationship between these algebras and
instances of finite W-(super)algebras.
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Appendix A. Quadratic Algebras
The class of quadratic superalgebras may be framed within the much larger class of quadratic
algebras. In this setting there exists a generalisation of the classical PBW theorem to which
there corresponds a set of generalised Jacobi identities, and in certain cases, an algorithm to
derive a basis of ordered monomials. This appendix is a short excerpt from our earlier work (see
§2 [6]); it provides a brief account of the main definitions and theorems, drawing substantially
from the text due to Polishchuk and Positselski [25] and references therein including Braverman
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Let X be a finite-dimensional vector space of dimension n and let T (X) be the tensor algebra
generated by X. We fix a set of non-homogeneous quadratic relations I ⊂ (X ⊗X)⊕X ⊕C to
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which there corresponds a set of homogeneous relations I2 ⊂ T ⊗ T which are the projection of
I onto X ⊗X. We denote by (I) and (I2) the ideal generated in T (X) by I and I2 respectively.

Definition A1 (Quadratic Algebra). Let X and I be defined as above. The algebras

U = T (X)/(I) and A = T (X)/(I2).

are called the inhomogeneous quadratic algebra and the homogenous quadratic algebra
respectively, generated by X and I.

Note that the direct sum decomposition I ⊂ X ⊗X +X + C enables maps α : I2 → X and
β : I2 → C to be defined such that

I = {x− α(x)− β(x)|x ∈ I2}.

Within the class of quadratic algebras there exists an important subclass possessing certain
cohomological properties which permit a generalisation of the classical PBW theorem. This
class contains only homogenous quadratic algebras and is defined by the notion of Koszulness
for which there are many equivalent definitions. We give the following definition in terms of the
distributivity of certain vector subspaces in the tensor algebra.

Definition A2 (Koszul Algebra( [25], chapter 2, theorem 4.1)).
A homogeneous quadratic algebra A = T (X)/(I2) is Koszul iff for all n ≥ 0 the collection of
subspaces

X⊗i−1 ⊗ I2 ⊗X⊗n−i−1 ⊂ X⊗n, i = 1, ..., n− 1

is distributive.

Associated with the tensor algebra is the filtration defined by Tn =
∑n

k=0 T
k in such a way

that C ∼= T0 ⊂ T1 ⊂ T2 ⊂ · · · , that is, Tn ⊂ Tn+1. U inherits this filtration in the natural way
so that we have C ∼= U0 ⊂ U1 ⊂ U2 ⊂ · · · and we define the associated graded algebra as the
direct sum

grU ≡
∞⊕
n

Un/Un−1.

A, the homogeneous version of U , is generated by first homogenising, that is truncating, each
term in the generating relations and then factoring the tensor algebra by the resulting ideal.
The construction of grU , on the other hand, is obtained by initially retaining the full set of
non-homogeneous relations and instead truncating the terms appearing in the corresponding
ideal. The generalisation of the PBW theorem is a statement of the conditions under which
these two graded algebras coincide.

Theorem A3 (Generalised PBW theorem( [25], chapter 5, theorem 2.1)).
When A is Koszul, and the following conditions are satisfied:

(J1) (α⊗ id− id⊗ α)|I2⊗L∩L⊗I2 ⊂ I2;
(J2) α ◦ (α⊗ id− id⊗ α)|I2⊗L∩L⊗I2 = −(β ⊗ id− id⊗ β)|I2⊗L∩L⊗I2
(J3) β ◦ (α⊗ id− id⊗ α)|I2⊗L∩L⊗I2 = 0

we have the isomorphism
gr(U) ∼= A.
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The relations (J1)-(J3) are called the generalised Jacobi identities. Proving Koszulness is in
general a difficult undertaking and one may select from a variety of methods (for example [25],
chapter 2). Here instead we investigate when the homogeneous algebra A of theorem A3 satisfies
the stronger condition of being a PBW algebra, that is, admitting an ordered basis of monomials
in the generators xi ∈ X (see definition A4). A theorem due to Priddy ( [27], theorem 5.3) states
that every homogeneous PBW algebra is Koszul.

Before giving a formal definition of a PBW algebra we must make precise the notion of an
ordered set of monomials with respect to a set of quadratic relations. Following [27] let xi,
i ∈ S1 := {1, .., n} be a basis for X. S1 defines an ordering on X such xi < xj when i < j. S1

also defines a lexicographic ordering on monomials belonging to T (X). I2 comprises expressions
of the form

∑
cklxkxl. Each such expression contains a unique leading monomial which is the

highest quadratic term, with respect to the lexicographic ordering, in the sum. We define

S2 := {(i, j)|i, j ∈ S1, xixj is not a leading monomial}.

We also define

Si := {(i1, i2, ..., in)|(ij , ij+1) ∈ S2, j = 1, 2, ..., n− 1}.

Consider now the grading of A inherited from T (X). Since I2 is by construction homogeneous,
each graded subspace Ai contains only homogeneous elements of degree i. It follows that

A0
∼= C,

A1
∼= X has a basis {xi|xi ∈ X, i ∈ S1},

A2 has a basis {xixj |xi, xj ∈ X, (i, j) ∈ S2}.

Definition A4 (PBW Algebra). The homogenous quadratic algebra A is a PBW-algebra if the
monomials {xi1xi2 ...xin , (i1, i2, ..., in) ∈ Sn} are a basis for A. In this case the monomials are
called a PBW-basis of A.

Note that these monomials always span A, thus the task of establishing the PBW property is
to determine their linear independence. In order to proceed with this task we define the mapping
π : X ⊗X → X ⊗X

π(xixj) =

{
xixj (i, j) ∈ S2∑

(k,l)∈S2
cklxkxl (i, j) /∈ S2

which extends linearly to X ⊗X and essentially replaces leading monomials with a unique sum
of non-leading terms as determined by I2. Finally we define

π12 = π ⊗ I : T3 → T3. π23 = I ⊗ π : T3 → T3.

Lemma A5 (Thm 2.1 p.82 [25] - Diamond Lemma).
A is a PBW-algebra iff the cubic monomials (xixjxk, (i, j, k) ∈ S3) are linearly independent in
A3. Equivalently A is a PBW-algebra iff the following equation holds:

· · ·π12π23π12π23π12 = · · ·π23π12π23π12π23. (A-1)

Remarks. The infinite composition is well defined since π decreases the order. To establish
(A-1) we need only consider basis elements xixjxk ∈ T3 such that both (i, j), (j, k) /∈ S2. For if
one of these belonged to S2 then one of either π12 or π23 will act trivially on the starting term
xixjxk and (A-1) follows immediately. The PBW property depends on the choice of ordering
given to the generators of X. That is, a fixed homogeneous quadratic algebra may be a PBW
algebra given one ordering but not for another.


