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Abstract: Multiple species of Fusarium can infect wheat and barley plants at various stages of
development. Fusarium head blight (FHB) refers to the infection of spikes and developing kernels
by these pathogens, and crown rot (FCR) infers to infection of the root, crown, and basal stem by
Fusarium pathogens. Interestingly, most of the host genes conferring resistance to these two diseases
are different in both wheat and barley, and plants’ susceptibility to these two diseases are oppositely
affected by both plant height and reduced water availability. Available results do not support the
hypothesis that reduced height genes have different effects on biotrophic and necrotrophic diseases.
Rather, differences in temperature and humidity in microenvironments surrounding the infected
tissues and the difference in the physical barriers originating from the difference in cell density seem
to be important factors affecting the development of these two diseases. The fact that genes conferring
resistance to Type I and Type II of FHB are different indicates that it could be feasible to identify and
exploit genes showing resistance at the three distinct stages of FCR infection for breeding varieties
with further enhanced resistance. The strong association between FCR severity and drought stress
suggests that it should be possible to exploit some of the genes underlying drought tolerance in
improving resistance to FCR.

Keywords: DELLA; drought stress; FCR; FHB; plant height; Rht genes

1. Introduction

Multiple species of Fusarium can infect wheat and barley plants at various stages of
their development. The term FHB (also known as scab) refers to Fusarium infection of
spikes and developing kernels by these pathogens. When the root tissue, crown and basal
stem are infected by Fusarium pathogens, the disease is named as FCR (Figure 1). Although
field surveys suggest that the dominant Fusarium isolates associated with FHB and FCR
can be different, many Fusarium species associated with FHB can also be isolated from
FCR-infected plants [1,2]. Additionally, all Fusarium pathogens that cause FHB are also
responsible for FCR under laboratory environments [3].

FHB is among the most intensively investigated diseases in cereals. The abundance
of inoculum and weather conditions, mainly moisture and temperature, during and after
anthesis determines the severity of FHB. The symptoms of FHB can become visible shortly
after anthesis under environments of high humidity and temperature which are highly
beneficial for initiation and propagation of FHB infection. Diseased spikelets exhibit
premature bleaching, and the bleaching of spikelets can progress throughout large numbers
of entire spikes. Often, the infected grains shrink and wrinkle with shrivelled appearance
with colour ranging from pink to light brown. FHB is one of the most serious diseases
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affecting wheat production worldwide [4,5]. The associated costs in the USA in the last
decade alone exceeded US$ 2 billion [5]. In addition to grain yield loss, FHB-infected
kernels can produce mycotoxins, especially deoxynivalenol (DON), which poses risks to
animal and human health [3]. ‘Field resistance’ to FHB can be divided into two major
components, resistance to initial infection (Type I) and resistance to disease spread within
infected spikes (Type II) [6]. Type I resistance is evaluated by spraying spore suspension
over flowering spikes and counting the diseased spikelets. Type II resistance is evaluated
by delivering conidia into a single floret of a spike and counting the infected spikelets after
a given time. Clearly, accurate assessment of Type I resistance needs to be carried out before
the onset of Type II symptoms. However, many FHB studies have been conducted by using
spray inoculation and evaluating a combination of both Type I and Type II resistance [7–12].
It is well known that when compared to that of Type I, the development of Type II disease
is less prone to environmental influence [7,13]. Plant height, heading date, spike length,
density of spikelets, and anther retention are among characteristics affecting FHB infection
in wheat [14,15].
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Symptoms associated with FCR include seedling death, brown necrotic lesions on the
coleoptile, tiller base, roots and subcrown internode, and the rotting of root, crown, and
stem tissues (Figure 1). Stem base browning is widely used to measure FCR severity [16,17].
Whiteheads are the most pronounced visual impact of FCR in wheat and they often occur
when plants are drought-stressed after anthesis. Whiteheads can be completely devoid
of grain or possess shrivelled grains, resulting in an increase in screenings. Consequently,
crop yield and hence crop value (via yield reduction and often quality downgrade) can
be significantly reduced [3]. There is a significant difference in FCR sensitivity among
barley (2n = 2x = 14, genome HH), bread (2n = 6x = 42, genomes AABBDD), and durum
wheat (2n = 4x = 28, genome BBAA), with durum wheat being the most susceptible [17].
Interestingly, whiteheads are rare in barley crops [18]. The reasons for the difference in
whitehead production between these crop species remain unknown.

FCR is a chronic disease in cereal production in semi-arid regions worldwide [3]. Based
on figures from the last available surveys conducted in Australia more than a decade ago,
FCR causes an estimated annual yield loss in wheat and barley of about A$97 million [19,20].
The incidence and severity of FCR have been exacerbated in recent years by an increase in
the intensity of cereal production for economic reasons combined with the wide adoption
of reduced tillage [3]. Data from recent research at Merredin and Wongan Hills in Western
Australia show that high levels of FCR can cause average yield losses of 19% in bread
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wheats and 18% in barley [21]; even higher yield losses occur elsewhere—e.g., up to 35.0%
in the USA [22], 43.0% in Turkey [23], and 45.0% in Iran [24]. In recent years, the incidence
and severity of FCR have progressively increased in major wheat-producing areas and FCR
became a major threat to wheat production in China [25]. FCR infection can also produce
high concentrations of mycotoxin in infected plants under experimental conditions, but
levels of mycotoxins in harvested grains of FCR-infected plants are generally very low and
do not pose a serious threat to further processing or consumption [26].

Significant progress has been made in genetically improving resistance to the latter
in recent years. Several loci conferring FCR resistance have been detected in both wheat
and barley [18]. Some of these were detected from wild relatives or landraces [16,27,28]
while others from elite varieties [12,29]. Effects of these loci have been validated by
analysing near isogenic lines (NILs) generated for each of them [30–34], and molecular
markers tightly linked to several of these loci have been obtained by assessing NIL-derived
populations [31,35–37]. Effects of gene pyramiding in further enhancing FCR have been
demonstrated for both barley [38] and wheat [39].

2. Different Genes Control FHB and FCR Resistance

Considering that FHB and FCR are basically two different diseases caused by the same
Fusarium pathogens infecting different organs, it seems logical to expect that they must
share many features. Indeed, all resistance genes or loci reported so far for both FHB [40]
and FCR [18] are not pathogen species-specific. In other words, a gene or locus giving
resistance to one Fusarium species would give resistance to other Fusarium species as well.
Supporting this notion is a report that the gene Fhb7 is resistant to both FHB and FCR [41].
However, Fhb7 seems to be an exception. Other known sources of FHB resistance, including
both Sumai 3 and Wangshuibai, do not seem to provide resistance to FCR [42]. Enhanced
resistance to FHB was easily detected in all genotypes containing the best-known resistance
gene Fhb1 [9], but the same materials did not show any improved resistance to FCR [42].

It may not be a total surprise that most of the genes conferring resistance to FHB do
not show any effect on FCR and vice versa. Available results suggest that genes conferring
resistance to Type I and Type II of FHB are also different [8]. Similarly, different genes are
responsible for FCR resistance at different developmental stages of wheat and barley [43].
Based on the analysis of pathogen quantity in infected plants, FCR infection and spread
show a typical characteristic of three distinct phases [44]. It would be of interest to find
out whether different sources of resistance or different resistance genes behave differently
at each of these different phases of infection and whether these different features of resis-
tance and tolerance could be exploited to develop varieties with further enhanced FCR
resistance [18].

3. FHB and FCR Occur Differently under Drought Stress Conditions

The developments of FHB and FCR show opposite patterns in drought-affected plants.
Severe yield losses from FHB are driven by a combination of warm and wet weather
coinciding with crop anthesis [5]. On the other hand, severe FCR damage occurs mainly in
crops affected by drought stress, especially late in the growing seasons [22,45,46]. Results
from a laboratory-based studies showed that drought stress prolongs the initial infection
phase but enhances the proliferation and spread of Fusarium pathogens after the initial
infection phase in FCR development [47].

Reasons for the difference in susceptibility of plants to these two Fusarium diseases
under drought conditions are unknown. One of the most obvious possibilities that may
contribute to the difference is the conditions in times of infection. Infection of FCR can occur
once seeds start to germinate, a time when the temperature is low in all regions of cereal
production worldwide. FHB infection occurs following anthesis when the temperature is
high and water availability is usually low [40]. However, it is not clear how the difference
in temperature during disease infection would interact with other factors and results in
the different patterns of development of these two different diseases under conditions of
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drought stress. Nevertheless, the strong association between FCR resistance and drought
tolerance suggests that some genes conferring drought tolerance might be exploited for
enhancing FCR resistance.

4. The Difference in Plant Height Is Associated with Differential Responses to FHB
and FCR

The associations between plant height and susceptibility to FHB and FCR are also
opposite in both wheat and barley. Taller plants tend to be more tolerant to FHB but more
susceptible to FCR. Several possible explanations for this phenomenon were offered. As the
principal inoculum for FHB infection under field conditions are Fusarium ascospores that
are found in debris on soil surface, one of the explanations is that spikes of shorter plants
are physically located closer to the source of infection [48,49]. However, this possibility
cannot explain why shorter plants growing in glasshouses (where a large quantity of
Fusarium pathogens is unlikely to be found on the floor) are also more susceptible to
FHB infection. A second possible reason explaining why shorter plants tend to be more
susceptible to FHB is that genes reducing plant height could be positioned in a proximity of
those conferring a susceptibility to the disease [50,51]. This possibility is based on findings
showing that several QTLs conferring FHB resistances have been co-located with reduced-
height (Rht) loci [10,11,50,52–54]. However, a study based on the use of NILs targeting
individual Rht genes showed that the dwarf isolines were invariably more susceptible to
FHB infection [55]. While it is possible that one or two of the Rht genes may be causally
linked to genes conferring susceptibility to this disease, it is difficult to extrapolate this to all
Rht genes. Another possibility is that, compared with those of tall plants, spikes of shorter
plants are exposed to microenvironments with higher humidity [48]. However, direct
experimental studies have not revealed the difference in the moisture between spikes from
tall and short plants [48]. Opposite results, however, were obtained in experiments with
NILs for several different Rht genes by studying response to FHB infection by separating
Type I and Type II resistance [55]. At their natural height, dwarf isoline was always more
susceptible to Type I infection for each of the NIL pairs assessed. However, when the
dwarf isolines were physically raised so that their heads were at the same height as those
of their respective tall lines, difference in Type II resistance to FHB between the tall and
dwarf isolines disappeared for each of the NIL pairs. These results showed beyond doubt
that moisture levels in the microenvironments exposed by spikes are responsible for the
observed differences between tall and dwarf genotypes, although the difference in air
moisture between the two microenvironments may not always be detectable with available
equipment. It was also found in this study that the effects of drought stress on Type II
resistance (spread of pathogens within infected plants) are marginal [55].

When compared with those on FHB, studies on FCR are limited. However, the associ-
ation between plant height and development of FCR infection was revealed in a study in
which 12 pairs of NILs for six different Rht genes located on different chromosomes in wheat
were examined. When compared with their taller counterparts, dwarf isolines showed
better resistance to FCR [56,57]. Results from histological analyses and real-time quantita-
tive PCR on two pairs of NILs for a Rht gene in barley showed that F. pseudograminearum
hyphae were detected earlier and proliferated more rapidly during the time-course of FCR
development in the tall isolines at each of the time points assessed during FCR develop-
ment. As the cell density of the dwarf isolines are also significantly higher than those of
the tall ones, it was speculated that the increased cell density associated with dwarf genes
could act as a physical barrier to the spread of FCR in cereals [58].

Interestingly, the association between plant height and disease resistance have also
been investigated by targeting reduced-height genes. Following the advent of the ‘Green
revolution’ Rht-B1b and Rht-D1b’ genes were introduced into modern cereal varieties that
encode mutant forms of DELLA proteins that consist of transcription factors characterized
by a short stretch of amino acids (D-E-L-L-A) in their N-terminal regions, which are highly
conserved among different plant species. These proteins repress GA (gibberellic acid)-
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responsive growth [59]. In addition to their effects on plant development, DELLA proteins
are also believed to affect biotrophic and necrotrophic diseases. Through their influence
on the balance between salicylic acid and jasmonic acid pathways, DELLA genes likely
increased susceptibility to necrotrophs but increased resistance to biotrophs. The hypothesis
that DELLA genes may have different effects on pathogens with contrasting lifestyles was
initially proposed in a study on Arabidopsis [60]. A similar claim was then made in wheat
and barley, where FHB was assessed as one of the necrotrophic diseases [61]. However,
some Rht genes do not confer dwarfism by encoding mutant forms of DELLA proteins.
For example, Rht8 confers dwarfism by reducing sensitivity to brassinosteroids [62]. Like
those conferred by all other Rht genes, shorter plants caused by Rht8 also showed worse
resistance to FHB in wheat [55]. Similarly, the Rht gene uzu, another non-GA-responsive
semi-dwarf gene, is also linked to increased resistance to FCR [63]. Clearly, these results
contradict the hypothesis that DELLA genes increase susceptibility to necrotrophs but
increase resistance to biotrophs by balancing between salicylic acid and jasmonic acid
pathways [61,62].

The question then is why cell density does not slow down the spread of FHB, as
shorter plants tend to be more susceptible to this disease? One of the possible answers to
this question is the relative importance of micro-environments vs physical barriers. The
higher humidity and temperature of shorter plants play a larger role when compared with
the higher cell density in the shorter plants for FHB, but the latter may have a larger effect
than the former on FCR resistance.

With the understanding that QTL mapping based on analysis of segregating popula-
tions provides only limited resolution [64], the interaction between plant height and FCR
severity means that we need to be very cautious when dealing with resistance loci that
locate closely with those for plant height. The FCR locus located on chromosome arm 3HL
in barley [65] and the one on 4B in wheat [66] are two of such examples. The values of these
resistance loci need to be properly assessed before further efforts on incorporating them
into breeding programs should be made.

5. Conclusions

Although FHB and FCR can be caused by the same pathogens, available results show
that most of the reported host genes conferring resistance to these two diseases are different.
The susceptibility of plants to these two diseases are also oppositely affected by either
plant height or drought stress. The hypothesis that DELLA genes affect biotic and abiotic
stresses differently by balancing the salicylic acid and jasmonic acid signal pathways does
not stand and needs to be examined further. The moisture levels in the microenvironments
to which infected tissue are exposed and the difference in physical barriers resulting from
differential cell density seem to be two additional factors affecting resistance to these two
diseases. Available results indicate that different genes conferring FCR resistance may
exist for each of the three distinctive phases during the disease development, and that
some genes conferring drought tolerance can be effective in generating breeding lines with
enhancing resistance to FCR.
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