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Whole farm planning raises profit 
despite burgeoning climate crisis
Albert Muleke1, Matthew Tom Harrison1*, Rowan Eisner1, Peter de Voil2, Maria Yanotti3, 
Ke Liu1, Xiaogang Yin4, Weilu Wang5,6, Marta Monjardino7, Jin Zhao8, Feng Zhang9, 
Shah Fahad10,11 & Yunbo Zhang12

The climate crisis challenges farmer livelihoods as increasingly frequent extreme weather events 
impact the quantum and consistency of crop production. Here, we develop a novel paradigm to 
raise whole farm profit by optimising manifold variables that drive the profitability of irrigated 
grain farms. We build then invoke a new decision support tool—WaterCan Profit—to optimise crop 
type and areas that collectively maximise farm profit. We showcase four regions across a climate 
gradient in the Australian cropping zone. The principles developed can be applied to cropping regions 
or production systems anywhere in the world. We show that the number of profitable crop types 
fell from 35 to 10 under future climates, reflecting the interplay between commodity price, yield, 
crop water requirements and variable costs. Effects of climate change on profit were not related to 
long-term rainfall, with future climates depressing profit by 11–23% relative to historical climates. 
Impacts of future climates were closely related to crop type and maturity duration; indeed, many crop 
types that were traditionally profitable under historical climates were no longer profitable in future. 
We demonstrate that strategic whole farm planning of crop types and areas can yield significant 
economic benefits. We suggest that future work on drought adaptation consider genetic selection 
criteria more diverse than phenology and yield alone. Crop types with (1) higher value per unit grain 
weight, (2) lower water requirements and (3) higher water-use efficiency are more likely to ensure the 
sustainability and prosperity of irrigated grain production systems under future climates.

In water-limited environments, irrigated grain crops with adequate nutrition and controlled biotic stresses often 
yield more grain than rainfed crops on a per unit land area basis, provided irrigation is applied using recom-
mended practices. In Australia, the average annual grain yield of irrigated crops is approximately 4 t/ha compared 
with 2 t/ha for rainfed crops1. Despite this, higher yields of irrigated crops often does not translate into higher 
profitability, as is the case when water costs are high and grain prices are low. At the farm enterprise level, high 
input costs—such as would occur when unitary costs of irrigation water are high—and/or low commodity mar-
ket prices (e.g., grains and fibre) offset or negate positive effects of high yields on profitability. Risk of economic 
loss in irrigated farming systems is further heightened by (1) longer term climatic change induced primarily by 
anthropogenic greenhouse gas emissions that (2) contributes to short-term seasonal changes realised by more 
frequent single or combined weather events and/or altered seasonal distributions of rainfall, such as more rain 
over summer, and less in winter. Extreme weather events that impact on the profitability and productivity of 
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agricultural systems include droughts, heat waves, extreme cold and extreme rainfall events2–6. At the time of 
writing, south-eastern Queensland in Australia experienced one of the worst flooding crises in history, with 
damages from the brief but dire rainfall event likely to cost over $AU2.5B in damages7.

Cropping systems profitability varies across farm businesses and between years as a function of commodity 
prices, yields, water use and cost, and variable costs such as repairs, maintenance and labour. Previous studies 
have demonstrated trade-offs between the potential crop yield, commodity prices, variable costs and water use 
in determining crop profits8,9. For example, high yield per unit area (e.g., cotton bales per hectare) can offset 
high water-use and variable costs resulting in greater crop profit, whereas high commodity prices (e.g., mung-
bean prices) can sustain high returns on irrigation investments, despite low crop yield per hectare10,11. While 
commodity prices govern profitability for many rainfed farm businesses12,13, water price and use on irrigated 
farms may have a dominating influence on profitability compared with other variable costs14. Climate change 
and seasonal variability exacerbate the volatility of farm profit both directly (as above) and indirectly by disrupt-
ing the irrigation supply/demand ratio, resulting in higher costs of irrigation water during drought periods15. 
For instance, prices for wheat grain and irrigation water in Australia have fluctuated over the past decade from 
AU$210/t to $435/t16 and $20/ML to $550/ML17, respectively10. (All economic values ($) hereafter are given in 
Australian dollars (AUD) unless stated otherwise).

Against a background of market and weather volatility, farmers are faced with the need to make tactical 
decisions (e.g. crop choice and rotation, irrigation scheduling etc.) as well as strategic decisions that influence 
long term outcomes [e.g. purchasing of machinery, borrowing large sums of money, interventions to improve 
soil health and carbon, and many others;4,5,13,18,19. Such complexity can lead to ‘decision fatigue’; a phenomenon 
wherein farmers become overburdened with a chronic need to make important but perplexing decisions20. To 
help disentangle and navigate the solution space, various agricultural decision-support systems (DSS) have been 
developed20,21. Amongst other factors, DSS help users better understand the drivers of profitability as a function 
of variable costs including water use and water price, as well as how the narrowing gap between costs and prices 
induced by climate change and inflation22–25. During drought, irrigation reserves from dams, groundwater bores 
and natural watercourses may become limiting26. This results in increased farm- and regional-level demand for 
irrigation water27, which collectively can exert even further pressure on water reserves, causing water prices to 
rise. In light of more frequent extreme events such as drought together with the ongoing ‘cost-price squeeze’, 
farmers must continually adapt just to maintain current profitability, let alone remain prosperous25.

Fit-for-purpose decision support systems and advanced digital analytics account for and allow comparisons 
between climatic, agronomic, financial, social and cultural factors in a simultaneous manner4,9,28. Digital tools can 
help users improve the allocation of available resources (sunlight, water, existing soil nutrients) and inputs (e.g. 
irrigation water, fertiliser etc.) to improve economic outcomes at the farm scale9. Currently however, there are few 
whole farm decision support tools that facilitate contrasting of tactical (short-term) and strategic (longer-term) 
economic decisions20. In response to this deficit, we built ‘WaterCan Profit’, a decision-support tool designed 
and refined through iterative participative people-centric methods with eight farmer groups spread across the 
entire Australian Murray-Darling Basin, from South Australia, to northern Victoria and southern Queensland9. 
WaterCan Profit includes a mathematical optimiser that allows users to contrast multiple tactical factors, includ-
ing crop choice, cropping areas, water price, water use, expected grain yields, seasonal climatic conditions, and 
historical farm management (e.g., crop rotation). WaterCan Profit also includes an Investment app that allows 
strategic analyses through computation of long-term profit (net present value, return on assets, wealth) over the 
life of the investment9. Here, our objectives were to (1) illustrate the capability of the Optimiser app in WaterCan 
Profit through multiple use cases and (2) examine how whole farm profit and optimal crop types and areas change 
under future climates. We contrast results across a rainfall gradient to gauge how farm business profitability and 
crop preference may alter across agro-ecological regions under future climates.

Materials and methods
Overview.  We illustrate the capability of WaterCan Profit (WCP) in determining profitable whole farm com-
binations of crops under historic (1985–2004) and future (2070–2089) climates across a rainfall gradient. We 
selected four representative irrigated cropping environments in Australia, although the conceptual design and 
systems thinking developed here could be applied anywhere in the world. Biophysical data required as inputs 
for WCP were obtained (1) using the Agricultural Production Systems SIMulator (APSIM) version 7.1029,30 and 
(2) using data from existing literature on experimental trials and other e.g. ABARES16, Poole et al.31, GRDC32, 
ABS33, DPI34. Yields of all crops were simulated with APSIM. Irrigated crops were given water when and as 
required such that stress associated with water deficit over the crop lifetime was negligible. We conducted this 
aspect deliberately to ensure that yields of irrigated crops were not limited by water stress. Importantly, simula-
tion of grain yields of individual crops under irrigation management was not the aim of this study; rather, yields 
were used as inputs to the novel whole farm planning framework we developed and tested, called WaterCan 
Profit (see Fig. 1). While numerous studies have focussed on temporal irrigation management (i.e., scheduling), 
the purpose of the current study was instead to develop and test a framework for optimally allocating irrigation 
water over the whole farm and year given expected yields, grain prices, seasonal climate, water costs, variable 
input costs and all of the other factors influencing profitability at the whole farm scale. Such work is innovative 
and unique, as (1) WaterCan Profit has heretofore not been documented and (2) most studies do not consider 
production and profit at the whole farm scale.

Study sites.  The Australian grain cropping region occurs across a diverse climatic zone colloquially termed 
the ‘Wheatbelt’, even though crop types in the region are spatio-temporally diverse and dynamic. Characterised 
by temperate or Mediterranean climates with winter-dominant rainfall and hot, dry summers, the Wheatbelt 
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spans from south-west Western Australia, across Victoria, southern South Australia, the Midlands of Tasmania, 
and northwards on the eastern sides of New South Wales and Queensland. Since the 1990s, the Wheatbelt has 
experienced more frequent heat waves35–37 and more frequent spring droughts38. We selected four representative 
irrigation regions to prescribe a climatic gradient, allowing systematic categorisation of climate impacts on profit 
according to prevailing temperature and precipitation (Table 1).

Climate scenarios.  A significant advance of the present study was the approach used to examine the 
impacts of extreme weather events under future climates. We developed future climate scenarios to account 
for variability in temperature and rainfall between global climate model (GCM) projections using methods 
described in Harrison et al.39. This approach (1) incorporates mean changes in future climates expected for a 
region of interest projected by multiple GCMs, (2) accounts for historical climate characteristics for a given 
site and (3) notwithstanding point (1), generates climate projections with increased variability including more 
heatwaves, longer droughts and more extreme rainfall events. The study of Harrison et al.39, showed that studies 
which do not explicitly account for the impacts of changes in frequencies of extreme weather events under future 
climates tend to underestimate the impact of the climate crisis on crop productivity. We suggest that future stud-

Figure 1.   Summary diagram indicating strategic whole farm planning that accounts for crop genetics, 
biophysical and economic factors can optimise profit despite increasingly frequent extreme climatic events 
under the climate crisis. Using the Agricultural Production Systems SIMulator (APSIM), we simulated the 
combined effects of climate change and extreme climatic events on crop yields. A new decision support tool—
WaterCan Profit optimised crop type and areas that collectively maximised farm profit under historic (1985–
2004) and future (2070–2089) climates across four representative irrigated cropping environments in Australia.

Table 1.   Locations and long-term climate characteristics of sites used in this study.

Region Met. station No Latitude (°S) Longitude (°E) Rainfall (mm)
Minimum 
temp (°C)

Maximum 
temp (°C)

Relative 
climate 
gradient

Kerang VIC 80,023 − 35.7236 143.9196 387 9.6 22.9 Driest & hottest

Griffith NSW 75,032 − 33.4915 145.5248 398 10.9 24.5 Dry & hot

Frances SA 26,091 − 37.2906 140.8254 584 8 20.2 Wet & cold

Hagley TAS 91,237 − 41.4194 147.1219 680 7.2 18.5 Wettest & 
coldest
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ies (1) give consideration to changes in the magnitude and frequencies of extreme events within future climate 
projections and (2) consider how such extremes are accounted for in agricultural systems models.

We sourced daily data for maximum and minimum temperature, rainfall and solar radiation for the period 
1st January 1985 to 31st December 2004 from meteorological archives40 and used as historical baselines. All 
baseline simulations were conducted using an atmospheric CO2 concentration of 380 ppm. Future climate sce-
narios for each site were developed from 1 January 2070 to 31 December 2089 (median time horizon of 2080) 
using representative concentration pathways 8.5 (RCP8.5)41,42, with the numeral representing a radiative forcing 
of 8.5 W m−2 by the end of the century. We adopted RCP8.5 because this scenario most closely aligns with the 
existing climatic trajectory in Australia22,27,43 and more broadly42. For each site, historical climate data were used 
as a basis for modification on a daily time-step to generate future climate data. We adopted “change factors” (CFs) 
from CCIA44 to prescribe monthly average changes in both temperature or rainfall between the historical and 
future periods, then introduce statistical methods to increase the frequencies of drought, heat waves and extreme 
rainfall events while preserving monthly average changes in climate. Further detail of approaches used to develop 
climate scenarios are provided in Harrison et al.39. The atmospheric CO2 concentration of all future climate sce-
narios were set at 850 ppm following Collier et al.45. Historical and future climate data are summarised in Fig. 2.

Simulation of crop yield and optimal flowering times.  We used the Agricultural Production Systems 
SIMulator (APSIM) v7.1029,30, to simulate the growth and development of durum wheat46,47, spring barley48, 
chickpea49, canola50 and maize51. At each location, simulations were repeated with sowing at seven-day intervals, 
from 1st March to 5th July for winter crops and from 15th September to 19th January for summer crops (Table 2). 

Figure 2.   Historical and future climates across four environments in Australian irrigated cropping zones. 
Averaged across regions, monthly rainfall under future climates (red bars) was reduced by 14% relative to 
historical rainfall (blue bars); monthly maximum temperature of future climates (red triangles) and monthly 
minimum temperatures (red squares) were on average 15% greater than corresponding historical daily 
temperatures (blue points).

Table 2.   Crop types, planting densities and genotypes used in this study.

Crop type Plants (/m2) Genotypes References

Barley 150 Keel (early), Franklin (late) Porker et al.55, Dreccer et al.56, GRDC57

Canola 30 Monty (early), Dunkeld (late) Dreccer et al.56, GRDC57, Lilley et al.58

Chickpea 50 Sonali (early), Dooen (mid-late) Dreccer et al.56, GRDC57, Chauhan et al.59

Durum wheat 200 Wollaroi (early), Bellaroi (late) Dreccer et al.56, GRDC57, Jones60

Maize 9 Pioneer_39G12 (early), Pioneer_3237 (late) Peake et al.61, Pembleton et al.62
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These simulations were conducted using historical daily climate data from 1 January 1975 to 31 December 2005 
and future climate scenario data for the period 1 January 2060 to 31 December 2089, with the first 10 years 
in each climate scenario discarded to allow for model stabilisation. Crops simulated comprised slow develop-
ing (late maturity) and fast developing (early maturity) spring genotypes. Details of genotypic parameters and 
initialisation settings are shown in Table 2. Soil details for each site shown in Table 3 were adopted from the 
APSoil database52. Plant available soil water at sowing was set to 100% to ensure successful and consistent crop 
establishment for each sowing date. Irrigated crops received unlimited and timely application of water to negate 
water deficit stress; nitrogen stress in the model was deactivated to ensure that plant stresses were climatic only. 
This assumption was made to ensure that (as for irrigation management) yields of irrigated crops were at their 
potential, unlimited by either abiotic or biotic stresses. This was necessary as to prevent confounding the impact 
of suboptimal growth of irrigated crops with the expected impact of climate change; thus, the change in yields 
between current and future climates represented only the change in climatic factors. Optimal flowering periods 
(OFP) for each site were computed as the flowering dates corresponding to ≥ 95% of the maximum 15-day 
running mean frost-heat yield (FHY), following53 and Liu et al.54. FHY represents simulated yields accounting 
for biological impacts of suboptimal (frost) and supraoptimal (heat) stress following Liu et al.53, Liu et al.54, and 
Muleke et al.11; table reproduced in the supplementary information for clarity (Table S10).

Significance statement.  We show that strategic whole farm planning that accounts for crop genetics, 
biophysical and economic factors can enable higher profit despite increasingly frequent extreme climatic events 
under the climate crisis. We suggest that crop types with (1) higher value per unit grain weight, (2) lower water-
use requirements and (3) higher water-use efficiency are more likely to ensure the sustainability and prosperity 
of irrigated production systems under future climates.

Demonstrating WaterCan profit: whole farm crop area optimisation to maximise 
profitability
WaterCan profit.  The decision-support tool WCP comprises three subset apps: a Water Price app, allowing 
rapid comparison of how crop gross margins vary as a function of water price, an Optimiser app that holistically 
accounts for expected crop yield, variable costs, water, grain and irrigation price, crop irrigation requirement, 
rotation, seasonal climatic conditions, and irrigation infrastructure, and an Investment app, allowing insight into 
time required to payback investments in irrigation machinery, accounting for loan, interest rates, debt, expected 
life of the machinery, crop rotation, expected yields and variable costs. The three apps were co-designed using a 
consultative process with farmers and advisors between 2019 and 2022; both initial conceptualisation and refine-
ment of the three apps were conducted with experts from the irrigated grains sector. The maximum number of 
eight crops for simultaneous comparison in the Optimiser was nominated based on bounded rationality, the idea 
that human intellectual capacity to rationalise decisions is constrained by the cognitive capacity of the mind63–65. 
A prototype version of WCP is freely available online (www.​water​canpr​ofit.​com.​au); on first application, users 
should create a username and password that can be subsequently used to login to the decision-support tool.

Screening genotype by management options for use in the Optimiser.  A total of 16 genotype x 
management options were chosen for each site, including a range of crop types, genotypes and watering regime. 
The options comprised rainfed genotypes for barley, irrigated genotypes for maize and, rainfed and irrigated 
genotypes for canola, durum wheat and chickpea (Table S8). To prioritise profitable genotype x environment 
by management options across sites for use in the Optimiser, we computed gross margins (GMs) using Eq. (1), 
following Malcolm et al.66:

where TVC represents total variable cost and includes outgoing payments associated with sowing, seed, fertiliser, 
chemicals (herbicides and fungicides), field operations (i.e., cultivation, spraying, casual labour, fuel and repairs), 
irrigation water use, casual labour, harvesting (i.e., stripping, windrowing, packaging and freight) and other 
selling expenses (i.e., levies). Variable costs were sourced from ABARES16, GRDC67, McKellar et al.8, Harrison 
et al.9, Ash et al.68, NRE69, PIRSA70 and71. Water costs were derived from ABS17, BoM72 and73. Irrigation water 
use constituted the highest proportion of TVC for the irrigated crops, whereas for the rainfed crops, fertilisers, 
chemicals and field operations dominated farm cost profiles (Fig. 3).

Commodity prices were estimated from ABARES16, GRDC74 and ABS33, ABS75 for the period 1992–2021. 
Historical nominal prices ($/t) were adjusted for inflation using the consumer price index (CPI) computation 
shown in Eq. (2). Inflation adjusted (real) prices across sites and climates are shown in Table 4.

(1)GM per unit area($/ha) =
[

grain yield (t/ha)× grain price ($/t)
]

−TVC($/ha)

Table 3.   APSIM soil numbers and soi descriptions for each region.

Region APSoil No Soil description

Kerang VIC 1092 Sandy Clay Loam

Griffith NSW 697 Sandy duplex

Frances SA SE069 Sandy Loam over Brown Clay

Hagley TAS 658 Loam
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where: CPI = consumer price index for the baseline and current years 75. NP = Nominal prices not adjusted for 
inflation.

Crops with the highest GMs are shown in Table S5 and were selected for further analysis using the Optimiser 
in WCP. Real prices (Table 4) and variable costs (Fig. 3) were deliberately held constant for historical and future 
climates to avoid confounding the effects of climate change with effects of changes in prices.

Whole farm optimisation of crop areas to maximise profit using the Optimiser.  To examine 
profitability on an area ($/ha) basis for the selected crops, we used the WCP Optimiser Apps for determining the 
most profitable farm systems. The Optimiser requires specification of the following information:

•	 Farm: farm name, geographical locations and rainfall (winter and summer—Table S9).
•	 Irrigation: annual allocation of irrigation water (Table S6) and water prices (Table S7).
•	 Paddock: for simplicity we modelled one paddock as the whole farm and allowed the Optimiser to compute 

the optimal areas. For ease of interpretation of results, we assume a constant farm size of 100 ha in all cases.
•	 Crops: details for the selected crops, growing season (winter and summer), watering regime (rainfed and 

irrigated) and irrigation water application rates are shown in Table S7, while crop yields at OFP generated 
from APSIM, price and TVC are shown in Tables 6 and S5.

•	 Optimiser: optimisation based on $/ha conducted for each site and climate scenario.

Results
Grain yields at optimal flowering periods (OFPs) under historical climates.  Across sites, sowing 
periods and years, the irrigated late maturity (hereafter, “late”) winter and early maturity (hereafter, “early”) sum-
mer crop genotypes had the highest mean yields, while the dryland early winter and late summer genotypes had 
the lowest peak mean yield (Tables 5, S1, S2, S3 and S4). The highest peak mean yields occurred at the high rain-
fall site of Hagley in the State of Tasmania by the irrigated early maturity summer maize crop and most winter 

(2)Real price =

{(

CPIcurrent year − CPIbase year

CPIbase year

)

× NPbase year

}

+ NPbaseyear

Figure 3.   Average distribution of farm business variable costs for early and late maturity genotypes of durum 
wheat, barley, canola, chickpea and maize under irrigated and dryland conditions across four representative 
regions in the Australian irrigated cropping zones.

Table 4.   Real prices ($/t) for crops across a range of representative environments in Australian irrigated 
cropping regions. Price ranges were specified from 1992 to 2022 using data sourced from ABARES16 and 
ABS33.

Crop Low Median High

Chickpea 441 790 1348

Canola 560 708 1086

Wheat 332 448 596

Maize 273 418 528

Barley 247 434 472
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crops (spring barley, durum wheat, chickpea and canola). The lowest peak yields occurred at the lower rainfall 
sites of Griffith (New South Wales) for the dryland early maturity winter genotypes (canola, barley and chickpea) 
and at Kerang (Victoria) by the dryland late summer genotypes of maize and the dryland early maturity winter 
genotypes of durum wheat. The length of the optimal flowering window varied between crop genotypes under 
irrigation and rainfed conditions across sites (Tables 5, S1, S2, S3 and S4). Generally, irrigation extended the 
OFP window compared with dryland crops, particularly for the late winter genotypes, consistent with findings 
by Muleke et al.11. The latest OFP was at Hagley for irrigated late winter genotypes of canola (25 September), 
chickpea (4 October), spring barley (5 November) and durum wheat (12 November).

Yield and optimal flowering periods under future climates.  In general, future climates reduced grain 
yield and shifted forwards OFPs, primarily due to increasing temperature. Forward shifts in OFPs (Figs. 4, S1, S2, 
S3 and S4) were greater for dryland scenarios (6–39 days) compared with those under irrigation (− 35–16 days) 
across crops and sites. For most regions, the decline in yields at the OFP (i.e., peak yields) were greater under 
dryland conditions (− 23%) compared with that under irrigation (− 16%). The largest yield losses occurred at 
the hot dry regions of Griffith (41%; Fig. 4) and Kerang (39%) because these regions had shorter crop durations 
under future climates (92 and 89 days from start of sowing to start of flowering averaged across crops; Tables 5, 
S1, S2, S3 and S4). On average, peak yield declined across all sites and management regimes by 21% under the 
future climate. These results collectively indicate that indirect effects of irrigation via crop duration alleviates 
detrimental climatic impacts on yield, in addition to direct effects of irrigation relieving crop water stress per se. 
These indirect effects were emergent properties from APSIM (not APSIM inputs); the model deterministically 
accounts for daily temperature and thermal sum on crop lifecycle. APSIM is specifically designed to account 

Table 5.   Yield, optimal flowering periods and average water applied per annum of irrigated and dryland 
durum wheat across a range of representative environments in Australian irrigated cropping regions under 
historical (H = 1985–2004) and future (F = 2070–2089) climates.

Region Genotype Regime Period

Optimal range of 
sowing dates Maximum Yield

Optimal range of 
flowering period Crop Duration Average irrigation per year

Earliest Latest (kg/ha) Start Close (Days) (ML)

Kerang

Early

Dryland
H 10-May 24-May 3521 15-Sep 29-Sep 128 –

F 17-May 17-May 2174 28-Aug 31-Aug 103 –

Irrigated
H 7-Jun 5-Jul 6254 11-Oct 1-Nov 126 894

F 7-Jun 21-Jun 4536 5-Oct 10-Oct 120 845

Late

Dryland
H 26-Apr 10-May 4019 12-Sep 22-Sep 139 –

F 26-Apr 10-May 2584 29-Aug 2-Sep 125 –

Irrigated
H 17-May 28-Jun 6800 12-Oct 28-Oct 148 1025

F 10-May 7-Jun 5004 10-Oct 15-Oct 153 983

Griffith

Early

Dryland
H 10-May 24-May 3630 15-Sep 17-Sep 128 –

F 10-May 17-May 2169 28-Aug 3-Sep 110 –

Irrigated
H 24-May 5-Jul 6309 4-Oct 15-Oct 133 1233

F 7-Jun 21-Jun 4622 5-Oct 6-Oct 120 1138

Late

Dryland
H 3-May 10-May 3856 20-Sep 30-Sep 140 –

F 3-May 3-May 2460 30-Aug 5-Sep 119 –

Irrigated
H 17-May 28-Jun 6906 14-Oct 23-Oct 150 1400

F 17-May 14-Jun 5182 10-Oct 11-Oct 146 1321

Frances

Early

Dryland
H 14-Jun 28-Jun 4207 19-Oct 26-Oct 127 –

F 21-Jun 5-Jul 2924 30-Sep 4-Oct 101 –

Irrigated
H 14-Jun 5-Jul 5252 27-Oct 2-Nov 135 532

F 21-Jun 5-Jul 4312 24-Oct 23-Oct 125 486

Late

Dryland
H 24-May 7-Jun 4748 24-Oct 2-Nov 153 –

F 24-May 14-Jun 3515 1-Oct 7-Oct 130 –

Irrigated
H 31-May 5-Jul 5798 6-Nov 9-Nov 159 615

F 7-Jun 5-Jul 4605 29-Oct 25-Oct 144 575

Hagley

Early

Dryland
H 14-Jun 5-Jul 5479 30-Oct 8-Nov 138 –

F 21-Jun 5-Jul 3934 18-Oct 28-Oct 119 –

Irrigated
H 28-Jun 5-Jul 7956 3-Nov 10-Nov 128 884

F 28-Jun 5-Jul 6494 29-Oct 2-Nov 123 853

Late

Dryland
H 17-May 28-Jun 5981 2-Nov 11-Nov 169 –

F 10-May 21-Jun 4194 20-Oct 31-Oct 163 –

Irrigated
H 7-Jun 5-Jul 8718 12-Nov 15-Nov 158 1017

F 14-Jun 5-Jul 6847 4-Nov 5-Nov 143 1013
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for climatic influences on crop development and is thus ideal for the purpose of the present study. Changes in 
optimal flowering windows are shown in Table 5 and were simulated with APSIM using a range of input years 
for the historical (1985–2004) and future (2070–89) climate horizons. In general, larger shifts in OFP resulted in 
larger declines in yield, though this relationship were more obvious for the dryland scenarios.

Screening of crops by gross margins.  In general, future climates reduced the number of profitable farm 
systems by 3–5 across regions (Figs. 5, 6, Tables 6, and S5). Crop gross margins declined by − 21% under future 
climates (2070–2089) across regions and water regimes (Tables  6 and S5). The cool temperate regions (e.g., 
Hagley in Tasmania) had the highest number of profitable farm systems (13 and 10 under historical and future 
climates respectively), attributed to the high peak mean yields achieved by majority of the crops at this site. 
Other regions had up to 11 farm systems under historical climates and 6 farm systems for the future scenarios 
(Tables 6 and S5). Chickpea was often the most profitable crop when assessed across the regions and climates, 
mainly due to relatively high commodity price compared with other crops (Tables 4, 6 and S5). Similar trade-offs 
between grain prices, peak yield and variable costs in determining the highest GMs were evident for all regions. 
For example, at Kerang under historical climates (Fig. 6 and Table 6), effects of higher TVC for irrigated early 
maize ($1557/ha) on GM were partially negated by higher yield (11.8 t/ha), resulting in greater GM ($4,699/
ha). In contrast, higher grain prices for irrigated late chickpea ($1348/t) resulted in relatively high GMs ($4578/
ha), even though chickpeas predominantly had lower yields than irrigated maize. Overall, the average decline in 
crop gross margins was greater for dryland scenarios compared with irrigated conditions under future climates; 
GM reduction ranged from 11 to 24% in dryland environments and from 4 to 14% under irrigation (Tables 4, 
6 and S5).

Optimisation of crop type and area across the farm to maximise profitability
Historical climates.  In general, higher crop prices generated the most profitable outcomes, often resulting 
in fewer crops across regions and climates (Table 7). The cool temperate region of Hagley attained the highest 
whole farm profit ($1.6 M) from five winter crops and summer maize (Figs. 7, 8 and Table 7). The relatively high 
rainfall mild temperature region of Frances in South Australia had the lowest profit at $0.65 M (40% relative to 
cool temperate region) due to a combination of rainfed early and irrigated late chickpea (Figs. 7, 8 and Table 7). 
Compared with drier and hotter regions around Griffith ($0.9 M; 56%) and Kerang ($0.8 M; 50%), low profit-
ability in the Frances region was in part due to high irrigation water costs which meant that except for chickpeas, 
all crops were not economically viable (Table S7).

Irrigated early maize was the most profitable crop at Hagley ($0.87 M, 55% of whole farm profit; Fig. 9 and 
Table 7), Griffith ($0.5 M; 54%) and Kerang ($0.36 M; 45%), whereas winter sown irrigated late chickpea was 
most profitable at Frances ($0.57 M; constituting 89% of farm returns). Overall, irrigated late chickpea was 

Figure 4.   Impacts of future climates on optimal flowering times and yield. Columns show relationships 
between shift in optimal flowering duration (days) and percentage reduction in peak yield for early (green 
columns) and late (brown columns) maturity genotypes of durum wheat in dryland (top row) and irrigated 
(bottom row) conditions across a range of representative environments in Australian irrigated cropping regions. 
Future (2070–2089) climates truncated crop lifecycles, shifting forward flowering times relative to historical 
(1985–2004) climates. Irrigation partially offset the forward shifts in flowering by lengthening lifecycles, 
resulting in later flowering periods in some regions (indicated by negative values). Regions are depicted along a 
rainfall gradient, from the lowest average annual rainfall (Kerang, 387 mm) to the highest (Hagley, 680 mm).
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often the most profitable crop across regions (Tables 7). In general, whole farm profitability was most strongly 
associated with gross margin (R2 = 0.75) and yield (R2 = 0.73) compared with TVC (R2 = 0.58) and water cost 
(R2 = 0.54), as illustrated in Fig. 10.

Impact of future climates on extent of profitable farm systems.  Across regions, future climates 
reduced the number of profitable farm systems by 1–3 and profitability by − 16% (Figs. 7, 8 and Table 7). The 
highest decline in the number of profitable farm systems (i.e., three systems no longer profitable under future 

Figure 5.   Most profitable farm systems under historical (1985–2021) and future (2070–2089) climates for 
early and late crop genotypes in dryland and irrigated conditions in a hot dry Australian cropping region with 
annual rainfall < 400 mm (Kerang, Victoria). The numerical values represent gross margins. Crops that were not 
profitable (negative gross margin) under future climates were removed. Other sites are shown in Table S5.

Figure 6.   Gross margins as a function of grain prices, yield and variable costs for a hot dry region (Kerang) 
under historical and future climates. Green bars represent gross margins (GMs) for the most profitable farm 
systems. Black dotted line represents peak grain yield at optimal flowering time. The red line represents long-
term high grain prices, while the blue line represents the highest total variable costs (TVC). Dotted bar segments 
represent percentage reduction in GMs and numbers in black circles represent change in crop rank relative to 
historical climates (positive and negative denote shift to the right and left, respectively).
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climates) was at the dry and hot regions of Griffith and Kerang, whereas the lowest reduction in the number of 
profitable cropping systems (1 system) was in the relatively wet and cold regions. Chickpeas and irrigated early 
maize were the most climate-resilient profitable crops across the regions, owing to higher potential yield for 
irrigated early maize and higher prices with relatively low water requirement for chickpeas. Interplay between 
commodity price, yield and variable costs observed for all regions reduced the total number of most profitable 
crop options from 35 to 10 (Fig. 9 and Table 7). For example, in the Hagley region (Fig. 9 and Table 7), relatively 
higher yield of irrigated early maize offset the high TVC and low grain price of this crop, resulting in greater 
profits.

Change in whole farm profit under future climates.  In general, future climates induced substantial 
changes in profits and area sown for profitable farm systems at the drier regions (by − 63 to + 301% and − 51 
to + 77% respectively; Fig. 7 and Table 7), and relatively small changes in proportions for wetter regions (by − 76 
to − 6% and − 12 to + 19%). Irrigated late chickpea attained the greatest increase in profit and farm area (+ 301% 
and + 77%, Fig. 7), whereas irrigated early maize had the highest reduction (− 63% and − 51%), both at the drier 
regions. The substantial gain in returns (+ 301%) for irrigated late chickpea at the drier regions was driven by the 
high allocation of farm area (+ 77%; Fig. 7 and Table 7) to the most profitable farm system under future climates. 
Smallest changes in crop profit and farm area at the wetter regions were achieved by rainfed early chickpea 
(− 19% and − 5% respectively; Fig. 7 and Table 7). Minor declines (changes) in crop profits (− 19%; Fig. 7 and 
Table 7) at wetter regions was underpinned by slight reductions in area sown (− 5%) to economically viable crops 
under future climates relative to historical period. Rainfed early chickpea was only profitable at the wetter region 
of Hagley under both historical and future climates (Fig. 7).

Overall, irrigated early maize had the highest decrease in profit and cropping area (− 34% and − 29% respec-
tively; Table 7) across regions under future climates, suggesting maize will be economically viable but most 
vulnerable to the detrimental impacts of climate change. Changes in cropping areas were an output of WaterCan 
Profit. Chickpeas attained the largest increase in average profit and cropping area (+ 65% and + 25%) across 
regions, projecting that chickpea will be the most climate-resilient profitable crops across the regions. Durum 
wheat was the least profitable crop (0.01 M, Fig. 7 and Table 7 averaged across regions) which showed no change 
in profit and area sown under both historical and future climates, indicating durum wheat will be unprofitable 
and less affected by the profound impacts of climate change.

At the whole farm scale, cool temperate wetter regions (e.g., Hagley) attained the lowest decline in average 
profits (by − 11%, Fig. 8) attributed to the high number of profitable crops (5 crops) whereas, the highest profit 
reduction (− 23%,) was at the moderate rainfall (wet) region (e.g., Frances) due to few profitable farm systems 
(1 system). Drier regions at Kerang and Griffith had moderate profit reductions (− 12% and − 19%), each with 
two profitable crops. Across all regions, crop profits decreased (− 8%, Table 7) while area planted marginally 
increased (+ 2%). Profit reductions were greater for dryland environments (− 29%) partly due to decrease in area 
sown (− 8%), whereas for irrigated scenarios profits reductions were modest (− 5%). In general, profits and farm 
area under irrigation increased (+ 24% and + 14%) at the drier regions and decreased (− 28% and − 5%) at the 
wetter regions. Area sown to different crop types across regions was estimated in WaterCan Profit based on all 

Table 6.   Crop gross margin ranking under current and future climates as a function of yields, real prices and 
variable costs for a hot dry region (Kerang) for historical (white rows, 1985–2021) and future (itallic rows, 
2070–2089) climates (other regions shown in Table S5).

Rank Crop Genotype Regime

Yield (t/ha) Net sale price ($/t) Total variable cost ($/ha) Gross Margins ($/ha)

Low Median High Low Median High Low Median High Low Median High

1 Maize Early Irrigated 3.6 5.9 11.8 273 418 528 893 1290 1557 78 1182 4699

2 Chickpea Late Irrigated 1.3 2.2 4.4 441 790 1348 488 765 1385 97 982 4578

3 Chickpea Early Irrigated 1.3 2.1 4.2 441 790 1348 485 758 1365 67 888 4257

4 Canola Late Irrigated 1.7 2.7 5.1 560 708 1086 588 1041 1610 359 846 3928

5 Chickpea Late Rainfed 1.0 1.7 3.5 441 790 1348 428 552 835 32 823 3856

6 Chickpea Early Rainfed 1.0 1.6 3.2 441 790 1348 422 543 810 − 3 708 3460

7 Durum Late Irrigated 2.2 3.6 7.0 332 448 596 446 833 1384 290 771 2778

8 Canola Early Irrigated 1.3 2.0 3.7 560 708 1086 568 1004 1518 146 391 2509

9 Maize Late Irrigated 2.3 3.8 7.6 273 418 528 890 1277 1533 −265 314 2492

10 Durum Early Irrigated 2.1 3.3 6.4 332 448 596 440 821 1360 242 660 2477

11 Canola Late Rainfed 0.9 1.5 3.0 560 708 1086 451 686 879 46 360 2328

1 Chickpea Late Irrigated 1.2 2.0 4.0 441 790 1348 488 765 1385 40 812 3999

2 Chickpea Early Irrigated 1.1 1.8 3.6 441 790 1348 485 758 1365 − 7 670 3510

3 Chickpea Late Rainfed 0.8 1.4 2.8 441 790 1348 428 552 835 − 60 548 2917

4 Canola Late Irrigated 1.2 2.0 4.0 560 708 1086 588 1041 1610 85 376 2735

5 Maize Early Irrigated 2.4 4.0 8.0 273 418 528 893 1290 1557 − 238 378 2665

6 Chickpea Early Rainfed 0.7 1.2 2.4 441 790 1348 422 543 810 − 103 411 2444
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Region Period Crop Price ($/t)
Yield (t/
ha)

TVC ($/
ha)

Water Applied Water Cost 
($/ha)

Gross Margin

Area (%) Profit ($) Profit (%)(ML/ha) (mm) (%) ($/ha) ($/ML)

Kerang

Historical

Maize Early 
Irrigated 528 11 1557 5 500 56 475 3801 760 96 364,910 45

Chickpea 
Early 
Irrigated

1348 4.8 1365 4 400 17 380 4743 1186 37 175,489 21

Chickpea 
Late Irri-
gated

1348 6.1 1385 5 500 16 475 6425 1285 27 173,482 22

Canola 
Early 
Irrigated

1086 4.3 1518 4 400 11 380 2761 690 23 63,498 4

Chickpea 
Early 
Rainfed

1348 3 835 0 0 0 0 3209 0 10 32,090 8

Total 855 (ML) 809,469

Future

Chickpea 
Late Irri-
gated

1348 5.7 1385 5 500 58 475 5800 1160 100 579,966 81

Maize Early 
Irrigated 528 10.1 1557 8 800 42 760 3038 380 45 136,729 19

Total 860 (ML) 716,696

Griffith

Historical

Maize Early 
Irrigated 528 14.7 1567 10 1000 87 800 5400 540 95 512,954 54

Chick-
pea Late 
Rainfed

1348 3.5 815 0 0 0 0 3903 0 68 265,404 28

Chickpea 
Late Irri-
gated

1348 6 1384 6 600 13 480 6279 1047 23 144,426 15

Chickpea 
Early 
Rainfed

1348 3 799 0 0 3245 0 7 22,715 2

Durum 
Early 
Irrigated

596 7.6 1360 5 500 0 400 2755 551 1 2755 0.3

Total 1093 (ML) 948,254

Future

Chickpea 
Late Irri-
gated

1348 5.7 1384 6 600 55 480 5794 966 100 579,355 75

Maize Early 
Irrigated 528 11.7 1567 10 1000 45 800 3825 382 50 191,250 25

Total 1100 (ML) 770,605

Frances

Historical

Chickpea 
Late Irri-
gated

1348 6.4 1231 3 300 100 330 7097 2366 81 574,854 89

Chickpea 
Early 
Rainfed

1348 3.5 835 0 0 0 0 3883 0 0 73,777 11

Total 243 (ML) 648,631

Future

Chickpea 
Late Irri-
gated

1348 4.8 1231 3 (100%) 300 100 330 4973 1658 100 497,337 100

Total 860 (ML) 497337

Continued
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of the factors influencing profitability. Higher percentages of farm area under future climates were allocated to 
the most economically feasible crops (mostly irrigated enterprises); smaller portions of farm area were assigned 
to less profitable crops (mainly rainfed crops); these percentages were calculated by WaterCan Profit accounting 
for crop yields, water use, variable costs, water cost and grain price.

Discussion
The aim of this study was to illustrate how the decision-support tool WaterCan Profit (WCP) can be used to 
determine how profit and whole farm crop combinations, including how profitability and whole farm systems 
will be impacted by and change under future climates. Even though Australian farms are exposed to the great-
est climate volatility in the world, most previous studies have primarily examined climate change assuming no 
change in extreme weather events (e.g. Phelan et al.43). In the present study, we demonstrated how WaterCan 
Profit can be used to examine the impact of climate change on productivity and profitability, as well as how the 
distribution of most profitable crops changes over the whole farm as global warming intensifies. We demonstrate 
this framework using the five most important crops in Australia (barley, maize, wheat, chickpea, canola) in all 
of the major irrigation zones in Australia and thus we have confidence that our work is relevant to the major-
ity of the irrigated sector in Australia. As well, and perhaps more importantly, the concepts and framework we 
demonstrate could be applied to any number of crops or genotypes, for any location in the world and under 
any climate horizon. The concepts shown here are thus generic and universally scalable. Future studies using 
WaterCan Profit could examine isolated aspects of agronomy, such as how irrigation management impacts on 
crop yields translate to economic outcomes at the whole farm scale. Such studies could also consider changes in 
future water supply under climate change; WaterCan Profit is ideally designed to examine how changes annual 
farm water allocation quantities may impact on productivity and profitability.

To advance the scientific endeavour and reliability under which yields are impacted by future climates, 
we build on pioneering methods developed by Harrison et al.39, to account for extreme events under future 
climates on top of background changes in temperature and rainfall. We found that shifts in OFPs caused by 
future climates were relatively higher under dryland conditions (23% and 39 days) than under irrigation (16% 
and 16-days respectively, see Figs. 4, S1, S2, S3 and S4), suggesting that irrigation partially mitigates the impact 

Table 7.   Farming systems and crop planting areas that maximise whole farm profit under historical and future 
climates. Results are shown for a range of representative environments in Australian irrigated cropping regions 
under historical (H = 1985–2021) and future (F = 2070–2089) climatic conditions. TVC = total variable cost, 
percentage column under water applied denote annual water allocation used for that crop to attain peak yields. 
Regions are depicted along a rainfall gradient, from the lowest average annual rainfall (Kerang, 387 mm) to the 
highest (Hagley, 680 mm).

Region Period Crop Price ($/t)
Yield (t/
ha)

TVC ($/
ha)

Water Applied Water Cost 
($/ha)

Gross Margin

Area (%) Profit ($) Profit (%)(ML/ha) (mm) (%) ($/ha) ($/ML)

Hagley

Historical

Maize Early 
Irrigated 528 28.3 1390 8 800 87 520 13,016 1627 67 872,089 55

Chickpea 
Early 
Rainfed

1348 4.5 947 0 0 0 0 5119 0 76 389,044 24

Chick-
pea Late 
Rainfed

1348 5 944 0 0 0 0 5796 0 32 185,472 12

Chickpea 
Early 
Irrigated

1348 6.4 1244 4 400 11 260 7160 1790 17 121,712 8

Canola Late 
Rainfed 1086 3.5 917 0 0 0 0 2884 0 4 11,536 0.7

Durum 
Late Irri-
gated

596 10.9 1275 5 5 2 325 4905 981 2 9811 0.6

Total 614 (ML) 1,589,664

Future

Maize Early 
Irrigated 528 24.3 1390 8 800 85 520 10,910 1364 75 818,288 58

Chickpea 
Early 
Rainfed

1348 4 947 0 0 0 0 4445 0 71 315,595 22

Chickpea 
Late Irri-
gated

1348 6.7 1294 4 400 13 260 7508 1877 22 165,166 12

Chick-
pea Late 
Rainfed

1348 4 944 0 0 0 0 4448 0 21 93,408 7

Chickpea 
Early 
Irrigated

1348 5.4 1244 3 300 2 195 5800 1933 5 29,001 2

Total 703 (ML) 1,421,458
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of climate change and more frequent extreme events. Our results show that irrigation indirectly mitigates the 
impacts of climate change on productivity by preventing the warming-induced decline in crop lifecycle that 
occurs for dryland crops. Thus, irrigation mitigates the extent to which development is increased as the climate 
warms and consequently the longer crop growing cycle allows greater biomass production and seed set. This 
result is analogous to findings of Schauberger et al.76, and Muleke et al.11. Our study also found that yield reduc-
tions were higher in the low rainfall (‘dry and hot’) regions of Griffith (41%) and Kerang (39%, Figs. 4, S1, S2, 
S3 and S4), partly because these regions experienced the highest temperature rise in future climates on top of 
already low prevailing rainfall (Fig. 2), which truncated further crop lifecycles. These findings are consistent 
with other climate change yield projections54,77 which have suggested that yield loss may be greater in regions 
that are already dry (compared with those with higher rainfall, such as coastal regions in Australia). The yield 
reductions induced by climate change in our present study substantially impacted crop GMs and profitability 
for future climates in most of the regions.

Our results also reveal that future climates reduced GMs by -21% and the number of profitable farm systems 
by 3–5 (Figs. 5, 6, Tables 6, and S5). The average GM reduction was greater for dryland scenarios (− 11 to 24%) 

Figure 7.   Change in farm profit and relative portion of whole farm area caused by climate change across 
irrigated grains regions of Australia under historical and future climates. Blue points indicate values for 
historical climates, red points denote future climates and arrows show shifts caused by climatic change. NC = no 
change between historical and future climates.

Figure 8.   Average whole farm profitability across a rainfall gradient for four representative environments in 
Australian irrigated cropping regions under historical (H = blue bars) and future (F = red bars) climates. Dotted 
bar segments represent percentage reduction in average whole farm profit.
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Figure 9.   Farm systems profitability as a function of grain price, yield and variable cost for a cool wet region 
under historical and future climates. Purple bars represent profit of the most profitable farm systems. Black 
dotted lines represent peak grain yield attained during the optimal flowering window. The red line represents 
long-term high grain prices, while the blue line represents the highest total variable costs (TVC). Dotted bars 
represent percentage reduction in profit and numbers in black circles represent change in crop profitability 
ranking relative to the historical climates.

Figure 10.   Relationships between profit and gross margin (A), total variable costs (B), yield (C) and water costs 
(D) at high prices for the most profitable whole farm systems across representative environments in irrigated 
grain regions of Australia under historical and future climates.
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compared with irrigated conditions (− 4 to 14%) under future climates, implying that irrigation partially mitigates 
the detrimental impacts of climate change on crop GMs, and represents a potential adaptation for enhancing the 
resilience of the GMs to climate change. Our results agree with findings of Ghahramani et al.78, and Ghahramani 
et al.79, who reported GM declines of − 12% when using existing technology and management practices in 2030 
climate. Collectively these findings suggest that farmers must innovate beyond current incremental adaptations 
(e.g. sowing time, N fertilizer, heat tolerant genetics and irrigation; Langworthy et al.80) to negate detrimental 
impacts of 2080 climate on GMs in Australia. One way this could be done might be greater adjustment in man-
agement between years based on predicted seasonal climate forecasts (viz.81 wherein farmers could substantially 
reduce inputs and cropped areas under forecasts of very dry seasons, and significantly intensify crop production 
under forecasts of high rainfall. This approach would be expected to yield greater benefits in high rainfall years 
(e.g., La Nina) and mitigate detrimental impacts in poor years, such as drought or extreme heat during flower-
ing. This approach would dovetail with expected increased in farm profitability under future climates observed 
by others (− 27% to + 30% observed by Hughes and Gooday82). It is however worth noting that at the time of 
writing, the majority of grain producers in Australia perceive seasonal climate forecasts as too unreliable to use83, 
suggesting a need for improvement in short-term climatic forecasts in Australia.

We found that higher crop prices within the decision-support tool WCP generated the most profitable out-
comes across regions and climates (Table 7), suggesting higher crop prices in-part cushion the impacts of climate 
change on farm profits. Although for grain consumers including the intensive livestock sector, such higher 
prices add additional costs, for grain farmers unique periods of markedly high prices often provide windows 
of opportunity to optimise farm profits which buffer climate and price risk exposure during subsequent leaner 
years. These observations agree with results of Hughes and Gooday82 and Hughes et al.84, who projected incre-
ments in grain prices by + 1% to + 29% under 2050 climates. A plausible option to minimise the negative effects 
of high prices for consumers would be the expansion in grain storage capacity (or grain import supply chains) 
to limit grain shortages during drought years84.

We also showed that climate change reduced the number of economically viable farm systems (by 1–3) 
across regions (Fig. 7, and Table 7). The reduction was higher at the drier regions (− 3 crops) compared to the 
wetter regions (− 1 crops). The greater decline in profitable farm systems at drier regions was partly attributed 
to climate-related yield losses by majority of the crops. This result suggests that climate change will greatly limit 
profitable crop enterprises at the drier regions, reflecting a potential for farmers to shift away from crop enter-
prises (to either livestock78 and mixed farming enterprises84 or increase crop enterprises at the wetter regions85).

Our results show that whole-farm profit losses due to climate change were highest at the moderate rainfall 
(wet) regions (ca. − 23%) and lower at the wetter regions (ca. − 11%, Fig. 8 and Table 7). We found severe to 
moderate profit reductions at the drier regions (− 12% to − 19%). The substantial financial losses at the wet 
regions were implicated to the additional irrigation water costs and the low diversity of profitable crop portfolios 
(since only irrigated chickpeas was economically viable at the wet regions). These results agree with findings 
reported by Connor et al.86, who showed that increased water cost in addition to climate-induced yield reduc-
tions contributed to a precipitous decline in profits at moderate rainfall regions of South Australia (by − 22%) 
compared with drier regions of Victoria (by − 9%) under mild climate change scenarios in 2030. Analogous to 
our findings on impact of diversification of cropping options, Viguier et al.87, showed that whole-farm economic 
performance for non-diversified (mono-cropping) systems decreased considerably (− 59 ± 26%) in comparison 
with diversified (multi-cropping) systems (− 35 ± 8%) across five arable production regions of France. Together, 
these results demonstrate that sustainable gains in farm profit under future climates will not depend entirely on 
rainfall gradient to offset climate-related economic losses but rather, gains are a function of a complex interplay 
between crop price, yield, variable costs, water costs and innovative adaptations (see Figs. 7, 8 and 9).

The minimal climate-induced economic losses at the wetter regions (e.g., Hagley) shown here can be attrib-
uted to increased diversity of profitable crops (+ 5 crops, Fig. 8 and Table 7) in addition to relatively low climatic 
yield penalty (Figs. 4, S1, S2, S3 and S4), which aligns well with the observation that diversification of crop 
incomes provides a viable pathway for enhancing the resilience of whole-farm profits by spreading the economic 
risks posed by climate change87–93.

Our projections show that climate change may cause induce major shifts in crop profits and area able to be 
sown in drier regions (by − 63 to + 301% and − 51 to + 77% respectively; Fig. 7 and Table 7) but cause smaller 
changes in wetter regions (− 76 to − 6% and − 12 to + 19%, respectively). The largest shifts under future climates 
were away from crops with higher water use and lower grain price (e.g. maize) and towards crops with lower 
yields, higher price per tonne and lower water use (chickpeas). These results are broadly consistent with the 
recent literature. For example, Ghahramani et al.78, projected greater changes in profits at the drier regions (− 74% 
to + 16%) compared to wetter regions (− 15% to − 10%) across Western Australia, South Australia and New South 
Wales under severe climate change scenarios in 2030. Hughes et al.84, also simulated larger changes in profits in 
the drier regions of Western Australia (− 98% to − 9%) compared with more modest changes at wetter regions 
in Tasmania (− 13% to − 7%) under 2050 climates.

Our analyses show that enterprises with chickpea crops had the largest increase in average profit and cropping 
area under future climates (+ 65% and + 25% respectively; Fig. 7 and Table 7) in most of the regions, suggesting 
that chickpeas are a climate-resilient and profitable crop due to high commodity prices and relatively low water 
requirements, which together buffer the negative climate change impacts on yield. Irrigated early maize will be 
economically viable but characterised by sharp declines in profit and area planted (− 34% and − 29% respectively; 
Table 7), implying maize will be profitable but more vulnerable to climate change as lower maize prices and 
higher water requirements predispose profitability to climate-induced penalties (Fig. 9 and Table 7). Despite 
high potential yields, durum wheat will be most unprofitable and unresponsive to climate change in most of 
the regions, mainly due to lower grain prices. More broadly, these results highlight the potential for farmers to 
shift towards climate-resilient profitable grain-legumes (e.g., chickpeas) and away from less economically viable 
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dominant cereals (e.g., durum wheat and barley) under future climates. These findings are congruent with previ-
ous work9 which suggest that legumes such as mungbeans and chickpeas would be most profitable options when 
income uncertainties are taken into account. Potential future surge in production and supply of grain-legumes at 
the expense of cereals would exert significant pressure on demand and supply dynamics at global and domestic 
levels94,95, resulting in decreased legume prices96 and spikes in prices for cereals97,98 and cereal end-products (e.g., 
durum-based pasta, Gal95, Freebairn99).

Our results reveal that average crop profits decreased (− 8%, Table 7) under future climates. Profit losses were 
greater in dryland environments (− 29%) attributed to decline in area sown (− 8%) and more severe yield losses 
(− 23% Tables 5, S1, S2, S3 and S4). Irrigated scenarios experienced modest reductions in profit (− 5%) partly due 
to increased area sown on farm (+ 4%) and less severe yield reductions (− 16%). We found that profitable rainfed 
crops constituted 20% of farm area at the wetter regions, thus contributing to the decline in profits and farm area 
under irrigation (− 28% and − 5%, Table 7). In contrast, profitable crops in drier zones were primarily irrigated, 
resulting in greater incremental increases in profits and cropping area under irrigation (+ 24% and + 14%). Our 
results also suggest irrigating greater areas of the farm in drier regions partially compensates for detrimental 
climate change impacts on farm profits. These results are consistent with findings of Elliott et al.100. However, a 
key challenge for future irrigated crops will be the reduction in freshwater availability100.

As for any study, this work had some limitations. Our simulations of crop yield considered only the impacts 
of frost, heat and water stress, we did not consider impacts of other projected changes in abiotic (e.g., waterlog-
ging) or biotic (e.g., weeds, pests and diseases) stresses. Our study also uses climate projections defined by the 
current state of the art of GCMs. While such projections may change or improve in future, we can only use the 
available forecasts that we have at the time of writing. Another deliberate assumption of the present study was 
that full irrigation was applied, because we did not wish to confound changes in water stress due to suboptimal 
management with other changes caused by global warming, e.g. enhanced rate of crop development. Future 
studies may wish to take into account regional factors influencing farm-scale irrigation supply and impose these 
changes on the future farming system.

Conclusions
We assessed the collective and interacting impact of meteorological, biophysical and economic factors on whole-
farm profit and crop options under climate change using decision-support tool WaterCan Profit. We revealed 
that farmers with less diverse crop types at their disposal and higher irrigation variable costs will likely suffer the 
greatest climate-related financial losses (ca. − 23%). Nevertheless, use of irrigation per se was shown to increase 
profits and cropping area (+ 24% and + 14% respectively) in the drier regions, suggesting that irrigation can be a 
viable adaptation to compensate detrimental climate change impacts on farm profits. We showed that effects of 
climate change on whole farm profit were not related to prevailing climate type of the region, with future climates 
depressing profit by 11–23% relative to historical climates. The climate-induced whole farm economic losses were 
closely linked to decline in area sown (− 8%) and more severe yield penalties (− 23%). Impacts of future climates 
were more closely related to crop type and maturity duration; indeed, many crop types that were traditionally 
profitable under historical climates were no longer profitable in future. We suggest that future work on drought 
adaptation use genotypic selection criteria more diverse than yield alone. We conclude that crop types with (1) 
higher value per unit weight, (2) lower water requirements per land area and (3) higher water-use efficiency are 
more likely to ensure the sustainability and prosperity of irrigated grain production systems.

Data availability
The data that support the findings of this study are available from the corresponding author, [Matthew Tom 
Harrison], upon reasonable request.
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