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Comprehensive genetic analysis of the human
lipidome identifies loci associated with lipid
homeostasis with links to coronary artery disease
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We integrated lipidomics and genomics to unravel the genetic architecture of lipid meta-

bolism and identify genetic variants associated with lipid species putatively in the mechanistic

pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from

4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361

independent lipid-loci associations, involving 667 genomic regions (479 previously unre-

ported), with validation in two independent cohorts. A meta-analysis revealed an additional

70 independent genomic regions associated with lipid species. We identified 134 lipid

endophenotypes for CAD associated with 186 genomic loci. Associations between inde-

pendent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from

the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10−3), 43

loci were associated with at least one lipid endophenotype. These findings illustrate the value

of integrative biology to investigate the aetiology of atherosclerosis and CAD, with impli-

cations for other complex diseases.
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Lipids comprise thousands of individual species, spanning
many classes and subclasses. Genome-wide association stu-
dies (GWAS) of lipid species can provide novel insights into

human physiology, inborn errors of metabolism and mechanisms
for complex traits and diseases. Dyslipidaemia, a broad term for
disordered lipid and lipoprotein, is a major risk factor for
atherosclerotic cardiovascular disease and a therapeutic target for
the primary and secondary prevention of coronary artery disease
(CAD)1,2. Defined by elevated low-density lipoprotein (LDL)
cholesterol and triglycerides with decreased high-density lipo-
protein (HDL) cholesterol —these ‘clinical lipid’ measures pro-
vide only a partial view of the complex lipoprotein structures and
their metabolism. Lipidomic technologies can now measure
hundreds of individual molecular lipid species that make up the
human lipidome, providing a more complete snapshot of the
underlying lipid metabolism occurring within an individual.

Genome-wide association studies have uncovered thousands of
genetic variants linked to traditional clinical lipids (LDL-choles-
terol, HDL-cholesterol, triglycerides)3,4. Genes implicated at these
loci show functional links between lipid levels and CAD5. The
human lipidome is heritable and predictive of CAD, furthering
our understanding of the biology of CAD6. The individual lipid
species that make up the lipidome are biologically simpler mea-
sures that may reside closer to the causal action of genes, making
them valuable endophenotypes for gene identification. Genetic
interrogation of the human lipidome may therefore reveal further
genetic variants that play a role in lipid metabolism and CAD.

Compared with other complex traits, relatively few genomic
loci have been associated with lipid species in GWAS of the
human serum/plasma lipidome7–17, although these studies have
generally interrogated a restricted subset of lipid species. The
serum lipidome is complex and consists of many isobaric and
isomeric species that share elemental composition but are struc-
turally distinct. Existing lipidomic studies often employ techni-
ques that provide poor resolution of these species, limiting their
biological interpretation. We have recently expanded our lipi-
domic platform to better characterise isomeric lipid species, now
measuring 596 lipids from 33 classes18. Our methodology focuses
on the precise measurement of a broad number of lipid and lipid-
like compounds, utilising extensive chromatographic separation.

Here, we report a GWAS of 596 targeted lipid species (across
33 lipid classes) in an Australian population-based cohort of 4492
individuals, validation of significant loci in two independent
cohorts and a meta-analysis of all results. Using robust proce-
dures, we disentangle the genetic effects of lipid species from
lipoproteins. Integration of multiple datasets, including expres-
sion quantitative trait loci (eQTL), methylation QTL (meQTL),
and protein QTL (pQTL), and in-depth analysis of significant loci
highlights putative susceptibility genes for CAD. We demonstrate
robust associations between lipid species and CAD using genetic
correlations, polygenic risk scores and phenotypic associations.
Many lipid-associated loci show pleiotropy with CAD in co-
localisation analysis. Assessment of loci with coronary athero-
sclerosis in 456,486 UK Biobank participants reveals genetic
associations, independent of clinical lipid measures.

Results
Lipidomic profiling. We measured 596 individual lipid species
within 33 lipid classes, covering the major glycerophospholipid,
sphingolipid, glycerolipid, sterol, and fatty acyl classes in serum
and plasma samples from three independent cohorts (Supple-
mentary Table 1, Supplementary Data 1, 2). Assay performance
was monitored using pooled plasma quality control samples,
enabling the determination of coefficient of variation (%CV)
values for each lipid class and species. In the Busselton Health

Study (BHS) discovery cohort, the median %CV was 8.6% with
570 (95.6%) lipid species showing a %CV less than 20%. All lipids
were measured in every individual, with the exception of three
values which were below the limit of detection. The lipidomic
analysis of the Australian Imaging, Biomarker, and Lifestyle
(AIBL) and Alzheimer’s Disease Neuroimaging Initiative (ADNI)
validation cohorts showed similar assay performance19.

Discovery of genome-wide association study of the human
serum lipidome. We performed a GWAS of the human serum
lipidome (Fig. 1) in the BHS discovery cohort (4492 individuals of
European ancestry) followed by validation against a meta-analysis
of the two validation cohorts (ADNI and AIBL; 670 and 895
individuals of European ancestry, respectively). We further per-
formed a discovery meta-analysis of all three studies. All
summary-level statistics are available at our PheWeb20 data portal
(https://metabolomics.baker.edu.au/).

Within the discovery GWAS, 70,831 genome-wide significant
SNP-lipid species and 3474 SNP-lipid class associations were
identified (P < 5.0 × 10−8; Fig. 2). All lipid classes and 543 (of
596; 91.1%) lipid species had at least one significant association
(Supplementary Data 3, 4). All significantly associated
SNPs were in Hardy-Weinberg Equilibrium (HWE; all
P ≥ 1.53 × 10−4) and were relatively common (minor allele
frequency; MAF < 0.01: 4%; MAF > 0.05: 91%, Supplementary
Data 5). LD-clumping identified 2279 independent SNP-lipid
species associations, and 132 independent SNP-lipid class
associations at a genome-wide significance (P < 5.0 × 10−8;
r2 < 0.1; Fig. 2; Supplementary Data 6).

Each SNP was associated with between 1 and 222 lipids
(Supplementary Fig. 1). SNPs associated with a large number of
lipids were in regions known to be involved in lipid regulation,
including FADS1/FADS2/FADS3, APOE, and LIPC. The most
significant associations were observed between PC(18:0_20:4) and
rs174564 (FADS2; P= 4.63 × 10−220) and between Cer(d19:1/
22:0) and the intergenic SNP rs364585 (flanking SPTLC3;
P= 7.81 × 10−185). In fact, the most significant 26 SNP-lipid
species associations were with SNPs in these two regions.

The median genomic inflation factors were 1.01 (range:
0.99–1.03), and 1.02 (range: 1.00–1.03) for lipid species and class
analyses, respectively. SNP-based heritability estimates were
moderately correlated (r= 0.45) with lambda estimates, for each
of the lipid species and classes (Supplementary Fig. 2a), as
expected21.

SNP-lipid species associations are largely independent of
clinical lipid measures. We performed an additional GWAS,
adjusting for clinical lipids (total cholesterol, HDL-cholesterol, tri-
glycerides), to identify SNP-lipid species associations independent
of clinical lipid traits (Adjusted Discovery GWAS). The median
genomic inflation factors were 1.01 (range: 0.99–1.03), and 1.01
(range: 1.00–1.03) for lipid species and classes, respectively; with
heritability estimates moderately correlated (r= 0.51) with lambda
estimates, for each of the lipid species and classes (Supplementary
Fig. 2b). Adjustment for clinical lipids identified 2424 independent
SNP-lipid species associations, and 124 independent SNP-lipid class
associations (Supplementary Data 6). There were 1545 SNP-lipid
species and 72 SNP-lipid class associations that were significant in
both the unadjusted and the adjusted analyses, with an r2 between
beta coefficients of 0.93 (Fig. 3). Adjustment for clinical lipids
identified an additional 879 significant SNP-lipid species associa-
tions, for 387 lipid species. However, 726 SNP-lipid species asso-
ciations previously associated in the unadjusted analysis, fell
below our significance threshold. Approximately 24% of these lipid
species are members of the cholesteryl ester (n= 93), and
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Genome-wide association study (clinical lipids adjusted) 
(Adjusted Discovery GWAS)

BHS GWAS (GEMMA): Lipid~SNP+Age+Age2+Sex+ 
Sex:Age+Sex:Age2+ 
HDL+Chol+Trig+ PC1-10 +GRM

77,483 significant SNP-lipid species associations (P<5x10-8)
4,634 significant SNP-lipid class associations (P<5x10-8)

Genome-wide association study (Discovery GWAS)

BHS GWAS (GEMMA): Lipid~SNP+Age+Age2+Sex+ 
Sex:Age+Sex:Age2+PC1-10 +GRM

70,831 significant SNP-lipid species associations (P<5x10-8)
3,474 significant SNP-lipid class associations (P<5x10-8)

BHS cohort (Discovery)
N=4,492; 56% female, mean age=51 (SD=17)

AIBL cohort (Validation)
N=895; 43% female, mean age=75 (SD=7)

Genetic Data
Genotyping (Illumina OmniExpressExome) & 

1000G Imputation
16,304,026 SNPs

Lipidomics Data
573 Lipid species, 32 Lipid classes

ADNI cohort (Validation)
N=670; 60% female, mean age=75 (SD=7)

Genetic Data
Genotyping (Illumina OmniExpress) & 1000G 

Imputation
7,740,040 SNPs; MAC>5

Lipidomics Data
581 Lipid species, 32 Lipid classes

Genome-wide association study (Validation GWAS)

AIBL GWAS (Plink2): Lipid~SNP+Age+Age2+Sex+ 
Sex:Age+Sex:Age2+PC1-5

ADNI GWAS (Plink2): Lipid~SNP+Age+Age2+Sex+ Sex:Age+ 
Sex:Age2+Fasting+PC1-5 

19,708 significant SNP-lipid species associations (P<5x10-8)
1,212 significant SNP-lipid class associations (P<5x10-8)

Inverse-variance weighted fixed-effects meta-analysis 
(Discovery meta-analysis)

IVW META-ANALYSIS (METAL): BHS GWAS
AIBL GWAS
ADNI GWAS 

65,563 significant SNP-lipid species associations 
(P<3.47x10-10; 5x10-8 /144 effective lipid dimensions)

Inverse-variance weighted fixed-effects meta-analysis 
(Validation meta-analysis)

IVW META-ANALYSIS (METAL): AIBL GWAS
ADNI GWAS 

Of 2,137 independent SNP-lipid associations with P<5x10-8 in 
discovery GWAS: 69.2% validated at P<0.05

30.1% validated at P<2.34x10-5

Identification of genetic loci and regions
1) Per lipid: LD clumping (r2 <0.1) → 3,361 loci (mQTL) in Discovery GWAS
2) Across lipids: LD clumping (r2 <0.1) → 667 independent genomic regions in Discovery GWAS
3) Discovery meta-analysis: LD clumping (r2 <0.1) → 70 additional genomic regions
4) Resulting in 737 independent genomic regions associated with lipid species/classes

Overlap of 737 lead loci with previous lipid/metabolite GWAS
- 228 lead SNPs (31%) overlapped with associations reported in 35 previous lipid/metabolite GWAS; 509 previously unreported lipid-QTL

Relationship between serum lipid species and CAD
- Phenotypic association with incident CAD: 240 lipids (P<0.05)
- Genetic correlation with CAD: 265 lipids (P<0.05)
- CAD PRS association: 199 lipids (P<0.05)
- Lipid endophenotypes for CAD (P<0.05 for each of the above analyses): 134 lipids

Co-localization analyses between lipid species and CAD
- Identified 43 shared causal variants for CAD and any lipid species

Association between 737 loci and coronary atherosclerosis in the UK Biobank
- 11 loci associated with coronary atherosclerosis (P<5x10-8)
- 14 loci associated with coronary atherosclerosis with adjustment for clinical lipids (P<5x10-8)

Identification of candidate genes
- 498 genomic regions were annotated with a biologically plausible candidate gene using eQTL, meQTL, or pQTL associations

Genetic Data
Genotyping (Illumina 610K & 660W) & HRC 

Imputation
13,687,578 SNPs; MAC>5, Imputation 

quality>0.3
Lipidomics Data

596 Lipid species, 33 Lipid classes

Fig. 1 Study design for the genetic analysis of the human lipidome. Representation of genome-wide association studies (GWAS) of the lipidome in the
BHS discovery cohort (blue boxes), ADNI and AIBL validation cohorts (green boxes), discovery meta-analysis (orange box), and downstream analyses
(grey boxes). ADNI Alzheimer’s Disease Neuroimaging Initiative, AIBL Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing, BHS Busselton
Health Study, CAD coronary artery disease, Chol cholesterol, eQTL expression quantitative trait loci, GRM genetic relatedness matrix, GWAS genome-
wide association study, IVW inverse-variance weighted, LD linkage disequilibrium, MAC minor allele count, meQTL methylation quantitative trait loci,
mQTL metabolite quantitative trait loci, PC principal component, PRS polygenic risk score, pQTL protein quantitative trait loci, SD standard deviation, SNP
single nucleotide polymorphism, Trig triglycerides.
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phosphatidylcholine (n= 81) classes (Supplementary Data 6). We
also identified an additional 52 significant SNP-lipid class associa-
tions, particularly for trihexosylceramide (6 associations) and hex-
osylceramide (6 associations) classes. However, 60 SNP-lipid class
associations fell below our significance threshold, with the classes
diacylglycerol, GM3 ganglioside, lysophosphatidylcholine, lysoalk-
enylphosphatidylethanolamine, phosphatidylcholine, alkylpho-
sphatidylethanolamine, alkenylphosphatidylethanolamine,
phosphatidylserine, sphingomyelin, and triacylglycerol no
longer associated (P < 5.0 × 10−8) with any genetic variants.

Results from multi-trait conditional and joint (mtCOJO; Supple-
mentary Data 3, 4) analyses using clinical lipid traits (total cholesterol,
HDL-cholesterol, triglycerides) GWAS results from the UK Biobank,
to minimise the risk of pleiotropy/collider bias introduced by heritable
covariates, were largely consistent with those of the clinical lipid-
adjusted analysis (r2 of beta coefficients= 0.91, Supplementary Fig. 3).

A comparison of the clinical lipid-adjusted Z-scores and mtCOJO Z-
scores identified three gene regions (APOE, FADS1/FADS2/FADS3,
TMEM229B/PLEKHH1) with substantial differences (P < 1.0 × 10−4)
indicating the possibility of biased effect measures for the adjusted
analyses in these regions. Overall, results were overwhelmingly
consistent between mtCOJO and clinical lipid-adjusted analyses.

Conditional analysis (sequentially conditioning on the lead SNP)
identified 386 secondary signals (across both unadjusted and clinical
lipid-adjusted analyses), associated with 163 lipid species/classes
(Supplementary Data 7). Two gene regions, LIPC and ATP10D, each
contained five independent signals (PCONDITIONAL < 5.0 × 10−8).
The LIPC genomic region was strongly associated with phosphati-
dylethanolamine species and class, while ATP10D was associated
with hexosylceramide species and class. The SPTLC3 region
harboured four independent signals, strongly associated with
sphingolipids containing a d19:1 sphingoid base.

Fig. 2 Circular presentation of loci associated with circulating lipid species identified in our Discovery GWAS. The −log10(P) for genetic association
with lipid species are arranged by chromosomal position, indicated by alternating blue and green points. Association P-values are truncated at
P < 1 × 10−60. Genome-wide significance (P < 5 × 10−8) is indicated by the red line. For details about significant associations, see Supplementary Data 2, 3.
Genes identified in our candidate gene analysis are highlighted in blue, otherwise the closest gene is indicated in black. The purple band indicates lipid-loci
that co-localise with coronary artery disease (CAD) or show association with CAD after adjusting for clinical lipids. The inner circle shows a Fuji plot of
SNP-lipid associations, coloured by broad lipid category. Colour keys representing broad lipid categories are indicated in the plot centre. Chromosomes are
indicated by numbered panels 1–22.
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Associations validated in independent cohorts. For each lipid,
significantly associated SNPs were linkage disequilibrium (LD)-
clumped to remove variants in LD (r2 > 0.1). We assessed whether
the 2411 independent lipid species/class associations identified in
the BHS discovery cohort (unadjusted) were validated within a
combined ADNI and AIBL validation cohort meta-analysis
(Validation meta-analysis). There were 273 SNP-lipid associa-
tions not available for validation in the meta-analysis, either due
to lipids not available in the ADNI and AIBL cohorts; missing
SNPs (and proxies) on the imputation panel; or monomorphic/
very-low-frequency MAF in ADNI/AIBL. Therefore, we attemp-
ted to validate the remaining 2137 significant SNP-lipid asso-
ciations. We considered a SNP-lipid association to be validated if
(i) the SNP was significantly associated (P < 5 × 10−8) in the
unadjusted BHS discovery GWAS; (ii) the direction of effect was
concordant between the validation meta-analysis and the BHS
discovery analysis; and (iii) the association was nominally sig-
nificant (P < 0.05; less conservative) or reached the Bonferroni
significance threshold (P < 2.34 × 10−5) in the validation meta-
analysis. We identified 1474 (69.2%) SNP-lipid associations that
reached nominal significance (P < 0.05), and 644 (30.1%) reach-
ing Bonferroni-corrected significance (Supplementary Data 8).
Almost all associations (>99%) had the same direction of effect,
with a very strong correlation between validation meta-analysis
and significant (P < 5 × 10−8) discovery effect sizes (r2= 0.53
overall, and r2= 0.80 for SNPs with MAF > 0.05 in the BHS;
Supplementary Fig. 4).

Discovery meta-analysis. At a stringent significance threshold of
P < 3.47 × 10−10 (5 × 10−8/144 effective lipid dimensions), the
meta-analysis of all three studies identified 65,563 significant
SNP-lipid associations (Supplementary Data 9), involving 499
lipid species/classes and 7600 SNPs. We identified 5658 new
associations not observed in the BHS discovery GWAS alone,
involving 352 lipids and 2914 SNPs. The majority of these
(n= 5543; 98%) showed some evidence of association in the BHS
discovery GWAS (5 × 10−8 < P < 5 × 10−4). However, 89 asso-
ciations were not nominally significant (P > 0.05) in the BHS

discovery GWAS, indicating that the effects observed in the meta-
analysis were largely due to the AIBL and ADNI samples.

Defining independent loci and genes controlling lipid home-
ostasis. For each lipid, significantly associated SNPs were LD-
clumped to remove variants in LD (r2 > 0.1). Lead variants from
the BHS discovery GWAS (adjusted and unadjusted) and con-
ditional analyses, were clumped if the index SNPs were in linkage
disequilibrium (r2 > 0.1). We identified 3361 independent loci-
lipid associations, involving 610 lipid species/classes, each asso-
ciated with between 1 and 30 independent SNPs. To identify
genomic regions associated with lipid metabolism, a single dataset
was produced by identifying the smallest P-value for each SNP
across all lipids and analyses. LD-clumping of this dataset
resulted in 667 independent genomic regions (Supplementary
Data 10; filtered by column ‘Lead SNP in BHS GWAS’). This
procedure was repeated, including SNP-lipid associations passing
our discovery meta-analysis significance threshold
(P < 3.47 × 10−10), resulting in 682 independent genomic regions
(Supplementary Data 10; filtered by column ‘Lead SNP in
Discovery-Meta analysis’), 612 of which overlap with those
identified in BHS alone (737 in total). The variants within a
genomic region and the lipids associated with those variants are
collectively termed a genetically influenced lipotype.

Identification of candidate genes within loci. Using the prior-
itisation of candidate causal Genes at Molecular QTLs (ProGeM)
framework22 to prioritise candidate causal genes, biologically
plausible genes were identified in 573 of the 737 genomic regions
(Supplementary Data 10-12), with an overlap of 498 genomic
regions between genetic-based (bottom-up) and biological
knowledge (top-down) based approaches. A total of 2321 SNP-
gene pairs were identified, where the gene has previously been
implicated in the regulation of metabolism or a molecular phe-
notype (Fig. 4a). Of these genes, 970 (41.8%) are present in lipid-
metabolism-specific databases.

A total of 62 SNPs were annotated as either missense (n= 59),
stop gain (n= 2), structural interaction (n= 1), start loss (n= 1),
or splice donor (n= 1) mutations. Of these, three were annotated
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as having a putative ‘high’ impact, and the remaining as
‘moderate’ impact. These SNPs are linked to 55 protein products
(Fig. 4b).

Comparing our lead SNPs and proxies against previously
published eQTL associations, 2058 SNP-gene pairs were identi-
fied (Fig. 4b). Published meQTL associations revealed 879 SNP-
gene pairs, 587 (66.8%) of which replicated eQTL associations. In
contrast to eQTL and meQTL, the overlap of published pQTL
associations was much less evident, with only 16 SNP-gene pairs
identified (Fig. 4c). In total, 18 SNP-gene pairs were identified
with evidence from the closest gene, protein consequences, eQTL
and meQTL. The overlap of top-down and bottom-up candidates
supported the annotation of 1031 SNP-gene pairs.

Most SNP-lipid species associations have not been previously
reported. For each of the 737 lead variants, we assessed whether
they (or their proxies) had been previously reported as being
associated with any lipid or metabolite. From 35 previous meta-
bolomic/lipidomic studies (Supplementary Table 2), 228 lead
variants (31%) had been reported as associating with a lipid or
metabolite, resulting in 509 unreported genetically influenced
lipotypes (Supplementary Data 13).

Genetically influenced lipotypes overlap with coronary artery
disease and cardiovascular disease-related loci. We looked at the
overlap between 10 hard cardiovascular disease (CVD) endpoints
from the GWAS Catalog and the lead SNP (or proxy) from each
of the 737 regions, identifying a total of 23 lead SNPs, or their
proxies, associated (P < 5 × 10−8) with 10 hard CVD endpoints
(Supplementary Data 14). The most frequently overlapping

GWAS Catalog hard CVD endpoints were CAD (n= 14 SNPs),
CVD (n= 10 SNPs), coronary artery calcification (n= 8 SNPs),
and myocardial infarction (n= 8 SNPs). Three additional lead
SNPs were associated with CAD in the CARDIoGRAMplusC4D
and UK Biobank meta-analysis. Eighty-four lead SNPs were
associated with 101 CVD-related traits, including chronic kidney
disease (n= 18,) C-reactive protein (n= 14), metabolic syndrome
(n= 12), body mass index (n= 8), and systolic blood pressure
(n= 4). As expected, lead SNPs frequently overlapped with 186
lipid-related traits, with 99 lead SNPs or proxies observed in the
GWAS Catalog.

Serum lipid species/classes are phenotypically and genetically
associated with coronary artery disease. Using nominal sig-
nificance (P < 0.05), we identified 243 lipid species/classes phe-
notypically associated with incident CAD in the BHS (Fig. 5a;
Supplementary Data 15), with 88% in the positive direction. The
strongest association was between TG(50:2) [NL-18:2] and inci-
dent CAD (0.311 ± 0.046, P= 1.74 × 10−11, FDR
q= 1.09 × 10−8). Overall, the most strongly associated lipid spe-
cies were those in the triacylglycerol, diacylglycerol, phosphati-
dylethanolamine, and cholesteryl ester classes.

We identified 265 lipid species/classes that showed a nominally
significant (P < 0.05) association with the CAD polygenic risk
score23 in the BHS (Fig. 5b; Supplementary Data 15). These were
positive associations except for lipids in the alkenyl-
phosphatidylcholine and alkenyl-phosphatidylethanolamine
classes. The strongest association was observed for LPE(18:0)
[sn2] (0.075 ± 0.014, P= 8.9 × 10−8, FDR q= 5.59 × 10−5).

Next, we estimated the genetic correlation between lipid
species/classes and CAD. Using linkage disequilibrium score
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were divided into lipid-specific databases and generic databases. b Venn diagram of distinct genes identified in genetic-based prioritisation analysis.
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causal SNP-gene pairs for which pQTL evidence was identified (right). eQTL expression quantitative trait loci, meQTL methylation quantitative trait loci,
pQTL protein quantitative trait loci.
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regression, we identified nominally significant genetic correla-
tions (P < 0.05) between 199 lipid species/classes and CAD, with
50 of these negatively correlated (Fig. 5c; Supplementary
Data 15). The strongest genetic correlations were between
TG(51:2) [NL-16:0] (0.275 ± 0.058, P= 2.22 × 10−6, FDR
q= 8.94 × 10−4) and CAD.

Overall, using a significance threshold of P < 0.05, we identified
134 lipid species/classes that were significantly associated in each
of the three analyses—association with incident CVD (pheno-
typic), CAD polygenic risk (PRS), and genetic correlation.
Importantly, these lipid species/classes showed concordant

directions of effects in all three analyses, defining these lipid
species/classes as lipid endophenotypes for CAD.

Co-localisation analysis identified shared causal variants for
coronary artery disease. We performed pairwise co-localisation
analysis, within each QTL, between lipid species and CAD to
assess whether they share common variants (Supplementary
Data 16). We identified evidence of 43 shared variants for CAD
and any lipid species (Table 1; Supplementary Note 1; Fig. 6). The
strongest evidence was between CE(18:1) and CAD at the APOE

P P P

Fig. 5 Genetic and phenotypic associations of the lipidome with coronary artery disease. Forest plots of lipid-coronary artery disease; circles represent
effect sizes and horizontal bars represent ±standard errors. a Phenotypic associations (logistic regression; two-sided) between lipid species and incident
coronary artery disease in the BHS cohort (551 cases and 3703 controls), adjusted for age, sex, and the first 10 genomic principal components.
b Association of lipid species with polygenic risk for coronary artery disease. Individuals in the discovery cohort (n= 4492) were assessed for risk using the
metaGRS polygenic score, consisting of ∼1.7 million genetic variants. Linear regressions (two-sided) were performed to test the association between an
individual’s polygenic score and lipid species concentrations, adjusting for age, sex, and the 10 first principal components. c Genetic correlations of lipid
species (n= 4492) against coronary artery disease (meta-analysis of CARDIoGRAMplusC4D and UK Biobank; 122,733 cases and 424,528 controls),
performed with Linkage Disequilibrium Score Regression (LDSC; v1.0.1). Nominally significant and Benjamini–Hochberg corrected significance is indicated
by light- and dark-grey circles, respectively. The 10 most significant lipid species are highlighted in blue, red, or green.
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rs7412 loci (H3+H4= 1.00; H4/H3= 1.17 × 1011). There was
strong evidence for the sharing of this variant between CAD and
184 lipid species from 23 lipid classes (with and without clinical
lipid adjustment). There was also strong evidence for rs603424,
near a likely candidate SCD (Stearoyl-CoA desaturase), and 24
lipid species/classes (0.936 < H3+H4 < 0.998; 16 < H4/
H3 < 1.8 × 103).

Genetically influenced lipotypes were associated with coronary
atherosclerosis in the UK Biobank. To further define pleiotropic
effects between lipid species and CAD, we performed association
analysis of 737 lead SNPs and coronary atherosclerosis in 456,486
participants of the UK Biobank (Supplementary Data 17). Eleven
of the lipid-associated SNPs had genome-wide significant
(P < 5 × 10−8) associations with coronary atherosclerosis.
Adjustment for clinical lipids (total cholesterol, HDL-cholesterol,
triglycerides) increased this number to 17; however, adjustment
for clinical lipids using mtCOJO, which is free of the bias
introduced by heritable covariates, resulted in only 14 associa-
tions with coronary atherosclerosis. Importantly, 11 of these
associations were sub-genome-wide significant in the initial
analysis, suggesting the presence of strong pleiotropy in these
regions. After comparing effect estimates between the standard
GWAS and mtCOJO clinical lipid-adjusted analysis, eight lead
SNPs (with P < 5 × 10−8 in the standard GWAS) showed the
opposite directions of associations. These regions contain proto-
typical lipid/lipoprotein regulating genes, such as APOE, CETP,
LDLR, and PCSK9. Interestingly, for all lead SNPs with marginal
association with coronary atherosclerosis (P < 1.0 × 10−3; with
and without conditioning on clinical lipids), 43 (81%) were
associated with lipid endophenotypes for CAD.

Discussion
By integrative analysis of the human lipidome and CAD phe-
notypes, we have identified candidate risk genes for CAD, pro-
viding evidence for the role of these lipid species in the
development of CAD. Our high-resolution genome-wide asso-
ciation analyses of the human lipidome have identified 737
independent genomic regions associated with lipid metabolism, of
which 509 represent genetic loci not previously associated with
lipid metabolism. This is a substantial increase over previous
studies with similar or larger sample sizes7,10,24. Our expanded
lipidomic platform utilises extensive chromatographic separation
to increase the diversity of measured lipid species and distinguish
lipid isomers and isotopes over those measured in previous stu-
dies. Combined with the extended pedigree study design of the
BHS, we identify many rare/low-frequency variants with large
effect sizes.

The majority (69.2%) of the 2137 SNP-lipid associations
identified in our discovery GWAS were validated in a meta-
analysis of two independent cohorts. Adjustment for clinical
lipids (both as standard covariates and mtCOJO analysis), con-
firmed that the majority of SNP-lipid associations observed were
not acting directly through clinical lipids (i.e. associations were
not the result of mediated pleiotropy). Discovery meta-analysis of
all three studies identified an additional 5658 SNP-lipid associa-
tions (from 122 loci)—involving 352 lipid species—that were not
identified in the BHS discovery GWAS alone. Overall, nearly all
lipid species (95%) had at least one genome-wide significant SNP
association, highlighting the genetic contribution to lipid meta-
bolism and homeostasis.

We identified 134 lipid species/classes showing consistent and
significant associations with CAD when assessed with genetic
correlation, phenotypic association, and PRS association. These
lipids are potential endophenotypes for CAD, which can facilitate

the identification of susceptibility genes. Of those loci associated
with this subset of lipids, we identified 32 regions with evidence of
shared genetic effects (co-localisation) with lipids and CAD. We
assessed the association of lipid-loci with coronary atherosclerosis
in ~456,000 individuals of the UK Biobank, considering the
independence of clinical lipid traits. A total of 53 loci showed
evidence of association (P < 1 × 10−3) in at least one analysis. Of
these, 43 loci were associated with at least one of the 134 lipid
species identified above.

Our lipidomic profiling provided improved resolution and
precision in the measurement of lipid species. Prior studies
examined lipid phenotypes that were mixtures of similar, but
distinct species; lacked structural characterisation of lipid species,
or were contaminated through isotopic overlap. Many of the
associations between lipid species and prototypical lipid regulat-
ing genes observed in our study—such as FADS1/FADS2, APOE,
and LDLR—have been reported in earlier GWAS7–15,17,24. With
our expanded lipidomic profile, we have built on these earlier
studies, identifying many new loci associated with lipid species
and classes. Previous studies, containing mis-annotation of lipid
species, report associations between SNPs in the FADS region and
sphingomyelin species as containing a mono-unsaturated (16:1,
18:1, or 20:1) n-acyl chain8,12. Here, we show the associations of
sphingomyelins with SNPs in the FADS gene region are dis-
proportional with species containing the d18:2 sphingoid base.
This is supported by recent experimental evidence, suggesting
FADS3 is a ceramide-specific desaturase, targeting the sphingoid
bases25,26. Early dogma suggested the dominant isoform of
sphingomyelins was d18:1 leading to the aforementioned anno-
tations (i.e. SM(d18:1/16:1)). However, chromatographic separa-
tion and characterisation identify the predominant species as
SM(d18:2/16:0)18. While these associations are not novel per se,
the additional specificity of our lipidomics methodology extends
across all lipid species and classes, leading to greater confidence in
defining true relationships.

We also observed strong associations between specific sphingoli-
pid isoforms and variants in the SPTLC3 gene region. Serine pal-
mitoyltransferase long chain base subunits (SPTLC) are a series of
enzymes responsible for the de novo synthesis of sphingolipids
through condensation of serine with palmitoyl-CoA. Three mam-
malian isoforms have been identified (SPTLC1-3), which form a
heterodimer in situ, of which SPTLC1 is requisite for function27. The
subunit SPTLC3 was discovered more recently and was thought to
facilitate the synthesis of shorter-chain sphingolipids28. However, we
identify strong associations of SNPs in the SPTLC3 gene region with
atypical sphingolipids, containing a d19:1 sphingoid base (Supple-
mentary Data 4). This supports the recent report that SPTLC3 has
broader substrate specificity, with capacity to metabolise branched
isomers of palmitate (anteiso-branched-C16)27 leading to the
synthesis of d19:1 sphingoid bases. The atypical structure of these
sphingolipids has previously led to mis-annotation resulting in
reported associations of the SPTLC3 gene with hydroxylated
sphingomyelins10,13,14, when hydroxylated sphingomyelins in the
n-acyl chain are unlikely to exist in human plasma29.

Many genes associated with CAD risk were identified as also
associated with lipid species and classes, including HMGCR,
PCSK9, and LDLR (Table 1), thereby providing new avenues for
investigation into mechanistic pathways. We also provide new
evidence to support potential roles for genes not reaching genome-
wide significance and identify possible mechanisms linking these
genes to CAD; we identified strong associations between ten
independent signals in the LIPC/ALDH1A2/AQP9 gene region with
phosphatidylethanolamine, lysophosphatidylethanolamine, and
phosphatidylglycerol lipid species independent of clinical lipids.
Two lead variants were associated with functional consequences,
including a start loss for gene ALDH1A2 and a missense variant for
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gene LIPC. The LIPC gene on chromosome 15 encodes hepatic
lipase, which is functionally described as a triglyceride lipase and as
possessing phospholipase A1 activity (hydrolyses sn-1 fatty acid
from phospholipids). The role of hepatic lipase in lipoprotein
remodelling is complex, being intimately involved in HDL-, IDL-,
and chylomicron remnant-metabolism30. Consequently, the role of
hepatic lipase in cardiovascular disease risk has been controversial,
with both pro- and anti-atherogenic mechanisms identified30,31.
These mechanisms are often viewed through the lens of lipoprotein
kinetics. However, the associations of variants in the LIPC gene
region with phosphatidylethanolamine species are independent of
lipoprotein metabolism (Supplementary Data 3, 4)—notionally as
these lipids are direct substrates for hepatic lipase. Interestingly, the
strength of association of LIPC variants with coronary athero-
sclerosis is considerably increased when conditioned on clinical
lipids (both standard adjustment and mtCOJO analyses; Fig. 7c,
Supplementary Data 17) further supporting a direct mechanistic
link. Phenotypically, phosphatidylethanolamine species are asso-
ciated with incident CAD (Supplementary Data 15), with a direc-
tion of effect concordant with the SNP associations (Fig. 7a). Visual
comparison of regional association plots and SNP effect scatter plot
supports consistent effects (Figs. 7b, d). We selected independent
SNPs (r2 < 0.05) in the LIPC gene region associated with the
phosphatidylethanolamine class and assessed the similarity of
effects with CAD (Fig. 7d). Inverse-variance weighted meta-
analysis of SNP effects using Generalised Summary-data-based
Mendelian Randomisation (GSMR) support strong pleiotropy
consistent with a causal relationship (Fig. 7e).

Angiopoietin-like 3 (ANGPTL3) has been implicated in CAD
risk, with a deficiency being associated with cardioprotective
effects32–35. ANGPTL3 acts as an inhibitor to two other lipases,
lipoprotein lipase (LPL)—a rate-limiting enzyme in the clearance
of triglyceride-rich lipoproteins—and the phospholipase endo-
thelial lipase (LIPG)36. Indeed, loss of function mutations in the
ANGPTL3 gene has been linked to hypolipidemia34. Most pre-
vious research has focused on the lipoprotein modulating effects

of ANGPTL3 through LPL. However, a recent Mendelian Ran-
domization analysis, using NMR lipoprotein profiling, revealed a
divergence in the metabolic effects of genetic variants in
ANGPTL3 and LPL37. We recently identified a rare frameshift
deletion (rs398122988) associated with decreased ANGPTL3
protein levels in extended Mexican American families38; the
variant was also associated with a ~1.3 standard deviation
decrease in phosphatidylinositol species. In this study, we validate
this observation, with SNPs in the ANGPTL3 gene region asso-
ciated with a decrease in phosphatidylinositol species, again these
associations persisted even after adjustment for clinical lipids
(total cholesterol, HDL-cholesterol, triglycerides). Interestingly,
we also observe associations of phosphatidylinositol species with
SNPs in the LIPG region, suggesting a larger metabolic effect of
the ANGPTL3-LIPG pathway, at least in fasting subjects. Com-
monly, phosphatidylinositol species have been studied for their
intracellular messaging roles following phosphorylation of the
inositol ring by kinases, including PI-3-kinase, which lead to
downstream cardio-metabolic effects39. However, the role of
phosphatidylinositol species in CVD risk is still largely unknown.
We have previously observed the change in the ratio of phos-
phatidylinositol to phosphatidylcholine species as a predictor of
CVD risk reduction from statin treatment40. Further work is now
required to unravel the role of phosphatidylinositol in mediating
the effect of these genes on CVD risk.

Limitations to the study warrant mention. First, our samples
were restricted to individuals with European ancestry, compli-
cating generalisability to individuals of non-European ancestry.
Previous studies24,41,42 have shown conservation of lipid-
metabolism genetics across different ancestries; however, future
studies in non-European ancestry individuals are required. Sec-
ond, adjustment for many combinations of lipid-lowering medi-
cations and doses is not practical. As a majority of lipid-lowering
medications were statins and the assumption that medication
dose was titrated, a single lipid species/class correction was
applied to all individuals taking these medications. However, as
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only 2% of the BHS discovery cohort were taking lipid-lowering
medications, the putative impact is unlikely to be large. A larger
proportion of the two validation samples were taking lipid-
lowering medications (ADNI: 49%; AIBL: 22%). Nonetheless, a
substantial number of our associations were validated; therefore,
the single adjustment was also unlikely to have greatly affected
our results. Third, we did not have access to an independent
validation sample for our discovery meta-analysis. We consider
the discovery meta-analysis to be exploratory, with the potential
to provide evidence of associations that can be followed up in
future studies. Finally, lipidomic profiling was performed on
serum in the discovery BHS and validation ADNI cohorts,
whereas the validation study AIBL was plasma. While the abso-
lute concentration of some blood metabolites may differ between
plasma and serum, measurements are generally highly correlated
between matrices43. We have previously shown lipid associations
are consistent between serum and plasma19.

In summary, using our expanded lipidomic profiling platform,
we have investigated the largest number of targeted lipid species in
a GWAS, and have reported significant genetic associations with
lipid species that have not previously been reported in any genetic
association studies to date. Our strategy to use lipid species as
endophenotypes in the search for CVD genes is the tip of the
iceberg. We have previously reported phenotypic associations of
lipid species with other complex traits, including diabetes44, Alz-
heimer’s disease19, and atrial fibrillation45; we believe the same
integrative genomics approach may now be used to elucidate the
mechanistic underpinnings of lipid metabolism in these and other
complex diseases. These data now represent a valuable resource
for the future exploration of the genetic analysis of the lipidome to
identify lipid metabolic pathways and regulatory genes associated
with complex disease and identify new therapeutic targets. To this
end we provide all summary statistics and an online searchable
resource of association plots of lipid species and classes with
genetic variants and regional association plots with individual lipid
species and classes (https://metabolomics.baker.edu.au/).

Methods
Study populations. Participants in the discovery cohort (n= 4492) were all par-
ticipants of the 1994/95 survey of the long-running epidemiological study, the BHS,
for whom genome-wide SNP data, extensive longitudinal phenotype data, and blood
serum were available. The BHS is a community-based study in Western Australia
that includes both related and unrelated individuals (predominantly of European
ancestry) and has been described in more detail elsewhere46–48. Informed consent
was obtained from all participants and the 1994/95 health survey was approved by
the University of Western Australia Human Research Ethics Committee (UWA
HREC). The current study was also approved by UWA HREC (RA/4/1/7894) and
the Western Australian Department of Health HREC (RGS03656).

The two validation cohorts used in this study were the AIBL study49 and the
ADNI study50; both of which were established to discover biomarkers, health and
lifestyle factors for the development, early detection, and tracking of Alzheimer’s
disease. The AIBL study is a longitudinal study which recruited 1112 individuals
aged over 60 years within Australia. Time points for blood/data collection were
every 18 months from baseline. For each individual, lipidomic data obtained from
the earliest blood collection was used. At baseline, 768 individuals were
characterised as cognitively normal, 133 with mild cognitive impairment and 211
with Alzheimer’s disease. The ADNI study is a longitudinal study, starting in 2004
and recruited 800 individuals at baseline, from sites across the United States of
America and Canada. Serum samples obtained at baseline were analysed. Study
data analysed here were obtained from the ADNI database, which is available
online (http://adni.loni.usc.edu/). For the lipidomics analysis, the AIBL study was
deemed low risk (The Alfred Ethics Committee; Project 183/19), and the ADNI
study was deemed ‘research not involving human subjects’ (Duke Institute review
board; ID:Pro00053208).

Lipidomic profiling. Targeted lipidomic profiling was performed using liquid
chromatography coupled electrospray ionisation-tandem mass spectrometry from
fasting blood serum (BHS discovery), fasting blood plasma (AIBL validation), and a
combination of fasting and non-fasting blood serum (ADNI validation; 90%
fasting, 10% non-fasting). We quantified 596 lipid species (from 33 lipid classes) in
the BHS discovery cohort, 573 lipid species (from 32 lipid classes) in the validation

AIBL cohort, and 581 lipid species (from 32 lipid classes) in the validation ADNI
cohort. Due to strict quality control, lipid species may be removed from a dataset
and typically represent very low abundant species and/or those requiring near-
optimal chromatographic separation. All lipid classes were consistent across the
studies, except for the Oxidised sterol ester which was only available in the dis-
covery BHS cohort. Overall, 596 lipid species were quantified; 570 of which were
quantified within all three cohorts; five lipid species were present only within BHS
and ADNI; and 21 lipid species were present only in the BHS cohort (Supple-
mentary Data 1, 2).

Lipidomic profiling of each cohort was performed using the standardised
methodology described by Huynh et al.18. Lipidomic profiling has been described
previously for BHS6 and ADNI/AIBL19. Briefly, 10 μL of serum/plasma was spiked
with an internal standard mix (Supplementary Data 1) and lipid species were
isolated using a single-phase butanol:methanol (1:1; BuOH:MeOH) extraction51.
Analysis of serum/plasma extracts was performed on an Agilent 6490 QqQ mass
spectrometer with an Agilent 1290 series HPLC, as previously described. Mass
spectrometry settings and transitions for each lipid class are shown in
Supplementary Data 1. A total of 497 transitions, representing 596 lipid species
(BHS discovery), 573 lipid species (AIBL validation), and 581 lipid species (ADNI
validation), were measured using dynamic multiple reaction monitoring (dMRM),
where data was collected during a retention time window specific to each lipid
species. Raw mass spectrometry data were analysed using MassHunter Quant B08
(Agilent Technologies).

Data integration and cleaning. Lipid concentrations were calculated by relating
the area under the chromatographic peak, for each lipid species, to the corre-
sponding internal standard. Correction factors were applied to adjust for differ-
ences in response factors, where these were known18. In-house pipelines were used
for quality control and filtering of lipid concentrations. Across the entire BHS
dataset, only three missing values were evident. Lipids below the limit of detection
(missing values) were imputed to half the minimum observed value. To remove
technical batch variation, the lipid data in each analytical batch (approximately
486 samples per batch) was aligned to the median value in pooled plasma quality
control samples included in each analytical run. Unwanted variation in the dis-
covery cohort was identified using a modified remove unwanted variation-2 (RUV-
2) approach52. In brief, lipid data were residualised in a linear mixed model, against
age, sex, body mass index (BMI), clinical lipids and the genetic relatedness matrix
(described below) as the random effects. Principal component analysis was per-
formed on the residualised data. The first two components showed clear trends
along with samples in collection order. Therefore, variation associated with these
first two principal components was removed from the original dataset. Lipid class
totals were generated by summing the concentration of the individual species
within each class. Validation cohorts were processed in a similar manner.

Phenotypic variables. Details of the BHS data collection have been published
previously53. Serum cholesterol and triglycerides were calculated by standard
enzymatic methods on a Hitachi 747 (Roche Diagnostics, Sydney, Australia) from
fasting blood collected in 1994/95. HDL-cholesterol was determined on a serum
supernatant after polyethylene glycol precipitation using an enzymatic cholesterol
assay and LDL-cholesterol was estimated using the Friedewald formula54. Height
and weight (used to calculate BMI) were collected from participants at the time of
the interview (1994/95). The use of lipid-lowering medication was recorded at the
time of the interview (1994/95). Diagnosis of incident CAD was defined as either
hospitalisation or death due to CAD (ICD9: 410-414; ICD10: I20-I25) after the
blood collection date (and until June 2015). Hospitalisations and deaths were
identified from the Western Australian Department of Health Hospital Morbidity
Data Collection and Death Registrations.

Medication usage adjustment. For individuals taking lipid-lowering medication
(BHS, n= 108; AIBL, n= 198; ADNI, n= 328), lipid species and clinical lipid
concentrations were adjusted using previously identified effects of lipid-lowering
medication. Changes in lipid species and clinical lipids following one year of statin
use were calculated from a placebo randomised controlled trial (LIPID study;
n= 4991)40. To calculate correction factors55, lipid measures were centred and
scaled by the mean and standard deviation of baseline measures (prior to statin
usage), and the change in lipid abundance was calculated and regressed on age, sex,
BMI, and statin usage. Statin usage beta coefficients (effect of the lipid-lowering
medication) were added to standardised lipid species concentrations of the indi-
viduals taking lipid-lowering medication in the current study. For lipid species
present in both this study and the LIPID study (overlap of 314 lipid species),
species-specific correction factors were calculated. For those lipid species not
measured in the LIPID study (n= 282), class-specific correction factors were used
in place of species-specific correction factors i.e. a ceramide-specific correction
factor (average beta coefficient of overlapping ceramide species) was used for
ceramide species not measured in the LIPID study. Due to the large proportion of
ADNI participants taking lipid-lowering medication, we performed a sensitivity
analysis, comparing the above correction against residualising lipid concentrations
adjusting for medication usage as a covariate (Supplementary Note 2).
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Genotyping and imputation. For the BHS discovery cohort, genotyping was
performed on the Illumina Human 610 K Quad-Bead Chip (Illumina Inc., San
Diego, CA, USA) at the Centre National de Genotypage in Paris, France
(n= 1468), and on the Illumina 660W Quad Array Bead Chip (Illumina Inc., San
Diego, CA, USA) at the PathWest Laboratory Medicine WA (Nedlands, WA,
Australia (n= 3428). Complete linkage clustering based on pairwise identity by
state distance in PLINK56 showed no batch effects, therefore the batches were
merged. Standard genotype data quality control was performed as described
previously48. Briefly, individuals were excluded if: >3% of SNP data were missing
(n= 11), reported sex did not match genotyped sex (n= 48), duplicates (n= 123),
missing phenotype data (n= 11), or >5 standard deviations above/below mean
heterozygosity (n= 28). Individuals with non-European ancestry (n= 4) were also
excluded. To prepare genotype data for imputation, SNPs were excluded if: call
rates <95%, minor allele count <10, deviations from HWE (P < 5.0 × 10−4), no
matching Haplotype Reference Consortium (HRC) reference panel SNP, palin-
dromic (A/T, G/C) SNPs with MAF greater than 0.4 from the HRC (n= 5), and
SNPs with >0.2 MAF difference compared to HRC (n= 150). After quality control,
SNP data was available for 513,634 SNPs. Imputation was performed to the HRC
reference panel using the Michigan Imputation Server57. Following imputation,
39,117,105 SNPs were available for analysis. We excluded variants if the number of
copies of the minor allele <5 or if imputation quality (r2) <0.3. This resulted in
13,887,524 variants available for analysis.

Genotyping in ADNI was performed on the Human 610-Quad BeadChip
(Illumina, Inc., San Diego, CA). Following standard quality control procedures
performed in Plink56 (minimum SNP and individual call rate >95%, MAF > 0.05,
HWE test P > 1 × 10−6), the sample was imputed to the 1000 Genomes Phase 3
reference panel using Impute258, with pre-phasing using ShapeIT59.

Genotyping in AIBL was performed on the Infinium OmniExpressExome array
(Illumina, Inc., San Diego, CA)60. Quality control procedures were performed in
Plink56. After removing individuals with ambiguous sex, Plink was used to remove
individuals with call rate <0.90; SNPs were removed if call rate <0.95, HWE test
P < 1.0 × 10−4, or MAF < 0.05. SNPs were flipped to the positive strand before
imputation to the 1000 Genomes Phase 3 reference panel using the Michigan
Imputation Server57 (using Minimac 4). Both the AIBL and ADNI validation
cohorts were restricted to individuals of non-Hispanic European ancestry, based on
projection onto the 1000 Genomes reference panel.

Genetic relatedness matrix. The discovery sample, BHS, used in this study
consisted of related and unrelated individuals; therefore, all analyses included a
genetic relatedness matrix. Twenty-two genetic relatedness matrices were calcu-
lated. First, a hard-call set of imputed SNPs was created in Plink (i.e. SNP geno-
types were called if SNP imputation quality r2 > 0.8 and if genotype probability
>0.9). The HLA region on chromosome 6 was also excluded. SNPs were then
pruned in Plink using ‘indep-pairwise 500 50 0.3’ [window of size 500, moving 50
SNPs along each time, removing variants with r2 > 0.3] to create a set of 486,553
independent SNPs. Twenty-two genetic relatedness matrices were created (using
the option ‘gk 1’ which specifies a centred relatedness matrix), with each omitting
one chromosome, in GEMMA61.

Statistical analysis. Genome-wide association analyses for the 596 lipid species
and 33 lipid classes in the discovery cohort were performed using imputed geno-
type dosages in linear mixed models, as implemented in GEMMA61. To avoid
proximal contamination, analyses were performed using genetic relatedness
matrices implementing a leave-one-chromosome out scheme. Analyses were per-
formed using rank-based inverse normal transformed residuals, after adjustment
by age, sex, age2, age*sex, age2*sex, and the first 10 principal components (gen-
erated from Eigenstrat)62,63.

Validation cohorts, ADNI and AIBL, were analysed using an additive linear
model, as implemented in Plink56. Analyses were performed using rank-based
inverse normal transformed residuals, after adjustment by age, sex, age2, age*sex,
age2*sex, study-specific covariates (including fasting status for ADNI) and a
number of principal components deemed sufficient to capture population
structure. Meta-analysis between all three studies was performed using an inverse-
variance weighted fixed-effects model, as implemented in METAL64. Due to the
correlation between lipid species, the effective number of tests was calculated as the
number of principal components required to explain at least 95% variance of the
lipidome (144 components).

Statistical significance was defined using the standard genome-wide significance
(P < 5 × 10−8) in the BHS discovery analysis, P < 0.05 in AIBL/ADNI validation,
and P < 3.47 × 10−10 in the three-study meta-analysis (5 × 10−8/144 lipid
dimensions; Bonferroni correction using the effective number of tests). A more
stringent threshold was used for the meta-analysis due to the lack of validation
samples available.

For each lipid, significantly associated SNPs were LD-clumped (r2 > 0.1) using
correlation measures obtained from 10,000 unrelated individuals from the UK
Biobank, the 1000 Genomes, or the BHS. A singular dataset was created by
retrieving the smallest P-value across all analyses. This dataset was LD-clumped
(r2 > 0.1) to determine the number of independent genomic regions. For each locus,
a regional association plot was produced using LocusZoom65.

Detection of distinct association signals. Conditional analysis was performed to
detect independent association signals at each genome-wide significant loci using
GEMMA. For each lipid, we iteratively clumped regions within a 2 Mb window
centred on the lead SNP until no more genome-wide significant associations were
left. Regions with overlapping windows were merged. Conditional analysis was
iteratively performed, including the lead variant as a covariate until no more
conditionally independent signals (P < 5 × 10−8) remained.

Assessment of effects of clinical lipid trait adjustment. Within the discovery
cohort, to determine whether SNP-lipid associations were independent of clinical
lipid traits (total cholesterol, HDL-cholesterol, triglycerides), all SNPs were tested
with and without adjustment for clinical lipid traits. We compared loci effect sizes
between analyses run with and without clinical lipid adjustment using a pooled
standard deviation t-test (Supplementary Note 3). Bonferroni adjustment (0.05/
number of loci) was used to identify loci which differed substantially following
adjustment. As adjusting for heritable covariates can introduce collider bias66, we
further validated these using multi-trait conditional and joint analysis (mtCOJO)67,
conditioning on GWAS summary-level data for clinical lipids obtained from the
UK Biobank68.

Annotation. Proxies for lead SNPs were found by identifying those in high LD
(r2 > 0.8) within the BHS dataset; in an unrelated subset of white, British indivi-
duals from the UK Biobank69; or in the 1000 Genomes. Lead SNPs and their
proxies were annotated using SNPEff70. SNiPA database v3.371 was used to retrieve
the combined annotation dependent depletion (CADD) score. Expression QTL
associations (cis-eQTL) were obtained from GTEx72 (release v8) and eQTLGen73

(release 2019-12-20). SNiPA metabolite QTL (mQTL) associations were supple-
mented with mQTL associations reported in PhenoScanner74,75 and recently
published lipidomic GWAS7,17. SNiPA protein QTL (pQTL) associations were
supplemented with cis-pQTL associations from ref. 76. Methylation QTL (meQTL)
associations were obtained from ref. 77. A locus was defined as previously unre-
ported if the lead SNP or its proxies have not been identified as an mQTL or lipid-
related trait loci.

Putative causal genes, for each loci, were identified using a slightly modified
approach to that previously described (ProGeM)22. For the bottom-up approach,
the three closest protein coding genes (within a 1Mb window) were identified, for
each lead SNP. Genes were noted if a lead SNP or its proxies were annotated by
SNPEff as missense, start loss, stop gain, or with an annotation impact as High. As
performed by ProGeM, the top-down analysis reports genes within 500 kb of the
lead SNP that are present in a curated database of known metabolic-related genes.
A list of primary candidates was generated based on the overlap of top-down and
bottom-up genes.

Overlap of lead variants with cardiovascular disease-related loci. To assess
whether our lead SNPs were previously associated with CVD-related traits, we
performed a look-up within the GWAS Catalog v1.02 (release 2020-08-26)78 of 10
hard CVD endpoints, 72 CVD-related traits, and 141 lipid-related traits. We also
performed a look-up against a meta-analysis of CAD between CARDIo-
GRAMplusC4D and UK Biobank79.

Associations of lipid species with coronary artery disease and coronary artery
disease polygenic risk. Within the discovery cohort, the association of lipid
species with incident CAD was assessed using logistic regression, adjusting for age,
sex, and the first 10 genomic principal components. Prevalent CAD cases were
removed prior to analysis; defined as individuals hospitalised with CAD between
the start of the Hospital Morbidity Data Collection (1970), and an individual’s
serum collection date. Incident CAD events (CAD hospitalisations or death) were
included up to the end of follow-up (July 2015). Results are displayed as log-odds
ratios.

Polygenic risk for CAD was calculated for each individual in the discovery
cohort using the metaGRS polygenic score, consisting of ~1.7 million genetic
variants23. Linear regression in R was performed to test the association between an
individual’s polygenic score and lipid species concentrations, adjusting for age, sex,
and the 10 first principal components.

Genetic correlations. Genetic correlations of lipid species against CAD were
assessed using Linkage Disequilibrium Score Regression (v1.0.1)80. Regression
weights and scores were obtained from 1000 Genomes European data, as pre-
viously described81. Summary statistics from all datasets were restricted to SNPs
from the HapMap 3 panel, with 1000 Genomes European MAF greater than 5%.
Where available, SNPs were filtered to an imputation quality r2 > 0.9. Similarly,
SNPs were removed if the reported MAF deviated from 1000 Genomes European
MAF by greater than 0.1. Summary statistics for CAD were obtained from the
meta-analysis of CARDIoGRAMplusC4D and UK Biobank by van der Harst and
Verweij79. Due to no overlapping samples between BHS and other summary
results, the genetic covariance intercept was constrained to 0.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30875-7

14 NATURE COMMUNICATIONS |         (2022) 13:3124 | https://doi.org/10.1038/s41467-022-30875-7 | www.nature.com/naturecommunications



Co-localisation analysis. Co-localisation between lipid species genome-wide sig-
nificant loci and CAD was performed using the R package COLOC82. For each loci,
all variants within a 400 kb window centred on the lead SNP were selected. Priors
were kept at default settings. Evidence for shared variants was determined as the
posterior probability of both traits containing causal variants in the region
(H3+H4 > 0.8) and a larger probability of a shared variant (H4/H3 > 10). Sensi-
tivity analysis for regions with shared variants is shown in Supplementary Note 1.

Association of loci with coronary atherosclerosis in the UK Biobank. Lead
SNPs (or proxies) were tested for association with coronary atherosclerosis in the
UK Biobank. In a subset of white, British individuals (n= 456,486), electronic
health records (updated 14th December 2020) were converted into PheCodes83,84

using the R package PheWAS85. Coronary atherosclerosis (phecode 411.4) was
exported for genome-wide association analysis. FastGWA86 was used to assess the
association of lipid-loci with these phenotypes, adjusting for age, sex, age2, age*sex,
age2*sex, the first 20 principal components as provided by the UK Biobank, and
the genetic relatedness matrix as the random effect. The analysis was repeated,
additionally adjusting for clinical lipids (total cholesterol, HDL-cholesterol, tri-
glycerides; measurements obtained from the first available blood collection).
Individuals with missing values were excluded from the analysis. As clinical lipids
are heritable, mtCOJO analysis was also performed using GWAS summary sta-
tistics obtained above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Complete summary statistics of all lipid species and classes are available via the NHGRI-EBI
GWAS Catalog (https://www.ebi.ac.uk/gwas), GCP ID: GCP000197; study accession nos.
GCST90023981–GCST90025848. In addition, summary-level statistics are available at our
data portal (https://metabolomics.baker.edu.au/). Source data are provided with this paper.
Individual-level data for the BHS are available under restricted access for bona fide research;
access can be obtained through applications to the Busselton Population Medical Research
Institute (http://bpmri.org.au/research/database-access.html). Individual-level data for the
ADNI and AIBL studies are available under restricted access for bona fide research; access
can be obtained through applications to the LONI Image and Data Archive (http://adni.
loni.usc.edu/data-samples/access-data/). Individual-level data for AIBL are also available
through applications to the AIBL management committee (https://aibl.csiro.au/research/
support/). Publicly available datasets used within the study are available via UK Biobank
(http://www.ukbiobank.ac.uk/register-apply/), HRC (http://www.haplotype-reference-
consortium.org/home), 1000 Genomes (https://www.internationalgenome.org/), SNiPA
(https://snipa.helmholtz-muenchen.de/snipa3/), GTEx (https://gtexportal.org/home/), and
eQTLGen (https://www.eqtlgen.org/). Source data are provided with this paper.

Code availability
All software and bioinformatic tools used in the present study are publicly available.
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