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Dispersal in the sub-Antarctic: king
penguins show remarkably little population
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Abstract

Background: Seabirds are important components of marine ecosystems, both as predators and as indicators
of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether
fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first
understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche
across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation,
population recovery, and expansion.

Results: We investigated the genetic population structure and patterns of colonisation of king penguins across their
current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction
site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites,
we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean,
suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia
population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony
is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South
Georgia, possibly as a result of density-dependent processes.

Conclusions: The observed subtle differentiation among king penguin colonies must be considered in future
conservation planning and monitoring of the species, and demographic models that attempt to forecast
extinction risk in response to large-scale climate change must take into account migration. It is possible that
migration could buffer king penguins against some of the impacts of climate change where colonies appear
panmictic, although it is unlikely to protect them completely given the widespread physical changes projected
for their Southern Ocean foraging grounds. Overall, large-scale population genetic studies of marine predators
across the Southern Ocean are revealing more interconnection and migration than previously supposed.
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Background
Understanding the patterns and mechanisms of popula-
tion structure is essential for successful species conser-
vation [1]. For example, species with a high degree of
population differentiation and limited dispersal among
colonies may have a reduced ability to respond to un-
favorable local environmental conditions [2] and may
lose a large portion of their total genetic variation if local
populations are lost or reduced [3]. Accurate data re-
garding the geographic boundaries of breeding popula-
tions and the degree of genetic exchange among them
are therefore essential for species risk assessments and
conservation planning, including to mitigate the effects
of climate change. However, the extent of differentiation
among natural populations of seabirds is difficult to
predict and has been shown to vary widely among taxa
[3, 4]. In general, seabirds are philopatric, with adults
returning to natal sites to breed [5], and this behavior
can be an isolating mechanism that acts as a barrier to
gene flow. Seabirds that have large foraging ranges, or
that breed at high latitudes, such as the polar regions,
are thought to be the least likely to have differentiated

populations as a result of recent range expansions and
retained ancestral variation [3].
King penguins (Aptenodytes patagonicus) are thought

to be vulnerable to climate change impacts in the future
[6, 7] and an understanding of their population structure
is required to accurately model these impacts and make
inferences about observed changes in population size.
King penguins congregate in large breeding colonies on
coastal ice-free ground on sub-Antarctic islands between
45 ° and 55 ° south [8] (Fig. 1). Numbers have been
increasing across their range over the past several
decades [8–11], following historic anthropogenic exploit-
ation during the late 19th to early 20th centuries when
they were slaughtered en masse for the blubber oil
industry [12]. The global population of king penguins is
now conservatively estimated at 1.6 million breeding
pairs and still increasing [8].
Owing to their large and growing population size

across most of their range, king penguins are currently
listed as being of Least Concern on the IUCN’s Red List
of Threatened Species [13] although there have been
concerns that harvest may have resulted in a population

Fig. 1 King penguin colony locations. Triangles indicate known king penguin colonies, with coloured triangles indicating the four colonies
sampled for this study
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bottleneck that would have reduced genetic variation
and hence their adaptive capacity. Furthermore, king
penguins will face new challenges in the coming decades
as climate change alters their marine foraging habitat.
The most immediate threat posed by climate change to
king penguin populations is the southward shift of the
Polar Front and deepening of the thermocline; both
secondary to warming of the Southern Ocean’s surface
waters [7]. King penguins forage almost exclusively at
the Polar Front during the summer breeding season
[14–16], as a result of the combination of predictably
high prey abundance and ideal diving conditions that
they find at the front [17, 18]. As sea surface tempera-
tures increase with climate change, the position of the
Polar Front is shifting to the south, and this is predicted
to double the king penguin’s travelling distance to their
preferred foraging grounds by 2100 [19]. The coincident
deepening of the thermocline means the penguins must
also dive deeper to reach their prey [7]. A study at the
Crozet Islands has already demonstrated the impact that
warming waters can have on king penguin numbers,
with a population decline of 34 % associated with an
anomalously warm year in 1997 [7]. In light of the po-
tential threats to king penguin populations, accurate data
regarding their population structure are needed [8]. Specif-
ically, to monitor population sizes in relation to environ-
mental impacts we must first understand what constitutes
a genetic breeding population of king penguins.
There have been no studies of genetic population

structure of king penguins across their breeding range to
date. A decade-long study at one colony in the Crozet
Islands found that 77 % of juvenile king penguins
returned to their natal colony [20]. This suggests that
the species is largely philopatric, however, even low
numbers of dispersing individuals could be sufficient to
homogenise populations [21]. King penguins possess a
remarkable mobility, regularly conducting round-trips in
excess of 3200 km from breeding colonies to forage in
Antarctic waters during the winter months [15]. How-
ever, the average distance between the pairs of breeding
sites in our study is 6500 km and the colonies are
distributed longitudinally, whereas most of the king pen-
guin’s foraging movement is latitudinal [16, 22]. This
suggests that frequent dispersal among breeding sites
should be unlikely. In spite of this, incidences of long-
distance dispersal have been documented, with birds
tagged on the Crozet Islands resighted resting or molt-
ing at Marion Island (900 km away) [23], Kerguelen
Island (1500 km away), Macquarie Island (5600 km
away) [24] and Heard Island (1740 km away) [25]. It
should also be noted that any genetic differentiation that
arose during the founding of colonies would be expected
to persist for a very long time (i.e. thousands of genera-
tions) in a species with such a large effective population

size and rapid population growth rate [26]. Previous
studies of population structure in other penguin species
revealed a remarkable lack of differentiation across thou-
sands of kilometers, including in emperor penguins
(Aptenodytes forsteri) [27, 28] and Adélie penguins
(Pygoscelis adeliae) [29, 30]. This is in contrast to gentoo
penguins (Pygoscelis papua) [31] and chinstrap penguins
(Pygoscelis antarctica) [32], which demonstrated moder-
ate to low genetic differentiation across similar distances.
Both emperor and Adélie penguins have almost continu-
ous circumpolar distributions [33, 34] that may faciliate
migration, whereas king penguin colonies are scattered
distantly across the sub-Antarctic (Fig. 1).
Overall, king penguins are a highly mobile marine spe-

cies with huge potential for dispersal; however, genetic
divergence among colonies may exist as a result of non-
physical barriers, such as philopatry, local adaptation or
isolation by colonisation [35]. We therefore hypothesised
that breeding colonies on different archipelagos would
constitute genetically distinct populations. To test this
hypothesis we generated a dataset of more than 5000
unlinked single nucleotide polymorphisms (SNPs) using
restriction site associated DNA sequencing (RADSeq)
[36] for king penguins from four colonies spread across
their range (Fig. 1). We aimed to identify population
structure, as well as distinct phylogenetic lineages that
may have been associated with past glacial refugia. Previ-
ous studies have shown that king penguin numbers were
much reduced during the last ice age [37], and the
species’ range may have been contracted into refugia at
unknown locations [38]. Finally, we aimed to test the hy-
pothesis that the recently founded colony at the Falkland
Islands [39] was established via migration from nearby
South Georgia (Fig. 1). Throughout we use the term ‘dis-
persal’ to refer to individual movements away from the
natal colony and ‘migration’ to refer to an individual
breeding at a different colony from its natal colony.

Methods
Sampling
Blood was collected from 16 king penguins at each of:
Volunteer Point on the Falkland Islands (Feb 2014),
Fortuna Bay on South Georgia (Dec 2012), Baie du
Marin on Possession Island in the Crozet Islands (Dec
2003–Jan 2004) and Sandy Bay on Macquarie Island
(Dec 2005–Jan 2006) (Fig. 1). To prevent biting and
minimize stress during handling [40], king penguins
were either seized with both hands and the flippers were
restrained with the head placed under the arm of the hand-
ler, or they were wrapped in cushioned material to cover
the head and prevent movement. A second handler took
1 mL blood from the brachial or ulnar vein using a 25G or
23G needle and 1 mL syringe, after cleaning the area with
an alcohol swab. Total restraint time was generally two to
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three minutes. All field activities were conducted under
permits from the Falkland Islands Government, the Gov-
ernment of South Georgia and the South Sandwich Islands
and the Tasmanian Parks Department, and also re-
ceived ethical approval from the University of Oxford,
the University of Western Australia, the Auburn
University Institutional Animal Care and Use Committee
and the Institut Polaire P. E. Victor. Blood samples were
transported to the UK at ambient temperature in RNAla-
ter (Life Technologies) or in Queen’s Lysis buffer, and
stored at −20 °C or −80 °C until extraction.

Sequencing
DNA was extracted from the 64 blood samples using a
QIAGEN DNeasy Blood and Tissue Kit following the
manufacturer’s protocol, but modified to include 40 μL
proteinase K at the digestion step and with the incuba-
tion time extended to 3 h. The samples were treated
with 1 μL Riboshredder (Epicentre) to reduce RNA con-
tamination. DNA concentration was measured with a
Qubit (ThermoFisher Scientific) and high molecular
weight was confirmed on a 1 % gel. We sequenced the
mitochondrial hypervariable region (HVR; 620 base
pairs; GenBank accessions: KX857217-KX857259) because
this marker has revealed phylogeographic patterns within
other penguin species [28, 29, 41]. The HVR was amplified
in all samples using primers F-0225 (5’-GGAACCTCCC
AAAGAGTACCA) and R-INR (5’-CCAACCAGATGT
ATCGGTGA) [28]. PCR products were sequenced using
the Sanger method by Macrogen Europe. Geneious v5.5.9
was used for alignment.
We employed RADSeq to generate a dataset of

genome-wide SNPs to assess population structure
among the king penguin colonies. RAD libraries were
prepared using the SbfI restriction enzyme, which was
chosen because it produces a large number of RAD loci
in king penguins [37]. RADSeq for all individuals was
performed at the Edinburgh Genomics Facility, Univer-
sity of Edinburgh (https://genomics.ed.ac.uk/) as de-
scribed in Gonen et al. [42] after Etter et al. [43]. Briefly,
250 ng of DNA per individual was digested with SbfI-HF
(NEB), followed by ligation to barcoded P1 adapters.
The uniquely barcoded individuals were pooled into
multiplexed libraries, and each library sheared into frag-
ments of ∼ 300—400 bp. Fragments were size selected
using gel electrophoresis. The libraries were blunt ended
(NEB Quick Blunting Kit) and A-tailed prior to ligation
with P2 adapters (IDT). Enrichment PCR was performed
to increase yield, followed by product purification with
Ampure beads. The pooled, enriched libraries were
checked for size and quantity using Qubit and a qPCR
assay. Each library was then sequenced in a lane of the
Illumina HiSeq 2500 using 125 base paired-end reads in
high output mode (v4 chemistry).

Bioinformatics
FastQC was used to assess read quality and check for
adapter contamination. We used process_radtags within
the Stacks pipeline v1.35 [44, 45] to de-multiplex, trim and
clean reads. We then truncated reads to 113 bp to exclude
the four terminal bases in order to avoid poor sequence
quality. We excluded read pairs in which either read had
uncalled bases, a low quality score and/or a barcode or
cut-site with more than one mismatch. The remaining
paired reads were aligned to the emperor penguin refer-
ence genome (http://gigadb.org/dataset/100005) using
bwa-mem [46]. We prevented terminal alignments by en-
forcing a clipping penalty of 100. Reads with more than
five mismatches, multiple alignments and/or more than
two indels were removed using a custom python script (fil-
ter.py, available online [47]). We removed PCR duplicates
with Picardtools (http://broadinstitute.github.io/picard).
We used the Stacks pipeline (pstacks – cstacks – sstacks –

rxstacks – cstacks – sstacks - populations) to prepare a data-
set of unlinked, filtered SNPs from the RAD reads, following
many of the suggestions outlined in the framework of
Benestan et al. [48]. In pstacks we selected a minimum stack
depth of six reads mapping to the same location and used
the bounded SNP model with a significance level of α =
0.05, an upper bound of 0.1 and a lower bound of 0.0041
(corresponding to the highest sequencing error rate re-
corded by phiX spikes in the sequencing lanes). All 64 indi-
viduals were used to build the catalog in cstacks. In rxstacks
we removed confounded loci (those with a biologically im-
plausible number of haplotypes, such as from repetitive se-
quences or paralogous loci) with a conservative confidence
limit of 0.25. Also in rxstacks, we removed excess haplotypes
from individuals as well as any loci with a mean log likeli-
hood <−10. Further filtering was conducted in the popula-
tions module. We removed SNPs with a minor allele
frequency (MAF) < 0.01 because these are likely to be the
result of sequencing errors. We also removed loci with a
heterozygosity > 0.5, as these could be paralogs [48]. A single
SNP per RAD-tag was chosen at random in order to remove
tightly linked SNPs from the dataset. We also specified that
a locus must be present in all colonies to be included in the
final dataset, as well as genotyped in at least 80 % of individ-
uals from each colony. We then removed any SNPs with a
mean coverage exceeding 100X using vcftools v0.1.13 [49]
to avoid SNPs from repetitive regions of the genome. We
also removed SNPs that were out of Hardy Weinberg equi-
librium (HWE) in > 50 % of the colonies when p < 0.01 using
the adegenet package in R [50, 51] and vcftools. Finally,
PGDSpider v2.0.8.2 [52] was used to convert the vcf file into
other formats for subsequent analyses.

Outlier loci detection
We investigated whether SNPs were potentially under se-
lection before proceeding with population genetic analyses,

Clucas et al. BMC Evolutionary Biology  (2016) 16:211 Page 4 of 14

https://genomics.ed.ac.uk/
http://gigadb.org/dataset/100005
http://broadinstitute.github.io/picard


because loci under either directional or balancing selection
violate the assumption of neutrality that is a caveat of most
population genetic methods. We used a Bayesian FST out-
lier test as implemented in BayeScan 2.1 [53] to identify loci
to be discarded from the neutral dataset. BayeScan has
been shown to have good power for detecting loci genu-
inely under selection under a range of demographic scenar-
ios, but with an accompanying high false-positive rate [54].
Given that our reason for testing for outlier loci was to ob-
tain a truly neutral dataset, we are not concerned by the
high false-positive rate in this case. We set the prior odds
of neutrality parameter at five, which refers to the probabil-
ity that a given locus in the dataset is under selection (i.e.
for every five loci one is under selection). This prior was
chosen as we aimed to remove all loci that could possibly
be under selection. We deemed q-values of < 0.1 to be a sig-
nificant result, meaning that for a dataset of 100 FST out-
liers we can expect ten of these to be false-positive neutral
loci [54, 55].

Contemporary population structure
The genetic structuring among king penguin colonies was
assessed using several different methods. Firstly, the Weir
and Cockerham [56] unbiased estimator of FST was calcu-
lated between all pairs of colonies using Genodive v2.0b27
[57]. The hypothesis of departure from panmixia was tested
with 5000 random permutations of the data to determine
the statistical significance of each pairwise FST value be-
tween colonies, with the significance level adjusted for mul-
tiple testing using Sequential Goodness of Fit (SGoF+) [58].
To identify the number of genetic populations (“clus-

ters”) among the 64 individuals, we used the find.clusters
K-means clustering algorithm within the adegenet pack-
age [50, 51], retaining all principal components. We also
used a Bayesian clustering approach with a Markov
chain Monte Carlo (MCMC) sampling procedure within
structure v2.3.4 [59]. The analysis estimated the mem-
bership coefficient of each individual to each of the
inferred clusters, effectively assigning individuals to
genetic populations. We used the admixture model with
correlated allele frequencies, because our pairwise FST
results suggested that it is highly likely that these col-
onies have experienced admixture in the past and/or are
still exchanging migrants. Models were run both with
and without location priors to reflect the colony that
each individual was sampled at, to detect subtle versus
strong population structure. We conducted an initial
run to infer the value of lambda, using a setting of K = 1
and an MCMC length of 100,000 generations (with the
first 50,000 discarded as burn-in), allowing lambda to
vary. The value of lambda was then fixed at 0.39 for sub-
sequent analyses. K values (the number of inferred
clusters) from one to four were tested, with each value
of K run a total of ten times from different random

seeds. Each analysis was run for 150,000 generations
with the first 50,000 discarded as burn-in. structure har-
vester web v0.6.94 [60] was used to compare K values
using the Evanno method [61] and prepare files for
CLUMPP [62]. Replicate runs for each value of K were
aligned using CLUMPP to check for multimodality, and
the membership coefficients of each individual to each
cluster were visualised with DISTRUCT v1.1 [63].
Discriminant Analysis of Principal Components (DAPC)

[64] can be used to describe clusters in genetic data by
creating synthetic variables (discriminant functions) that
maximise variance among groups whilst minimising vari-
ance within groups. DAPC was run when individuals were
grouped by colony of origin and when individuals were
grouped by the genetic clusters found in our other
analyses, for comparison. These groups were (1) South
Georgia and (2) the Falkland Islands, Crozet and
Macquarie. The optimal number of principal components
(PCs) to retain in each analysis was determined by the
average of 20 runs of the function optim.a.score.
We conducted individual-based population assignment

tests, in which an assignment algorithm attempts to as-
sign the individuals in the test set to their population of
origin [65]. Individuals were grouped into the two gen-
etic populations we described above. As assignment tests
can be sensitive to uneven sample numbers, we ran-
domly sampled 16 individuals from the larger population
to match the size of the South Georgia population. Each
group was divided into a training set and a hold-out set
and we identified the most informative SNPs for colony
assignment using the training set in TRES v1.0 [66]. We
used the Informative for Assignment test (In) to identify
ancestry informative markers (AIMs), as In has been
shown to be the most powerful method for estimating
ancestry proportions [67]. For population assignment
tests it is recommended to trial different numbers of
SNPs, therefore, we exported the top 100, 200, 500, 1000
and 2000 most informative SNPs. These SNP datasets
were used to assign the hold-out set of individuals to
their populations of origin within Genodive. If the minor
allele was not sampled in either population (i.e. its fre-
quency was zero) the frequency was replaced with 0.005
as recommended by Paetkau et al. [68]. We used the
likelihood that the individual comes from the population
it was sampled in (Lh) as the test statistic and a Monte
Carlo test with 10,000 generations to estimate the null
distribution of likelihood values. The threshold value
was defined for each population based on the null distri-
bution, at α = 0.05.

Past population patterns
We used a species tree approach, as implemented in
SNAPP [69] within BEAST v2.4.0 [70], to estimate the
evolutionary relationships and order of splitting among
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the geographically isolated colonies to determine whether
any of the colonies may have been glacial refugia in the
past, as well as the source of the new Falkland Islands col-
ony. SNAPP uses a coalescent method to infer species
trees from unlinked biallelic markers, such as SNPs.
SNAPP is highly computationally demanding and analysis
of the full dataset of individuals was implausible. We
therefore selected two representative individuals from
each colony (i.e. four haplotypes) for analysis, and to en-
sure consistency of the posterior we ran the analysis twice
with different randomly-selected colony representatives.
Any SNPs that were no longer polymorphic within the
reduced datasets were removed from analysis, leaving
datasets of 2668 and 2626 SNPs. The mutation rates (u
and v) were calculated from the data, rather than esti-
mated as part of the MCMC. We ran the MCMC for 5
million generations with a burn-in of 10 %. This was more
than sufficient for convergence, with Tracer v1.6 [71] indi-
cating ESSs > 4000. The likelihood plots were also visually
inspected for convergence. The Bayesian method results
in not a single topology, but a posterior distribution of the
possible topologies; we used DensiTree v2.0.1 [72] to visu-
alise the entire posterior distributions of trees as a cloudo-
gram, excluding a 10 % burn-in.
We used RAxML v8.2.7 [73] to infer maximum likeli-

hood (ML) phylogenies among the full dataset of king
penguin individuals. We applied an ascertainment bias
correction to the likelihood calculations, as recom-
mended when using SNPs to account for the lack of
invariant sites [74]. For the ascertainment correction to
function, all invariant sites must be removed. In practice,
this means that an alignment site consisting of only
heterozygotes and homozygotes for a single allele (e.g.
an alignment site that is only Rs and As with no Gs) is
considered potentially invariant by RAxML and must be
removed. We filtered out such sites using the Phry-
nomics R script (https://rstudio.stat.washington.edu/
shiny/phrynomics/). After this filtering step 1727 SNPs
remained in the dataset. We conducted a rapid boot-
strap analysis and search for the best-scoring maximum
likelihood tree in a single program run using the MRE-
based bootstopping criterion [75] to ascertain when
sufficient bootstrap replicates had been generated. All
searches were conducted under the GTRGAMMA
nucleotide substitution model. We also conducted a ML

search on the HVR sequences, because HVR has been
shown to resolve distinct phylogenetic lineages within
Adélie penguins [29, 41, 76], emperor penguins [28] and
gentoo penguins [31, 41]. We used the same search
protocol as for the SNP dataset, but without an
ascertainment bias correction. Finally, we constructed a
median-joining haplotype network for the HVR se-
quences using PopArt (http://popart.otago.ac.nz).

Results
Genotyping
The 64 king penguin samples yielded 6.27–55.9 million
unpaired reads per individual, with an average of 15.7
million reads per individual. On average, 97.3 % of reads
per individual passed the quality filters in process_rad-
tags and, of these, an average of 97.7 % successfully
aligned to the emperor penguin reference genome. After
specifying a minimum stack depth of six, a total of
34,171 RAD-tags remained, containing 35,766 SNPs. Our
SNP filtering protocols resulted in a final dataset of 5154
SNPs [47] for use in subsequent analyses. Of these we de-
tected no loci that were putatively under selection (BayeS-
can output available online [47]) and none that were out
of HWE in > 50 % of colonies. There were no notable dif-
ferences in genetic diversity measures (number of private
alleles, expected heterozygosity, observed heterozygosity
or nucleotide diversity) among colonies (Table 1).

Genetic populations of king penguins
We conducted multiple analyses of population assign-
ment and delimitation to identify the number and geo-
graphic boundaries of distinct genetic populations
among the four sampled king penguin colonies. The op-
timal number of clusters among the 64 individuals were
K = 3 and K = 2 for structure analyses with and without
location priors, respectively, as determined by the
Evanno method. However, the highest posterior mean
log probability of the data for both scenarios (i.e. with
and without the sampling location specified as a prior)
was at K = 1. The rate of change in log probability
(deltaK) is not defined at K = 1, and so the Evanno
method is unable to determine whether this is actually
the true value of K. This suggests that the signal for
multiple clusters is weak. Inspection of the individual
assignment plots (Fig. 2) showed that three clusters

Table 1 Genetic diversity measures by colony, based on variant (SNP) sites only.

N private alleles HE (mean) HE (Var) HE (StdErr) HO (mean) HO (Var) HO (StdErr) π (mean) π (Var) π (StdErr)

Falklands 148 0.1179 0.0175 0.0018 0.1107 0.0170 0.0018 0.1219 0.0187 0.0019

South Georgia 147 0.1161 0.0174 0.0018 0.1066 0.0161 0.0018 0.1200 0.0185 0.0019

Crozet 117 0.1178 0.0177 0.0019 0.1151 0.0183 0.0019 0.1217 0.0189 0.0019

Macquarie 180 0.1187 0.0178 0.0019 0.1115 0.0175 0.0018 0.1225 0.0189 0.0019

Number of private alleles, expected heterozygosity (HE), observed heterozygosity (HO) and nucleotide diversity (π)
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explain the majority of the subtle structure. The Falkland
Islands and Crozet Islands cluster together, whereas the
Macquarie Island and South Georgia colonies appear
differentiated. The K-means clustering algorithm was
unable to distinguish these clusters as the lowest value
of the BIC, which indicates the optimal clustering solu-
tion, was found at K = 1.
Our measures of pairwise FST (Table 2) indicate that

the Crozet and Falkland Islands colonies are not differ-
entiated from one another (FST = −0.001), and that
Macquarie and Crozet Islands are not significantly dif-
ferentiated from each other (FST = 0.001). All other pairs
of populations are statistically significantly differentiated
after SGoF+ correction for multiple tests, however, the
values of FST are very small (0.003–0.005), indicating
only subtle genetic differences between these pairs of
colonies. Therefore there are at least two slightly
differentiated genetic populations among the sampled

colonies: (1) the South Georgia population and (2) a
population including the Falkland Islands, Crozet and
Macquarie.
DAPC was unable to distinguish among the four sam-

pled colonies or between the two slightly differentiated
populations, with the distribution of individuals overlap-
ping in both scenarios (Fig. 3). For the individual-based
population assignment tests, the 100 SNP dataset was
found to be best at assigning the test set of individuals
back to their population of origin. However, the test
performed poorly, with only seven individuals assigned
correctly out of the 16 individuals in the test dataset.
Given that there were only two possible populations of
origin, this is slightly worse than assigning individuals to
colonies at random. This again suggests that there is
very little differentiation among the king penguin
colonies.
Overall, our analyses of population structure among

the four king penguin colonies have yielded some
surprising results. Despite separation of thousands of ki-
lometers, there is very little genetic differentiation
among these colonies. The South Georgia population
was subtly differentiated from all other colonies, and the
Macquarie population was further very subtly differenti-
ated from some colonies by a subset of our analyses. It
is particularly interesting that the Falkland Islands
colony is genetically indistinguishable from the Crozet
Islands colony, despite a separation of ca. 7500 km,

Fig. 2 Population assignment of individuals by Bayesian clustering in structure. Membership coefficients for each individual are shown by vertical
bars with the clusters represented by colours. The Evanno method selected K = 2 when no location prior was used and K = 3 when a location
prior was used. When K = 3 the three clusters correspond to 1) the Falkland Islands and Crozet colonies, 2) the South Georgia colony, and 3) the
Macquarie Island colony

Table 2 Pairwise genetic differentiation (FST) between pairs of
colonies

Falkland Islands South Georgia Crozet

South Georgia 0.003*

Crozet −0.001 0.003*

Macquarie 0.003* 0.005* 0.001

Results that are significantly different from zero at the α = 0.05 level, following
SGoF+ correction, are indicated with asterisks
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whereas the nearby South Georgia colony is differenti-
ated; based on our results it seems most likely that the
Falkland Islands colony was founded by individuals from
the Crozet Islands, rather than nearby South Georgia,
even though there seems to be no obvious biological
explanation for why this might be so.

Phylogeography
We attempted to ascertain the branching structure
among colonies using the species tree approach imple-
mented in SNAPP. We have presented the full posterior
distribution of trees in order to highlight the uncertainty
in the topology (Fig. 4). The majority of the topologies
support the grouping of the Falkland and Crozet Islands
colonies (Fig. 4), congruent with our structure and pair-
wise FST results. However, aside from this one clade, the
rest of the branching structure among the colonies is
unresolved.

We constructed maximum likelihood phylogenies for
the full set of individuals using both HVR and the data-
set of SNPs in order to determine if there are any
strongly supported phylogenetic lineages that are not
necessarily affiliated with the contemporary colony sites.
The MRE bootstopping-criterion was satisfied by 550
and 800 bootstraps for the SNP and HVR searches,
respectively. The best-scoring likelihood and majority
rule extended consensus trees for the SNP dataset had
very low support across the entire topology, with only a
single node having a branch support value > 50 (topology
not shown). The HVR topology did not show any more
resolution, with 75 % of nodes in the tree having branch
support values < 50 and no evidence of any well-
supported phylogenetic lineages (topology not shown). A
median joining network of the haplotypes of the mito-
chondrial HVR also showed no clear phylogeographic
pattern and no evidence of ancestral haplotypes

Fig. 3 Discriminant analysis of principal components. Individuals are grouped by a) their colony of origin and b) the two genetic clusters
identified by other analyses. The retained PCs are shown in black on the inset graphs
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(Additional file 1: Figure S1). Overall, there are no distinct
lineages among king penguins, no remnant signatures of
refugia and no evidence for the order of colonisation
of the islands.

Discussion
In the first study of king penguin global population struc-
ture we found very low levels of population differentiation
across the species’ entire distribution, despite using 5154
SNPs distributed throughout the genome. Penguins from
the Crozet Islands were not genetically differentiated from
those 7450 km west on the Falkland Islands, nor those
7100 km east on Macquarie Island. There was very low, yet
statistically significant, genetic differentiation between the
colony on South Georgia and all other colonies, including
the Falkland Islands located only 1400 km to the northwest.
Our phylogeographic analyses showed no evidence of
distinct king penguin lineages.
The lack of genetic differentiation across such vast

distances is surprising given that king penguin colonies
are sparsely distributed across the Southern Ocean.
There are very few locations that support king penguin
breeding between the archipelagos we have sampled; the
only other colonies are in the Indian Ocean sector close
to the Crozet Islands (Fig. 1). Therefore, there are very
few “stepping stones” between colonies and the lack of
differentiation between Crozet and Macquarie suggests
that migration is not distance-limited.
There are two alternative explanations for the ob-

served low levels of genetic differentiation among king

penguin colonies. Firstly, it could be the result of
frequent migration of individuals among these isolated
archipelagos. In this scenario, dispersing individuals
must also be recruited into the breeding population
upon arrival, if they are to contribute to the gene flow
that is maintaining near genetic homogeneity of king
penguins. Alternatively, all extant colonies may share a
common ancestral population and insufficient time has
passed for them to diverge, even if they are now isolated.
Despite the large geographic distances separating them,
there is a growing body of evidence to suggest that king
penguin colonies do exchange migrants [23–25]; we there-
fore consider the former hypothesis, that migration is
maintaining gene flow among populations, to be the most
likely explanation for the genetic similarity found here.
The recent formation of new colonies at Volunteer

Point on the Falkland Islands [39], Possession Island in
the Crozet Islands [11] and on Macquarie Island [9] pro-
vides direct evidence that some individuals will breed
away from their natal colony. A handful of individuals
banded as breeders have also been observed breeding at
non-natal colonies within the Crozet Islands (Bost, C. A.
pers comm). Furthermore, the rate of population growth
at Possession Island over the past several decades has
been too great to have been maintained by intrinsic re-
cruitment alone; therefore, the population growth must
be partially attributable to immigration [11]. Small
numbers of king penguins, and in particular juveniles,
have been observed at colonies up to 5600 km from
their natal colonies [23–25, 77]. This suggests that king

SouthGeorgia

Macquarie

Falklands

Crozet

SouthGeorgia

Crozet

Falklands

Macquarie

a b

Fig. 4 Evolutionary relationships among colonies. The full posterior distributions of trees from the SNAPP analyses, excluding a 10 % burn-in, are
shown. The colours represent the different topologies; purple is the most highly supported, teal is the next most supported, and gold is the least
supported. The consensus tree is shown in grey. (a) and (b) are the outcomes of the two different analyses with different randomly selected
representative individuals
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penguins probably prospect other colonies and breed-
ing habitats, including those far from their natal colony,
and this may occur most often before they begin to
breed. This prospecting behavior may facilitate emigra-
tion when conditions at the natal colony are less favor-
able than those found elsewhere.
Previous studies have shown that seabirds with large

foraging ranges or those that disperse widely in the non-
breeding season are least likely to show genetic differen-
tiation among colonies [3]. During the summer breeding
season, king penguin foraging trips typically last days to
weeks and can cover hundreds to thousands of kilometers
[78]. During the winter, king penguins rarely provision
their chicks, and so adults are not restricted to central-
place foraging. These winter foraging trips often take them
over 1500 km away from their colonies to the marginal ice
zone around Antarctica, and journeys in excess of
10,000 km have been recorded, although there is no evi-
dence for foraging range overlap among breeding colonies
thus far [79, 80]. The few juveniles that have been tracked
after fledging dispersed widely in their first 6 months,
probably bringing them into contact with individuals from
other colonies [81]. Therefore juvenile dispersal and pos-
sibly also foraging range overlap during the non-breeding
season appears to facilitate gene flow in king pen-
guins, as it does in a variety of seabirds [4], but
without more data on the winter dispersal of king
penguins it is difficult to determine the relative im-
portance of these mechanisms.
It is unclear whether the observed low level of genetic

differentiation is maintained by consistent background
levels of migration, or whether episodic periods of
higher migration have occurred, or both. Abiotic factors
such as glacial expansion and retreat, landslides, erosion,
flooding, volcanic activity or other such catastrophic
events [9] could result in periods of increased emigra-
tion, whilst large-scale climatic anomalies that affect the
proximity of oceanic fronts and prey availability to col-
onies [7] could also increase the emigration rate if adults
perceive the habitat quality to have declined. The
harvesting of king penguins during the late 19th and
early 20th century could have temporarily increased
emigration rates, if individuals emigrated to less dis-
turbed colonies. Biotic factors could also play a role, as
emigration may be favored when colonies reach carrying
capacity and/or density-dependent factors limit popula-
tion growth, such as competition for food and nest sites,
predation and pathogen load [11]. The colony at Lusitania
Bay on Macquarie Island is thought to have reached carry-
ing capacity in 1975 when all available breeding habitat
was occupied and individuals were forced to spill over
to other colonies [9, 10]. Two large colonies, Petite
Manchotière and Jardin Japonais, on Possession Island
in the Crozet Islands are also believed to have reached

carrying capacity in the late 1980s, with all areas free of
vegetation being occupied [11]. As these colonies
approached carrying capacity, the formation of the two
new colonies on Possession Island in 1979 and 1986
could have been the direct result of these large colonies
spilling over, with individuals emigrating rather than
competing for nest spaces at their natal colonies. This
could also account for the colonization of the Falkland
Islands in the late 1970s. We found no evidence for
genetic differentiation between the Falkland Islands and
the Crozet Islands, and the colonies grouped together
in our species tree analysis. Therefore it seems likely
that individuals from the Crozet Islands, possibly forced
to emigrate due to competition for space at their natal
colonies, founded the population at the Falkland
Islands. This finding was somewhat unexpected given
the 7450 km between the populations, and the relative
proximity of the South Georgia population just
1400 km away. Furthermore, the observation of an indi-
vidual that was banded as a chick in South Georgia but
was later found breeding in the Falkland Islands [82]
would also tend to suggest that the Falkland Island
population would have been founded by immigrants
from South Georgia. However, our genetic results indi-
cate that there has been a higher rate of immigration
from the Crozet Islands than from South Georgia.
The difference in the oceanic regime experienced by

king penguins at South Georgia could explain why this
colony was genetically differentiated from all other
colonies [4]. South Georgia lies to the south of the Polar
Front, whilst all other studied colonies lie to the north,
and thus birds at South Georgia experience colder oceanic
and air temperatures and a more krill-dominated food
web. The different ecological conditions either side of the
Polar Front appear to act as a barrier to gene flow in many
species [83], including gentoo penguins [41], although this
effect appears much weaker in king penguins.
While it would be useful to be able to determine the

actual migration rates among the colonies studied here,
the very low levels of genetic differentiation preclude the
calculation of accurate estimates. Hence, whether the
colonies are demographically linked or should be consid-
ered as separate management units cannot be determined
[84]. Furthermore, there is currently no generalized frame-
work for determining the level of migration necessary to
maintain demographic linkage [85]. BayesAss [86], which
is typically used to determine recent directional migration
rates between populations (gene flow occurring over the
last few generations), has been found to be unreliable
when FST values are less than 0.05 (i.e. an order of magni-
tude greater than observed among king penguins) [87].
Methods to estimate migration based on F-statistics are
also unreliable because the assumptions of the island
model [88] that relates FST to the number of migrants
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entering a population (Nm) are usually violated in natural
systems, limiting the amount of quantitative information
about migration that can be gained from F-statistics [89].
Finally, coalescent methods, such as Migrate-n [90], which
estimate migration over evolutionary timescales, are also
likely to be inaccurate when population differentiation is
low and only a small number of loci can be used because of
massive computational demands [27]. Coalescent methods
also rely on an estimate of the mutation rate for the specific
loci used in the analysis, to translate the mutation-scaled
migration rate into an estimate of the number of migrants
entering a population, and accurate mutation rates are diffi-
cult to estimate for RAD loci [91, 92].
The lack of phylogenetic signal or mitochondrial line-

ages suggests that small populations of king penguins
have not been isolated from one another in their recent
history. Some colonies went through rapid declines
when king penguins were harvested for their blubber.
For example, the Macquarie Island colony was reduced
from hundreds of thousands of birds to about 3000 [9].
These rapid declines, although extreme demographically,
were unlikely to have caused a genetic bottleneck result-
ing in lineage divergence, as they were neither severe
enough nor lasted long enough for significant genetic
drift to have taken place. Certainly there is no signature
of recent genetic bottlenecks in our data. Furthermore, if
the harvesting also caused a pulse of increased emigra-
tion and gene flow, then genetic diversity is unlikely to
have been affected. Indeed, the Macquarie Island popu-
lation appears to have retained genetic diversity through-
out the period of harvesting, as demonstrated by a
comparison of ancient, pre-harvest genetic diversity to
the modern population [93]. The king penguin popula-
tion at La Baie du Marin colony on the Crozet Islands
was much smaller during the last glacial maximum
(LGM), and then rapidly increased in size following
Holocene warming [37]. LGM conditions appear to have
isolated refugial populations of Adélie [29, 41, 76],
emperor [28] and gentoo penguins [31, 41] in ice age
refugia, resulting in distinct mitochondrial lineages. Our
results do not support this for king penguins, although
distinct lineages could exist outside of the colonies we
sampled. The single mitochondrial lineage found here
suggests that gene flow between populations of king
penguins was maintained during the LGM even if their
population sizes were reduced, and their tendency to
disperse probably allowed this. Interestingly, the
emperor penguin, the sister-species to king penguins in
the Aptenodytes genus, also has remarkable dispersal
abilities, exhibiting very low levels of genetic differenti-
ation around its global range [27, 28], similar to Adélie
penguins [30, 41, 76]. Yet we see distinct mitochondrial
lineages in the emperor penguin, with origins dated to
the last ice age [28], that are not apparent in king

penguins. We propose that the sub-Antarctic distribu-
tion of king penguins may explain this contrast. Many of
the sub-Antarctic islands king penguins breed on have
been heavily glaciated [94], reducing available breeding
area, but the increased sea ice extent during glacial pe-
riods [95] would probably not have created barriers to
king penguin migration as it did not extend as far north
as the king penguin’s sub-Antarctic range.

Conclusions
Our study has revealed an unexpectedly low level of gen-
etic differentiation among king penguin colonies spanning
thousands of kilometers of the Southern Ocean, with
some colonies separated by more than 7000 km showing
no significant genetic divergence. On the other hand, the
South Georgia colony does appear to be subtly differenti-
ated from all other studied colonies, despite it lying in
close proximity to the Falkland Island colony.
The very low level of genetic differentiation we have

shown among king penguin colonies needs to be consid-
ered in management plans to mitigate future climate
change impacts on the species. Colonies within the same
archipelago are highly likely to be panmictic and demo-
graphically linked, and thus monitoring of king penguins
should be considered at the archipelago level, rather
than at the colony level. The subtle differentiation we
found between some archipelagos, and our inability to
determine whether migration is consistent or episodic,
cautions against the assumption that colonies are demo-
graphically linked globally. Therefore, as a precaution,
we recommend that populations at the archipelago level
are managed as separate units. Given the relatively few
archipelagos that host king penguins, and that climate
change effects will be heterogeneous across their range,
declines at any of these locations should be considered
as significant and would hinder the recovery of the spe-
cies, even if a loss of genetic diversity would not occur.
Demographic models that attempt to forecast extinction

risk in response to large-scale climate change must also take
into account migration. Recently, Tavecchia et al. (2016)
showed that migration can decouple the relationship be-
tween population growth rates and climate variables, such
that even if demographic rates are sensitive to climate-driven
variations, this does not necessarily result in climate-driven
population changes when immigration of new individuals
occurs [96]. Migration could therefore buffer king penguins
against their forecasted risk of extinction under climate
change [6] although it may not protect them completely [7].

Additional file

Additional file 1: Figure S1. Median-joining haplotype network of king
penguin HVR sequences. (PDF 281 kb)
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