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A B S T R A C T   

Drought is an enduring abiotic constraint to stable and consistent maize productivity under climate change, 
especially for low rainfall regions with limited irrigation. One adaptation for severe drought is using drought- 
tolerant (DT) hybrids. Here, we characterize differences between conventional and DT hybrids in terms of 
yield and water-use efficiency under drought conditions at a regional scale of the Texas High Plains (THP). Using 
a validated version of APSIM-Maize, we simulated yields of conventional and DT hybrids across 11 water regimes 
and 25 counties in THP from 1984 to 2018. When irrigation amounts were constrained to 90%, 80%, 70%, 60% 
and 50% of total irrigation used for the baseline scenario (BS; a simulated scenario of conventional hybrid under 
full irrigation), DT hybrids showed lower yield penalties under drought stress relative to conventional hybrids. 
This improved total production by 19%, 24%, 26%, 26%, and 21% for each of the above irrigation levels. When 
the yield-target was set as 90%, 80%, 70%, and 60% of BS, total regional irrigation applied to DT hybrid could be 
saved more than that to the conventional hybrid, and therefore reduced more 17%, 16%, 15%, and 15% of BS 
irrigation, respectively. We showed that DT hybrids had greater yield gain and water savings through improved 
water productivity under deficit irrigation, highlighting the potential of deficit irrigation for increasing yield for 
the adoption of DT hybrid. Our quantitative evaluation of the yield advantage and water saving potential 
associated with DT hybrids also highlighted the regional benefits associated with adoption of drought adaptive 
hybrids.   

1. Introduction 

With the intensification of the global water cycle borne by climate 
change, global agri-food systems are becoming increasingly challenged 
by extreme climatic events (Senapati et al., 2018; Harrison, 2021a). At 
the same time, global population growth is burgeoning, and the total 
global food demand is expected to increase by 35–56% between 2010 
and 2050 (Michiel et al., 2021). These apparently contradictory trends 
suggest that crop production must be sustainably increased to reduce 
hunger and alleviate poverty (Asseng et al., 2018; Godfray et al., 2010) 
without degrading natural capital, causing loss of biodiversity, 
increasing greenhouse gas emissions (Harrison et al. 2021b). Given that 
around one-third of crop yield variability is underpinned by climate 
variation (Müller et al., 2017; Ray et al., 2015), food security under 
climate change largely depends on the resilience of crop yields to cli-
matic variability (Kahiluoto et al., 2019) and thus the consistency of 

crop production from one year to the next (Ibrahim et al. 2018; Liu et al. 
2020). Of all abiotic stresses, drought is the most predominant 
constraint to crop productivity worldwide (Li et al., 2019; Lobell et al., 
2014; Prodhan et al., 2022), significantly reducing cereal production by 
10% during 1964–2007 (Dai, 2013; Lesk et al., 2016). Consequently, 
there is an urgent need to derive effective, profitable, and sustainable 
adaptations to enable consistently high production under drought. 

Maize (Zea mays L.) plays an essential role in global food security, 
contributing some 39% of global cereal production in 2020 (FAO, 2021). 
As the world’s largest maize producer, the United States (US) typically 
supplies ~40% of global maize production. However, maize is highly 
sensitive to drought stress (Harrison et al. 2014; Ali et al., 2016; Tardieu, 
2020). The US has experienced significant increases in the frequency 
and intensity of extreme drought and sensitivity to drought in recent 20 
years (1995–2018) (Lobell et al., 2014; Lobell et al., 2020). The 
continuing climate change threatens maize production at both national 
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and global scales. A moderate, severe, extreme and exceptional drought 
event would lead to 64.3%, 69.9%, 73.6%, and 78.1% yield loss risk in 
US maize production, respectively (Leng, 2021). Some observational 
evidence from crop yield and insurance data has shown that extreme 
drought can reduce maize yield up to − 37% (− 32 ± 2% on average) in 
the US relative to the expected yield from the long-term trend from 1981 
to 2016 (Li et al., 2019). In 2012, severe drought decreased grain yield 
by 21% compared with the previous 5 years with an average country 
yield of 7.7 Mg ha− 1 (Boyer et al., 2013). To adapt the increasing 
drought events, farmers have already adapted irrigation as an agro-
nomic practice. However, restrictions on the practice and expansion of 
irrigated agriculture continue, due to the reduced availability of fresh-
water resources and increasing water scarcity (Steward et al., 2013; Tolk 
et al., 2016; Zhang et al., 2018). Improving crop tolerance to drought 
has the potential to offset yield losses and sustain maize productivity 
under climate change in vulnerable regions (Tesfaye et al., 2018). 
Avoidance of drought, through selecting crop types with lifecycles that 
enable drought avoidance is one form of adaptation (Harrison et al. 
2014), while breeding of drought-tolerant (DT) maize hybrids is another 
effective way to maintain the yield with less crop water requirements, 
particularly in semiarid regions (Cooper et al., 2014; Mounce et al., 
2016; Martey et al., 2020). 

Drought tolerance is a complicated and multifaceted physiological 
mechanism (Senapati et al., 2018). Compared with conventional hy-
brids, DT hybrids generally present a yield benefit and/or improved 
yield stability in water-limited environments (Cattivelli et al., 2008; 
Sammons et al., 2014; Simtowe, et al., 2019). Drought tolerance in 
maize is likely to entail the selection of plants with a reduced leaf area 
(especially in the upper part of the plant), short thick stems, small tas-
sels, erect leaves, delayed senescence, lower root biomass, and deeper 
root systems with less lateral branching (Ribaut et al., 2009). In addi-
tion, DT maize hybrids have higher water productivity and lower water 
requirement with greater rainfall and soil water use efficiency (Ao et al., 
2020; Hao et al., 2015a; Hao et al., 2015b), especially during the 
reproductive period (Zhao et al., 2018a). In 2012, DT maize hybrids 
were planted in only 2% of US maize acreage. By 2016, ~22% of U.S. 
maize acres were drought-tolerant, indicating the growing in adoption 
and popularity of DT hybrids over just five years (McFadden et al., 
2018). 

Although many studies have reported the benefit of DT maize hy-
brids under drought stress at the field scale, the quantitative potential 
yield benefits and water-saving from DT hybrids at a regional scale are 
mostly unknown. Increasingly, biophysical systems models are deployed 
mechanistically explain complex interactions between crop growth with 
management and environment ( Harrison et al., 2012; Cooper et al., 
2014; Jin et al., 2019; Tofa et al., 2021). The Texas High Plains (THP) is 

a typical semiarid region. Maize is a major irrigated crop in the region 
and irrigation is accessed from the Ogallala Aquifer where maize alone 
accounts for as high as 90% of total groundwater withdrawals (Pathak 
et al., 2022). Here, we calibrated and validated the Agricultural Pro-
duction Systems Simulator (APSIM), a comprehensive model developed 
to simulate biophysical processes in agricultural systems (Keating et al., 
2003), using data obtained from the field of experimental data with two 
maize hybrids differing in drought tolerance under different water re-
gimes in the THP. The objectives were to (1) estimate the contribution of 
DT hybrids to yield improvement under drought stresses and (2) eval-
uate the amount of water saving to achieve the target yield in the THP. 

2. Materials and methods 

2.1. Field experimental dataset 

Two maize hybrids differing in DT characteristics (33D53AM, con-
ventional hybrid; P1151AM, DT hybrid) were grown under irrigated 
conditions at two research stations in the THP (Fig. 1): the Texas A&M 
AgriLife Research Station near Etter, Texas (35◦ 52′ N, 101◦ 58′ W; 
elevation 1114 m above mean sea level) in 2014 and at Bushland, Texas 
(35◦ 13′ N, 102◦ 04′ W; elevation 1161 m above mean sea level) in 2015. 
The soil is classified as a Sherm silty clay loam soil (fine, mixed, mesic 
Torrertic Paleustolls) at Etter and a Pullman silty clay loam soil (fine, 
mixed, superactive, thermic Torrertic Paleustolls). The 30-yr 
(1981–2010) average amount of rainfall is 334 mm at Etter and 396 
mm at Bushland during the maize growing season (May–October), 
respectively. 

The field experiment was designed as a split-plot design with four 
replications, and irrigation treatments were the main plots and hybrids 
were the subplots. Two irrigation treatments were employed in both 
years: 100% (I100) and 50% (I50) of the expected water requirement 
(ETc) in 2014 and 2015. ETc was determined by the reference evapo-
transpiration (ET0) and crop coefficient (k). ET0 was calculated ac-
cording to the FAO Penman-Monteith equation (Allen et al., 1998) and k 
for maize was previously determined using a lysimeter from TXHPET. 
Based on ETc and plant-available soil water (PAW) at the root zone, 
irrigation scheduling was determined on daily basis for I100 (Marek 
et al., 2011). For I50 treatments, irrigation frequency was the same as 
that of I100 but the irrigation amount was 50% of that of I100. In 2014, a 
center pivot irrigation system with a low elevation spray application 
method was used, while water was applied by furrow irrigation. 

Maize was planted on May 15, 2014 and June 4, 2015, with planting 
density 74,000 plants ha− 1. Before planting, 290 kg ha− 1 of N, 
109 kg ha− 1 of P2O5, and 11 kg ha− 1 of S were applied. Detailed infor-
mation on the experiment was described in Zhao et al. (2018a). 

Fig. 1. Study area and location of experiment stations in the T Texas High Plains (THP).  
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2.2. Climate, soil, crop, and irrigation data 

Climate data including daily maximum and minimum temperatures, 
precipitation, and solar radiations from 1984 to 2018 was obtained from 
NASA’s Prediction of Worldwide Energy Resources (NASA/POWER; 
https://power.larc.nasa.gov). The data are assembled from a range of 
products derived from satellite imagery, ground observations, wind-
sondes, modeling, and data assimilation, and are available for a global 
1◦× 1◦ coordinate grid (White et al., 2008; White et al., 2011). 

The soil data used in this study include the soil bulk density (BD), 
saturated volumetric water content (SAT), drained upper limit (DUL), 
and 15 bar lower limit (LL15) of water content in different soil layers. 
LL15, DUL, and SAT describes the water characteristics of the soil. LL15 
is approximately the driest water content achievable by plant extraction, 
DUL is the content of water retained after gravitational flow and is also 
referred to as “field capacity” (https://www.apsim.info/). These data 
used for model calibration and validation were collected from the field 
experiment. The regional soil data used for subsequent simulation were 
obtained from Soil Survey Staff, Natural Resources Conservation Ser-
vice, United States Department of Agriculture (https://websoilsurvey. 
nrcs.usda.gov/). 

The crop data were obtained from the field experiment in two maize 
hybrids, P1151AM and 33D53AM, including phenology (sowing, 
emergence, flowering, and maturity dates), yields, and biomass. 
Furthermore, the management practices (e.g. sowing density, fertilizer, 
and irrigation) were recorded. These data were used for modifying the 
APSIM-Maize model. 

Irrigated areas of maize at the county level were obtained from the 
National Agricultural Statistic Service of the United States Department 
of Agriculture (USDA-NASS, https://quickstats.nass.usda.gov). We 
collected the annual irrigated areas from 1981 to 2018 and then 
calculated the multi-year averaged value as the irrigated areas of each 
county in the THP. 

2.3. APSIM-Maize calibration and validation 

The APSIM model (http://www.apsim.info/apsim/) is a cropping 
systems software platform capable of simulating a range of crops grown 
under various climatic, edaphic, and management conditions (Gaydon 
et al., 2017; Holzworth et al., 2014). APSIM has been proven as an 
effective research and decision tool worldwide, including in the Mid-
western US (Archontoulis et al., 2014). 

Field observations in 2014 and 2015 for the two hybrids, including 
phenology, aboveground biomass, yield, and management practices 
were used for the APSIM-Maize calibration and validation based on the 
method of cross-validation (Refaeilzadeh et al., 2009). Crop parameters 
calibrated for each hybrid in APSIM-Maize are listed in Table 1. The soil 
properties used as initial soil parameters in APSIM-Maize were listed in  
Table 2. The depth of the soil profile used in APSIM-maize is 150 cm. 

To evaluate the performance of the calibrated APSIM-Maize model, 
statistical indices of the correlation coefficient (R2), root mean square 
error (RMSE), and normalized root mean squared errors (NRMSE) 
(Loague and Green, 1991) were calculated from the observed and 
simulated variables, which were also relative to the 1:1 line. 

The calibration was performed using the DEoptim package in R 
(Mullen et al., 2011), which is minimizing a user-defined cost function, 
in this case, the model was fitting a specific date on which the crop 
reached the days to flowering (FloweringDAS) and to maturity 
(MaturityDAS). The prior distribution of the parameters (i.e. constraints 
on parameter values (Table 3)) was assigned based on the recommen-
dation by Habekotté (1997) and followed a uniform distribution. 

To avoid the effect of irrigation methods, we used different irrigation 
efficiencies in simulations based on irrigation methods according to 
literature when calibrating the model. We set irrigation efficiencies as 
0.75 for simulation with sprinkling-irrigation (Brouwer et al., 1989) in 
2014 and 0.90 for simulation with furrow-irrigation (Rajan et al., 2015) 
in 2015, respectively. 

2.4. Scenario analysis 

To estimate the contribution of DT hybrid to yield increase, we 
simulated yields of two hybrids under the same management practices in 
the model (Table 4). We simulated the yield of two hybrids with water 
fully satisfied (the Irrigation Module in APSIM was set to Automatic 
Irrigation) first. And then we set up irrigation schedules for the Opera-
tions Schedule Module of model based on the irrigation dates and 
amounts under automatic irrigation conditions (Fig. 2). Maize yield 
under each irrigation treatment was simulated by decreasing the irri-
gation amount from 100% to 50% (step by 5%) based on evapotrans-
piration requirement. The maize plants will experience more drought 
stress as irrigation level is decreased in this irrigated region. Noting that, 
for these two hybrids, the irrigated amounts and dates for meeting the 
full water satisfaction were different under automatic irrigation. This 
has resulted in different irrigation schedules for two hybrids in the next 
simulations. 

2.5. Data analysis 

For comparing the different growing responses of conventional 
hybrid and DT hybrid to water regimes, and analyzing the water con-
sumption difference in regional production under drought stress, we 
calculated the crop water productivity (WPC) which indicates the total 
above-ground biomass accumulating of per unit water consumption 
along the whole growing season, and irrigation water productivity (WPI) 
which reflects the total above-ground biomass accumulating of per unit Table 1 

Genetic coefficients of maize in the APSIM model used for calibration.  

Parameter type Parameter name Description 

Phenology 
parameters 

tt_emerg_to_endjuv Accumulated thermal time from 
emergence to end of juvenile (℃⋅d)  

tt_flower_to_maturity Accumulated thermal time from 
flowering to maturity (℃⋅d) 

Grain parameters potKernelWt Kernel weight (g/pot)  
grainNFillRate Grain nitrogen fill rate (mg/grain/d) 

Water uptake 
parameters 

x_sw_demand_ratio Water availability  

Table 2 
Soil layer parameters used in APSIM-Maize.  

Soil depth 
(m) 

The soil 
bulk 
density 
(BD, g/ 
cm3) 

Saturated 
volumetric 
water content 
(SAT, cm3/cm3) 

Drained upper 
limit of water 
content (DUL, 
cm3/ cm3) 

15 bar lower 
limit of water 
content 
(LL15, cm3/ 
cm3)  

0–0.05  1.209  0.326  0.261  0.131  
0.05–0.15  1.209  0.319  0.255  0.125  
0.15–0.20  1.209  0.318  0.255  0.125  
0.20–0.30  1.209  0.420  0.345  0.187  
0.30–0.60  1.291  0.487  0.348  0.201  
0.60–0.90  1.382  0.455  0.332  0.188  
0.90–1.20  1.492  0.415  0.289  0.153  
1.20–1.50  1.523  0.404  0.284  0.151  

Table 3 
Constraints on parameter values used in parameter calibration.  

Parameter name The lower limit The upper limit 

tt_emerg_to_endjuv 200 500 
tt_flower_to_maturity 600 1200 
potKernelWt 200 800 
grainNFillRate 0.05 0.3 
x_sw_demand_ratio 0.1/ 0.5 0.8/ 1.5  
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irrigation water consumption. WPC and WPI were computed using Eq. 
(1) and Eq. (2), respectively. 

WPC =
Biomass

Precipitation + Irrigation
(1)  

WPI =
Biomass

Irrigation
(2)  

where, WPC is the crop water productivity, kg⋅ha− 1⋅mm− 1; Biomass is 
total above-ground biomass, kg⋅ha− 1; Precipitation is accumulated pre-
cipitation during the maize growing season, mm; Irrigation is accumu-
lated irrigation during the maize growing season, mm; and WPI 
represents irrigation water productivity, kg⋅ha− 1⋅mm− 1. 

We compared conventional and DT hybrids from two aspects (as 
shown in Fig. 2): 1) under the same irrigation levels, how much yield 
could be increased; 2) at the same yield-target, how much irrigation 
water could be saved? We defined the simulation scenario of 33D53AM 
with full irrigation as the baseline scenario (BS). Yield decrease (YD) 
across five irrigation levels with irrigated water reaching 90% (I90%), 
80% (I80%), 70% (I70%), 60% (I60%), and 50% (I50%) of the irrigation 
amount under BS were then computed. YD compared with the yield of 
BS was calculated using Eq. (3). 

YDz =
YieldBS − Yieldz

YieldBS
× 100% (3)  

Where, YDz is the yield decrease relative to BS yield (%); YieldBS is the 
grain yield dry weight of BS, kg⋅ha− 1; Yieldz is the grain yield dry weight 
under irrigation level with irrigation reached z of BS, kg⋅ha− 1; z is the 
proportion of the irrigation amount relative to that applied in BS (90%, 
80%, 70%, 60%, and 50%). 

We calculated the water saving (WS) in irrigation when the yield 
target was 90% (Y90%), 80% (Y80%), 70% (Y70%), and 60% (Y60%) of the 
BS yield using Eq. (4). 

WSq =
IrrigationBS − Irrigationq

IrrigationBS
× 100% (4) 

WSq represents irrigation water saving compared with irrigation of 
BS, %; IrrigationBS is the irrigation of BS, mm; Irrigationq is the irrigation 
in the yield-target that reached q of BS, mm; q is the proportion of yield 
of each yield target relative to BS (90%, 80%, 70%, and 60%). 

We quantified the total production decrease (TPD; Eq. 5) and total 
water savings irrigation (TWS; Eq. 6) of the two hybrids. The differences 
in TPD and TWS between two hybrids provide insights into the different 
responses of hybrids to drought stress. We used these differences be-
tween the two hybrids as the contribution of the DT hybrid to total 
production improvement (TPI) under each irrigation level with drought 
stress (Eq. 7) and total irrigation water saving (TWS) in each yield target 
(Eq. 8). 

TPDz =
TPBS − TPz

TPBS
× 100% =

∑n

i=0
si × YieldBSi −

∑n
i=0si × Yieldzi

∑n
i=0si × YieldBSi

× 100%

(5)  

TWSq =
TIBS − TIq

TIBS
× 100%

=

∑n

i=0
si × IrrigationBSi −

∑n
i=0si × Irrigationqi

∑n
i=0si × IrrigationBSi

× 100% (6)  

CDTHTPIz = TPDz P1151AM − TPDz 33D53AM (7)  

CDTHTWSq = TWSq P1151AM − TWSq 33D53AM (8)  

Where TPDz was the total production decrease compared with BS in 
THP, %; TPBS is the total production of BS, kg; TPz is the total production 
when irrigation reached z relative to BS, kg; si is irrigated maize planted 
area in county i, ha; TWSq is total water saving compared with BS, %; 
TIBS is total irrigation water of BS, mm; TIq is total irrigation in the yield- 
target q relative to BS, mm; i is the serial number of counties in THP, here 
was 1–25; CDTHTPIz and CDTHTWSq are the contributions of DT hybrid to 
total production improvement, and total irrigation water saving, %. 

Table 4 
Management practices used for scenario analysis.  

Management Value 

Sowing date 19-May 
Sowing density (plants⋅ha− 1) 74000 
Sowing depth (m) 0.05 
Row spacing (m) 0.76 
Amount of urea_N at sowing (kg⋅ha− 1) 290  

Fig. 2. Simulation and calculation flowchart. Text on the 
left indicates the process used to compute differences be-
tween two hybrids in yield decrease caused by irrigation 
levels and water saving by decreasing yield targets. 
Figures on the right denote “Simulation procedure” 
(numbers) which show the percentage of irrigation amount 
for each irrigation treatment relative to that of full irriga-
tion; letters and numbers in the ‘Calculation procedure’ 
represents irrigation levels and yield targets, respectively 
(e.g. I90% represents irrigated water in this irrigation level 
reaching 90% of the baseline scenario; Y90% represents 
yield in this yield target reaching 90% of the baseline 
scenario).   
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3. Results 

3.1. Model evaluation 

As there was no difference in phenology between the hybrids in 
different water regimes, we used the same parameters in these two hy-
brids in the simulation of maize development (Fig. 3A). We evaluated 
model performance in two ways: whether the simulations captured yield 
differences for different water regimes for each hybrid; and whether the 
simulations captured yield differences between two hybrids under the 
same water regime. We found that the model could reflect yield differ-
ences between I50 and I100 for both hybrids (Fig. 3B, left and middle). At 
I50, less yield loss by DT hybrid compared with the conventional hybrid 
could be well captured in the model (Fig. 3B, the right). We thus 
concluded that the model could be used to simulate the growth and 
development of these two maize hybrids under various irrigation 
treatments. 

3.2. Simulated yield, crop water productivity (WPC), irrigation water 
productivity (WPI) 

In our simulation of irrigation treatments (from I50 to I100 full irri-
gation), total water (irrigation plus precipitation during the simulated 
growing seasons) applied for maize production was 392, 410, 428, 445, 
463, 498, 516, 533, 551, and 569 mm for conventional hybrid, and was 
432, 449, 466, 484, 501, 518, 535, 551, 568, 584, and 599 mm for DT 
hybrid, respectively (Fig. 4). For the conventional and DT hybrid, from 
low irrigation to full irrigation, the irrigation water amounts ranged 
from 136 to 282 mm and 143 and 291 mm, respectively. 

Yield, WPC and WPI in different irrigation treatments were shown in  
Fig. 5. Yield, WPC and WPI of the DT hybrid were significantly higher 
than that of the conventional hybrid in the same irrigation treatment 
(p < 0.01 by ANOVA). Increasing irrigation from 50% to 100% full 
irrigation gradually improved yield of conventional and DT hybrid from 
2519 to 7111 kg⋅ha− 1 and from 4039 to 8287 kg⋅ha− 1, respectively 
(Fig. 5A). For the conventional hybrid, WPC was improved with 
increasing irrigation (Fig. 5B), while for the DT hybrid, WPC under 85% 
full irrigation was greater than others. This indicates that DT hybrids 
may have more potential in water saving due to higher WPC under lower 
irrigation than conventional hybrid. WPI decreased with the increasing 
of irrigation treatments for two hybrids (Fig. 5C). From 50% to 100% 
full irrigation, the difference between WPI for the two hybrids narrowed, 
suggesting that the DT hybrid had greater WPI improving space than 
that of conventional hybrid, especially in low irrigation treatments. 

3.3. Differences in yield increase and water savings between hybrids 

DT hybrids consistently had greater yields than the conventional 
hybrid in all water-limited conditions, particularly under low irrigation 
levels (Fig. 6). When irrigation water was restrained to 90%, 80%, 70%, 
60% and 50% of the irrigation under BS, YDs of the conventional hybrid 
were 11%, 24%, 38%, 51% and 64%, while YDs of DT hybrid was − 7%, 
1%, 12%, 27% and 43%, respectively (Fig. 7A). DT hybrid yielded more 
than BS (YD was − 7%) under I90% which is a slightly limited irrigation 
condition for the conventional hybrid. For all irrigation levels, DT 
hybrid yield loss was 18–25% less than that of conventional hybrid. In 
THP, differences of YDz between the two hybrids were higher in 
northwestern counties than that in southeastern counties. 

When yield targets were set to 90%, 80%, 70% and 60% of the BS 
yield, WSs of the conventional hybrid were 10%, 18%, 26%, and 33%, 
respectively, and WSs of DT hybrid were 27%, 33%, 40%, and 47%, 
respectively (Fig. 7B). For the same target yield, the DT hybrid saved 
more water under irrigation, and differences in WSq between hybrids 
decreased with decreasing target yield. In THP, differences in WSq be-
tween two hybrids were higher in northwestern counties compared with 
southeastern counties, demonstrating that the northwest THP should be 
prioritized for further extricating yield advantages of DT hybrids. 

3.4. Contribution of DT hybrids to the total production increase and 
irrigation water saving across the Texas High Plains 

In the Texas High Plain, irrigated maize was sown across an area of 
211933.34 km2 averaged from 1981 to 2017 (Fig. 8A). We calculated 
the contribution of DT hybrid to total production increase (Fig. 8B) and 
water saving in irrigation (Fig. 8C) regionally based on irrigated areas of 
all counties in THP. Under limited irrigation conditions of I90%, I80%, 

Fig. 3. Model evaluation. A, model evaluation of simulated maize growth. B, evaluation of simulated yield; left and middle panels show yield differences between 
irrigation treatment of I50 and I100 for the conventional hybrid 33D53AM and DT hybrid P1151AM, respectively, bars show the yield increase percentage of I100 
compared with I50; The right panel shows yield differences between 33D53AM and P1151AM, bars show the yield increase percentage of P1151AM compared 
with 33D53AM. 

Fig. 4. Mean irrigation water and precipitation used in simulated growing 
seasons from 1984 to 2018. 
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I70%, I60%, I50%, contributions of DT hybrid to total production 
improvement (CDTH_TPI) were 19%, 24%, 26%, 26%, and 21%, 
respectively. For target yields of Y90%, Y80%, Y70%, Y60%, contributions of 
DT hybrid to total irrigation water saving (CDTH_TWS) were 17%, 16%, 
15%, and 15%, respectively. 

4. Discussion 

In this study, we quantified the regional contribution of a DT hybrid 
to yield improvement and water-saving compared with a conventional 
hybrid. Based on the data from the field experiment of DT hybrid 
P1151AM and conventional hybrids 33D53AM in the THP, we modified 
the APSIM model to simulate maize yields in different irrigation treat-
ments. We next analyzed the different yield and irrigation responses of 
two hybrids to limited irrigation conditions and different yield targets, 
and calculated the contribution of DT hybrid to total production increase 
and water saving in irrigation in this region. The limits of process-based 
crop simulation models (CSMs) can be seen in particular when crops are 
exposed to extreme weather events and/or to multiple (biotic and 
abiotic) stresses, which are characteristics of low-input agricultural 

Fig. 5. Average simulated yield, crop water productivity (WPC), irrigation water productivity (WPI) for two hybrids across different irrigation treatments.  

Fig. 6. Yield change alone with different drought stress caused by 
limited irrigation. 

Fig. 7. Yield and water savings associated with irrigation levels and target yield of conventional and DT hybrid. A shows yield response to limited irrigation of 
conventional and DT hybrids, bars show yield decrease (YD) caused by reduced irrigation, while upper maps show the spatial pattern (interpolated by inverse 
distance weight in ArcGIS version 10.6) for differences of YD90%, YD80%, YD70%, YD60%, YD50% between two hybrids (YDz_conventional hybrid - YDz_DT hybrid); B shows 
irrigation water saved in response to target yields, bottom bars show irrigation water saving (WS), and upper maps show spatial pattern for differences of WS90%, 
WS80%, WS70%, WS60% between two hybrids (WSq_DT hybrid - WSq_conventional hybrid). 
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systems exposed to climate change (Muller and Martre, 2019). In our 
study, the use of a simulation framework model that could capture 
drought influence was very important. We conducted this partly by 
management control and partly by parameterization. Model parameter 
estimation problem is raised as an optimization problem and optimi-
zation algorithms could be used to solve it (Zúñiga et al., 2014); various 
automated parameterisation approaches with APSIM have been tested 
(Harrison et al. 2019). Differential evolution (DE) algorithms can 
improve the efficiency and accuracy in modifying the dynamic crop 
model and have been applied in parameter optimization before (Zúñiga 
et al., 2014; Jiang et al., 2018; Li et al., 2021b; Martínez et al., 2021). For 
our calibration and validation of the crop model, we combined DEoptim 
and cross-validation in R software to optimize parameters permitting 
subsequent use of APSIM. These ensured that the APSIM could simulate 
growth and development of these two hybrids as accurate as possible. 
Moreover, the water uptake parameters were contained in our modifi-
cation of the model, which made further sure that the model could 
reflect differences between the two hybrids in response to drought 
stress. Thus in our study, the APSIM model could capture the yield gap 
not only between the high and low irrigation conditions for each hybrid 
but also between two hybrids in low irrigation conditions. These con-
clusions were by earlier studies of a variety of applications of the APSIM 
model in simulating agricultural drought and the production of the crop 
in this environment (Jin et al., 2016; Jin et al., 2017; Li et al., 2021a). 

In semiarid areas, increasing irrigation is generally perceived as a 
management option for improving the yield and stability of maize pro-
duction. However, indiscriminately increasing the irrigation was not an 
appropriate practice to realize the advantage of DT hybrids in yield 
improvement under drought stress. Differences in yield decrease caused 
by limited irrigation between these two hybrids reached the maximum 
(25%) when irrigation was controlled to 70% of BS. This indicated that, 
compared with the production of conventional hybrid under fully irri-
gated conditions, applying only 70% of irrigated water would result in 
the greatest yield increase advantage of DT hybrid and reduce water 
consumption. This result supports the conclusion from a field study 
which suggested that limited irrigation can save water and maintain 
maize yield in the THP (Zhao et al., 2019). From our study, we recom-
mend the limited irrigation level I70% (70% irrigation of BS) as the best 
management practice that would realize the greatest contribution of the 
DT hybrid (26%) to total production improvement under the lowest 
water consumption. We also showed that DT hybrids performed better 
than conventional hybrids under more severe drought conditions 
(Fig. 6). This simulation result is consistent with the previous 
experiment-based study conclusions (Hao et al., 2015a; Hao et al., 
2015b). In general, DT hybrids had higher water use efficiency, which 
resulted from either greater shoot dry weight or lower reduction in dry 
weight reduction compared with the conventional hybrid under water 

stress (Zhao et al., 2018b). Our simulation results show that if there was 
no irrigation limitation, DT hybrids need more water input compared 
with conventional hybrids (Fig. 4). This may be a key factor driving the 
invariance of WPC under high irrigation treatments (Fig. 5B), potentially 
limiting the advantage of DT hybrid in high water regimes. Some studies 
have shown that DT hybrids might contribute to reducing the yield loss 
caused by heat stress (Chukwudi et al., 2021). Selecting for DT hybrids 
may increase the output of maize to the greatest extent in the limited 
irrigation input for arid and semi-arid regions, all of which are warming 
under climate change. 

We conducted our experiment in different locations in 2014 and 
2015. The difference between two locations in soil and climate may have 
contributed to the difference between two hybrids in yield formation. 
But this environmental difference was not directly considered in our 
parameterization of the model. In actual maize production, field man-
agement practices such as irrigation method and fertilization rates play 
an important role in fully exerting the yield advantage of DT hybrids. 
These need to be determined based on more detailed experiment data to 
quantify the contribution of DT hybrids in yield increase and water 
saving more accurately in future research. In different climate years (wet 
or dry), the resource input of water (precipitation and irrigation) to meet 
the physiological need of maize growth and development is different, it 
may cause different yield responses for two hybrids and need more 
research combining field and climate control experiment in the future. 

5. Conclusions 

Under the same watering regime, DT hybrids increase maize yield 
and water productivity, especially at low irrigation levels. This caused 
more yield improvement and water-saving potential for DT hybrid. The 
DT hybrids had greater yield under the same irrigation amount and 
saving water with the same target yield. When irrigation was con-
strained to 90%, 80%, 70%, 60%, and 50% of the irrigation required for 
the baseline scenario (BS), DT hybrid decreased total maize production 
loss caused by drought stress by 19%, 24%, 26%, 26%, and 21% 
compared with the conventional hybrid, which means the contribution 
of DT hybrid to total production improvement under different irrigation 
levels with drought stress above was 19–26%. When the target yield was 
set to 90%, 80%, 70%, and 60% of BS, water applied could be reduced 
by 17%, 16%, 15%, and 15%, which means the contribution of the DT 
hybrid to total irrigation water saving in these four yield targets were 
15–17%, if the conventional hybrid was changed to DT hybrid in 
production. 
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