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Abstract

The integration of genomic data into genetic evaluations can facilitate the rapid selection of superior genotypes and accelerate the breed-
ing cycle in trees. In this study, 390 trees from 74 control-pollinated families were genotyped using a 36K Axiom SNP array. A total of
15,624 high-quality SNPs were used to develop genomic prediction models for mammalian bark stripping, tree height, and selected pri-
mary and secondary chemical compounds in the bark. Genetic parameters from different genomic prediction methods—single-trait best
linear unbiased prediction based on a marker-based relationship matrix (genomic best linear unbiased prediction), multitrait single-step ge-
nomic best linear unbiased prediction, which integrated the marker-based and pedigree-based relationship matrices (single-step genomic
best linear unbiased prediction) and the single-trait generalized ridge regression—were compared to equivalent single- or multitrait
pedigree-based approaches (ABLUP). The influence of the statistical distribution of data on the genetic parameters was assessed. Results
indicated that the heritability estimates were increased nearly 2-fold with genomic models compared to the equivalent pedigree-based
models. Predictive accuracy of the single-step genomic best linear unbiased prediction was higher than the ABLUP for most traits.
Allowing for heterogeneity in marker effects through the use of generalized ridge regression did not markedly improve predictive ability
over genomic best linear unbiased prediction, arguing that most of the chemical traits are modulated by many genes with small effects.
Overall, the traits with low pedigree-based heritability benefited more from genomic models compared to the traits with high pedigree-
based heritability. There was no evidence that data skewness or the presence of outliers affected the genomic or pedigree-based genetic
estimates.
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Introduction
The implementation of genomic prediction in plants has offered
new possibilities for maximizing genetic gains for economically
important traits (Meuwissen et al. 2001; Crossa et al. 2017) and
may enhance the efficiency of selecting herbivory-resistant geno-
types. In conifers, breeding for resistance against pests and dis-
eases has mainly relied on conventional phenotype-based
methods (Carson 1989; Alfaro et al. 2004) and has been facilitated
by quantitative genetic studies that investigate the genetic basis
of the resistance mechanisms. Although results from these stud-
ies mostly indicate that resistance traits are under genetic control
and can respond to selection, the often low narrow-sense herita-
bility estimates for pest resistance (0.02–0.14) and the associated
chemical traits (0.07–0.50) can reduce the precision of breeding
value predictions of these traits (Moreira et al. 2013; Zas et al.
2017; Nantongo et al. 2020; Nantongo, Potts, Frickey, et al. 2021;
Nantongo et al. 2021a). In addition, the inherently long generation

intervals of trees and high phenotyping costs are always a chal-

lenge in tree breeding. Therefore, the potential improvement in

prediction accuracy of breeding values for those traits with low

heritability (Goddard 2009; Hayes et al. 2009; Iwata et al. 2011;

Gamal El-Dien et al. 2016; Kláp�st�e et al. 2018; Stejskal et al. 2018;

Suontama et al. 2018), coupled with the predicted reduction in the

length of breeding cycles (Thistlethwaite et al. 2017; Kláp�st�e et al.

2018), should be a major motivation for incorporating genomic

selection in breeding for resistance in conifers. However, the ef-

fectiveness of genomic prediction depends on the improvement

in the accuracy of breeding value predictions.
The factors that affect the accuracy of breeding value predic-

tions and, hence, the expected response to genomic-informed se-

lection, such as the trait heritability, size of the training

population, effective number of genomic fragments, and genetic

relatedness between training and validation population have

been well-documented (Desta and Ortiz 2014; Kláp�st�e et al. 2018;
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Momen et al. 2018; Stejskal et al. 2018). Additionally, the optimal
choice of statistical methods for genomic estimated breeding
value predictions differs with respect to the underlying genetic
architecture. Methods, such as the genomic best linear unbiased
prediction (GBLUP), single-step GBLUP (ssGBLUP), and ridge re-
gression best linear unbiased prediction assume that all marker
effects follow the same distribution and each marker explains a
very small amount of variance (Meuwissen et al. 2001; Legarra
et al. 2009; Misztal et al. 2013). In contrast, heterogeneity of
marker effects is better accounted for in linear regularized (pe-
nalized) regression models, such as generalized ridge regression
(GRR), least absolute shrinkage, and selection operator and elas-
tic net, as well Bayesian methods like Bayes A/B/C/Cp/R
(Meuwissen et al. 2017). The ssGBLUP integrates all the pheno-
typic, pedigree, and genomic information available simulta-
neously to predict genomic breeding values for genotyped and
nongenotyped individuals through the combined matrix H
(Christensen and Lund 2010). This allows the use of all the avail-
able information in a genetic improvement program. Studies that
have evaluated the relative predictive performance of the differ-
ent approaches mostly indicate that the optimum approach is
partly dependent on the genetic architecture and heritability of
the trait involved (Meuwissen et al. 2001; Momen et al. 2018;
Ogutu et al. 2012; Ratcliffe et al. 2017; Wang, Zhou, et al. 2018).
Genetic architecture describes genotype–phenotype relationships
for the loci contributing to phenotypic variation and includes the
number of loci and their genomic location, number of alleles per
locus, magnitude of their effects, patterns of pleiotropy, mode of
gene action, and epigenetic effects (Momen et al. 2018). Complex
quantitative traits that are controlled by many genes with small
effects which is likely for resistance to herbivory (Kliebenstein
2014; Lenz et al. 2020), may be better predicted by methods that
do not prioritize individual genetic markers (Desta and Ortiz
2014; Lenz et al. 2020). In conifers, however, studies also indicate
that some herbivory resistance, as well as associated chemical
resistance traits, may be controlled by genes with major effects
(Porth et al. 2011). For such traits that are controlled by major
genes, predictions and their accuracy can be favorably estimated
by models that apply variable selection and differential shrinkage
of allelic effects, such as GRR (Gianola et al. 2009; Resende et al.
2012). Additionally, for resistance which is mostly scored on qual-
itative or semiquantitative scales, and chemical data that are
skewed (Burdon et al. 1992), regression models that support non-
normal data may be more appropriate (Kärkkäinen and Sillanpää
2012). Therefore, for less studied traits, it is important to evaluate
a broad range of statistical methods to identify those that can
better model their genetic architecture. Accordingly, we tested
the ability of 3 selected statistical methods—GBLUP, ssGBLUP,
and GRR—to accurately estimate breeding values for (1) resis-
tance of radiata pine (Pinus radiata D. Don) to marsupial bark
stripping and (2) the bark chemical traits, some of which may im-
pact susceptibility to herbivory. These methods were selected to
represent alternative approaches and assumptions related to
marker effects (Meuwissen et al. 2017; Wang, Xu, et al. 2018) and
were compared to the relevant pedigree-based ABLUP. The ad-
vantage of multitrait over single-trait models in improving the
accuracy of predictions especially for traits of low heritability has
been demonstrated (Guo et al. 2014; Kláp�st�e, Dungey, Telfer, et al.
2020). Additionally, multitrait models account for the ability of
multiple traits to evolve together. Multitrait models improve pre-
dictions by taking advantage of strong genetic correlations

between traits (Calus and Veerkamp 2011), implying that little
improvement in prediction will be detected in the presence of
weak genetic correlations among traits.

In radiata pine, bark stripping (removal of bark from the
stem), especially by the native marsupial Bennett’s wallaby
(Macropus rufogriseus) that occurs between the ages of 1 and
6 years, has become the most important pest problem in
Tasmania (Miller et al. 2014; Nantongo et al. 2020), affecting up to
40% of the plantations, with up to 80% of trees damaged in some
plantations (Miller et al. 2014). Bark stripping can reduce the eco-
nomic value of trees due to wood damage arising mainly because
of frequent infections and spreading of the fungal pathogens in
the stem. Nevertheless, this economic loss is one of several prob-
lems within these damaged stands. If more than 90% of stem cir-
cumference is stripped, the whole tree usually dies (Miller et al.
2014; Nantongo et al. 2020). Given that the financial costs of man-
aging mammalian herbivores through fencing and culling in P. ra-
diata plantations are high (Wildlife Management Branch 2011),
there is interest in the potential for exploiting genetic variation in
tree resistance to bark stripping to sustainably reduce damage. In
radiata pine, selection for pest resistance has mostly been based
on conventional approaches involving visual selection and trait
screening over several pedigreed generations (Carson 1989;
Dungey et al. 2009). Although there do not appear to be opera-
tional breeding programs focused on reducing the susceptibility
of radiata pine to herbivory, various quantitative genetic studies
have indicated the potential for selection against insects and
mammalian bark damage and the associated chemical traits in
various radiata pine populations (Moreira et al. 2013; Nantongo
et al. 2020; Nantongo, Potts, Davies, et al. 2022; Nantongo et al.
2021a). However, estimates of the pedigree-based heritabilities
(ranging from 0.07 to 0.50) and genetic correlations among mar-
supial bark stripping and associated chemical traits, which in-
clude terpenes, phenolics, and sugars, are usually low to
moderate (Nantongo et al. 2020, 2021a), suggesting that these
traits would possibly benefit from genomic selection. In conifer-
herbivore systems, only one study has examined the potential
benefits of genomic selection, in this case for white pine weevil
resistance in Norway spruce (Lenz et al. 2020). To our knowledge,
there is no study incorporating genomic selection for chemical
compounds related to susceptibility or resistance mechanisms in
breeding programs of conifers. For other economically important
traits in radiata pine, studies have indicated potential genetic
gain from using genomic selection (Whitehill et al. 2016; Li and
Dungey 2018) and similar concepts could be adopted for resis-
tance breeding. Currently, there are marker panels to identify
known biotic threats such as Dothistroma pini (Li et al. 2015) and
other genomic resources in radiata pine (Telfer et al. 2018, 2019)
that can facilitate detailed genomic dissection of resistance and
other traits of interest.

The present study aimed to:

1) compare heritability and predictive ability/accuracy of the
GBLUP and pedigree-based (ABLUP) models for selected pri-
mary and secondary chemical compounds in the bark, in-
cluding those associated with bark stripping in radiata pine.
A key focus was examination of the potential improvement
in heritability estimates of the bark chemical compounds
and their additive genetic correlation with bark stripping
and tree height with GBLUP;

2) assess the potential improvement in predictive ability/accu-
racy of the GBLUP through use of nonlinear GRR model; and
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3) assess the contribution of additional genotyped data to the
improvement in heritability, predictive ability/accuracy,
and genetic correlations in integrated multitrait analyses
(ssBLUP).

Materials and methods
Plant material
The genetic field trial at Wilmot in Tasmania, Australia
(�41.454271� N, 146.106801� E, 580 m ASL) described in
Nantongo, Potts, Davies, et al. (2022) was used for this study.
Plant material was sourced from the New Zealand Radiata Pine
Breeding Company. The trial comprised 74 control-pollinated
(CP) full-sib and 1 open-pollinated families that were planted in
rows and columns of an incomplete randomized block design of
26 replicates, each replicate comprising 3 incomplete blocks, with
each family represented as a single tree plot within each replicate
(therefore each replicate comprised 75 individuals, but only indi-
viduals from the 74 CP families were included in the study). The
families represented 55 unique parents and 54 grandparents,
with the number of families per parent ranging from 1 to 10 (av-
erage 2.6). Twenty replicates (1,372 trees) were accessible to mar-
supial browsing for assessment of bark stripping. Six replicates
(390 trees) were protected by fencing from marsupial bark strip-
ping from which samples for the chemical analysis and for geno-
typing were collected (Supplementary Fig. 1). These protected
replicates were randomly scattered within the trial. Within the
protected replicates, alternate trees had been subject to artificial
bark stripping [details in Nantongo, Potts, Davies, et al. (2022) and
Nantongo et al. (2020)]. The protected trees were subject to artifi-
cial and not marsupial bark stripping to control the size of the
bark strip removed and the time of stripping in order to assess
the chemical responses to stripping in a controlled manner.
Trees in the protected replicates were genotyped and phenotyped
for chemical traits, giving a maximum of 6 individual trees per
family assayed. In total, across the whole trial 1,762 plants were
alive at assessment age.

Phenotypic data
Bark stripping
From the 20 unprotected replicates, bark stripping damage by
marsupials was recorded on an individual-plant basis at 2 years
of age (see Nantongo et al. 2020). The damage was scored on a
categorical scale assigning zero (0) to nonstripped plants, 1 ¼
<25% of the circumference stripped, 2¼ 25–50%, 3¼ 50–75%,
4¼>75–<100%, and 5¼ 100% of the circumference stripped.
Except for the scores 0 and 100, the remaining scores were con-
verted to class mid-point values for the final analyses. At the
same time, height was assessed in all 26 replicates. Since marsu-
pial bark stripping was not uniform, spatial adjustment was
made for bark stripping (see Nantongo et al. 2020). The other phe-
notypic traits studied were not spatially adjusted. To set the spa-
tial term for bark stripping, every tree was uniquely identified by
a row and column position within the trial, setting the absent,
dead, and filler trees to missing values (Costa e Silva et al. 2001).
The missing values were included as a fixed factor in the models
(Dungey et al. 2014). The spatial term was then partitioned into
spatially correlated (n) and uncorrelated (g) residuals. The spa-
tially correlated error (n) was modeled using a first-order separa-
ble autoregressive model in the row and column directions
(Butler et al. 2009; Dungey et al. 2013). However, in addition to the
2-dimensional separable first-order autoregressive spatial model,

an independent residual (nugget-wI150) was also added as a ran-
dom term. Therefore, the residual structure R follows:

R ¼ r2
n AR1 pcolð Þ � AR1 prowð Þ
� �

þ r2
gI;

where r2
n is the spatially dependent residual variance and r2

g is
independent residual variance, � is the Kronecker product, and
AR1(p) is a first-order autoregressive correlation matrix with au-
tocorrelation p for columns (col) and rows (row) (Butler et al.
2009).

Three weeks after the marsupial bark stripping assessment
was conducted, an experiment was initiated to assess the consti-
tutive and induced chemical differences for all 74 families using
trees in the 6 protected replicates (n¼ 390 plants due to some
losses of trees or protection). Half of the plants were subject to ar-
tificial bark stripping (treated trees; n¼ 195) at time zero (T0) and
half were untreated (n¼ 195) and used as controls [more details
of the sampling are presented in Nantongo, Potts, Davies, et al.
(2022)]. Briefly, alternate plants in the 6 replicates were systemat-
ically treated regardless of family. The tree at one corner of each
replicate was selected as a control tree, the next one in the col-
umn was selected for treatment and this pattern was consis-
tently followed across the 6 replicates of the trial. The artificial
bark stripping treatment was applied by removing a vertical strip
of 15 cm of bark (which included the inner and the outer bark),
starting 2 cm above the ground, and covering 30% of the stem cir-
cumference. The dimensions were selected based on the most
common browsing level observed in the field. Three weeks after
treatment application, another bark strip was removed directly
above the treatment site, for the chemical assessment. A strip
was also removed from an equivalent position on the untreated
plants in the protected replicates. From these 6 protected repli-
cates, needle samples were also collected for chemistry and ge-
netic analysis (Supplementary Fig. 1). Artificial bark stripping was
not scored and was not included in the ‘bark stripping’ response
variable of the genetic models, rather it was treated as binary
fixed effect (see below).

Chemical analysis using near-infrared reflectance
spectroscopy
The chemical data used in this study were the same as used in
Nantongo et al. (2021a). The chemical compounds in the bark, i.e.
terpenes, phenolics, fatty acids, sugars, and unknown com-
pounds, were predicted for the 6 protected replicates by near-
infrared spectroscopy (NIRS) according to the methods docu-
mented in Nantongo, Potts, Rodemann et al. (2021) and the asso-
ciated wet chemistry methods documented in Nantongo, Potts,
Davies, et al. (2022). In brief, chemical extractions were performed
on 150 bark samples and NIRS prediction was used for the rest of
the samples. Wet chemical extraction with dichloromethane
(DCM) to target terpenes was carried out in 5 ml using 0.75 mg of
fresh bark material. An acetone extraction was performed to tar-
get phenolics in 10 ml of 95% (v/v) aqueous acetone on 50 g of
freeze-dried ground material. Sugars were extracted from 50 g of
freeze-dried, ground material in 10 ml of hot water (Jones et al.
2002). The DCM extracts were analyzed by gas chromatography–
mass spectrometry (GC-MS) while the acetone extracts and
sugars were analyzed by ultra-high-performance liquid chroma-
tography–mass spectrometry (UHPLC-MS). The procedures for
the GC-MS and UHPLC-MS are detailed in Nantongo et al. (2021b).
For the NIRS analysis, samples were scanned when fresh and
when freeze-dried and ground according to the methods in
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Nantongo, Potts, Rodemann, et al. (2021a). However, only models
based on freeze-dried and ground samples that gave better mod-
els were used. Near-infrared reflectance spectroscopy models
were developed to predict the amounts of all chemical com-
pounds quantified in the bark as indicated in Nantongo et al.
(2021a). The stronger model of either the cross-validated or the
externally validated model was used to predict the chemistry of
the unknown samples. The amount of each of the 65 compounds
listed in Nantongo et al. (2021a) was predicted by NIRS, but only
15 compounds in the bark predicted with models with r2 > 0.5
(Nantongo et al. 2021a) and which were well identified were se-
lected for this study. Four of these compounds were shown to
positively correlate with marsupial bark stripping in Nantongo
et al. (2021a). The descriptive statistics and the statistical distribu-
tion of all traits considered in the study are shown in Table 1 and
Supplementary Table 1.

Genotyping
From the 6 protected replicates, needle samples were collected
from all individuals (n¼ 390) and stored at �80�C before DNA ex-
traction. Total genomic DNA was extracted using a commercial
NucleoSpin Plant II kit (Machery-Nagel, Duren, Germany) with
modifications (Telfer et al. 2013). DNA purity and concentration
were evaluated using a NanoDrop 2000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA) and quantified using the
Agilent 5200 fragment analyzer (Palo Alto, CA, USA). The samples
were genotyped using the 36K axiom SNP chip for radiata pine
(NZPRAD02) developed on the Axiom platform (Thermo Fisher
Scientific, Waltham, MA, USA) (Graham et al. 2022). Currently,
this is the densest SNP array for radiata pine, capable of assaying
36,285 SNPs. A total of 390 individuals were included in the final
genotype data with a total of 27,000 SNPs. These genotype data

were filtered to include only SNPs with a mean allele frequency

>0.05 and maximum missing data of 0.4% using the rrBLUP pack-

age (Endelman 2011). This filtering resulted in the retention of

15,624 SNPs for analysis. The genotyping reproducibility rate was

high (99.9%), as estimated from 10 samples that were replicated

during DNA extraction.

Statistical methods
Three selected genomic evaluation methods were compared—

GBLUP, ssGBLUP and GRR. GBLUP and ssGBLUP do not estimate

individual marker effects and the 2 methods involve different

sample sizes. GBLUP and GRR used only the same sample set of

trees that were genotyped and phenotyped (n¼ 390) and these

were the plants in the 6 protected replicates for which chemistry

data was available (Nantongo et al. 2021a). The ssGBLUP included

all individuals in the trial with documented pedigree that had

been phenotyped for height (26 replicates, n¼ 1,372). Of these, 20

replicates were exposed to marsupial bark stripping and 6 repli-

cates were protected (see above). The genomic models were com-

pared to the pedigree-based (ABLUP) model involving the same

individuals, which is the standard method used for breeding

value prediction using the expected relatedness among individu-

als based on pedigree information.
The ssGBLUP and GBLUP models are the same as the ABLUP

models detailed in Nantongo et al. (2021a), except that the aver-

age numerator relationship matrix A in the ABLUP is substituted

with the realized genomic relationship matrix (G) in GBLUP and

with the H-matrix that combines G and A matrices in ssGBLUP

(Christensen and Lund 2010).
The G-matrix was computed using the “A.mat” function in the

R package “rrBLUP” (Endelman 2011) from the marker data fol-

lowing (VanRaden 2008):

G ¼ ZZ0

2
P

ipið1� piÞ
; (1)

where Z¼M� P, M is the matrix of genotypes coded 0, 1, and 2 as

reference allele homozygote, heterozygote, and alternative allele

homozygote, respectively, and P is the matrix of doubled frequen-

cies for alternative alleles, pi is the frequency of the alternative

allele at the ith locus (Christensen and Lund 2010).
The ssGBLUP combines the pedigree relationship matrix A and

the genomic relationship matrix G, in one matrix, H and hence si-

multaneously uses information from genotyped and nongeno-

typed individuals. The H-matrix is defined by

H ¼ A11 þ A12A�1
22 ðGs � A22ÞA�1

22 A21 A12A�1
22 Gs

GsA�1
22 A21 Gs

" #
; (2)

where A11 represents the relationship matrix for the nongeno-

typed individuals (20 replicates, n¼ 1,372), A12 and A21 are rela-

tionship matrices between genotyped and nongenotyped

individuals (26 replicates, n¼ 1,762), while A22 is the pedigree-

based relationship matrix for genotyped individuals (6 replicates,

n¼ 390) and Gs is the scaled marker-based G-matrix for only the

genotyped individuals (see scaling below). A22
21 is the inverse of A22.

Forming the H-matrix above involves 2-major steps. First, a

matrix Ga is created from G such that the average of its diagonal

elements (avg.diag) and average of the nondiagonal elements

(avg.offdiag) is equal to the average of the diagonal and off-

diagonal elements of A22, respectively. Following (Gao et al. 2012),

Table 1. Descriptive statistics of bark stripping (n¼ 1,372), height
(n¼ 1,762), and the chemical compounds (n¼ 390) used for
estimating heritability, genetic correlation, and accuracy of
genomic selection.

Id Compound Compound
group

Min Mean Max SD

Bark stripping 0.00 25.20 100.00 33.20
Height (cm) 77.00 163.70 257.00 30.40

1 a-Pinene M 0.02 3.82 0.78 0.42
4 b-Pinene M �0.38 8.34 1.84 0.99
5 Camphene M 0.00 0.03 0.01 0.00
6 Citronellal M �0.06 0.46 0.04 0.05
18 Trans-farnesol SS �0.02 0.10 0.02 0.02
20 Agathadiol DG �0.54 3.89 0.55 0.51
21 Agatholal DG �0.10 1.56 0.34 0.21
22 Copalol DG 0.00 0.18 0.03 0.02
23 Levopimaral DG 0.00 0.05 0.01 0.01
30 Dehydroabietic acid DL 8.53 39.35 24.71 5.18
54 Fructose S �0.10 2.12 1.33 0.36
55 Glucose S 0.31 3.06 1.53 0.43
56 Inositol S 0.17 2.30 1.09 0.36
59 Linoleic acid F 7.12 27.00 16.91 3.75
60 Linolenic acid F 1.11 12.31 7.69 1.46

Chemical compounds were predicted from NIRS models developed from
scanning freeze-dried and ground bark samples and only well-identified bark
compounds with NIRS prediction models r2 > 0.5 were selected for this study
(Nantongo et al. 2021a), in addition to marsupial bark stripping and tree height.
The monoterpenoids (M), sesquiterpenoids (SS), and GC-MS diterpenoids (DG)
compound groups are expressed as milligrams of heptadecane equivalents per
gram of dry weight of the sample. The LC-MS diterpenoids (DL) and fatty acids
(F) are expressed as milligrams of nonadecanoic equivalents per gram of dry
weight. The sugars (S) are expressed in absolute amounts (Min ¼minimum,
Max ¼maximum, SD ¼ standard deviation). Each chemical compound was
given a unique identifier (Id), which follows (Nantongo et al. 2021a) for ease of
location in the tables.
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this was done by applying adjustment factors, a and b, to all ele-
ments of G:

Ga ¼ Gbþ a; (3)

where a and b are adjustment factors derived from the following
simultaneous equations:

Avg:diag ðGÞ bþ a ¼ Avg:diagðA22Þ
Avg:offdiag ðGÞ bþ a ¼ Avg:offdiagðA22Þ

:

(
(4)

The G matrix is usually not positive semi-definite, which is one
of the mixed linear model assumptions, and weighting of the geno-
mic and pedigree-based relationship matrices is required as follows:

Gs ¼ Gað1�wÞ þ A22w; (5)

where Gs is a rescaled genomic relationship matrix based on the
SNP data, Ga is the adjusted genomic relationship matrix
[Equation (3)] and w is the weighting factor that represents the
fraction of total additive variance that is not captured by markers
and A22 is the additive relationship matrix from the full pedigree.
The weight (w) can take any value between 0 and 1, where the
model with w¼ 1 is equivalent to ABLUP. For the present study,
an arbitrary w of 0.05 was selected to give high weighting to the
genomic data (Martini et al. 2018).

Linear models for estimation of variance
components
Variance components based on the single-trait pedigree-based
relationship matrix (A) have been previously documented
(Nantongo et al. 2021a). This study presents the results from sin-
gle- and multitrait ABLUP for comparison with the genomic mod-
els. The variance components for the ABLUP, ssGBLUP, or GBLUP
were obtained in ASReml-R v4.1 (Gilmour et al. 2015, R Core
Team, 2013) using a general linear additive genetic model as

y ¼ Xbþ Z1aþ Z2b þ Z3r þ e; (6)

where y is the response variable (height, spatially adjusted mar-
supial bark stripping, and a chemical variable); b, a vector of fixed
effects. For single-trait models, the fixed term b contained the
overall phenotypic mean and the treatment term was fitted for
the chemical traits. In addition, in the multitrait models another
fixed term, “protected” was fitted for height to differentiate the
measurements from the 20 replicates that were unprotected—
(where marsupial bark stripping was scored)—from those from
the 6 protected replicates from which chemistry was estimated.
The model term, a is the vector of random additive effects follow-
ing �N (0, A ra

2), b is the vector of random incomplete block
effects following �N (0, Irb

2), r is the vector of random replicate
effects following �N (0, Irr

2), and e is a vector of random residuals
following �N (0, Ire

2). The additive genetic variance (ra
2) is based

on the A, G, or H relationship matrices. The random family (spe-
cific combining ability) and the a x treatment terms were ex-
cluded from the analyses because they were generally
nonsignificant in previous analyses (Nantongo et al. 2021a). X and
Z1–3 correspond to design matrices relating the observations in y
to the fixed and random effects, respectively. To test whether the
additive genetic variation was greater than zero, full models were
compared with respective reduced models using a 1-tailed

likelihood ratio test (LRT) (Gilmour et al. 2015) for all the GBLUP
and ssGBLUP models.

Narrow-sense heritability estimates were derived from single-
trait ABLUP and GBLUP as well as multitrait ABLUP and multitrait
ssGBLUP models (see below for multitrait models). Individual
narrow-sense heritability (ĥ2) was estimated as the additive ge-
netic variance divided by the sum of the additive genetic variance
r̂2

a and the error variance r̂2
e as below:

ĥ
2
¼ r̂2

a

r̂2
a þ r̂2

e

: (7)

Estimates of the associated standard error (SE) for the traits
were obtained directly using Taylor series expansion (“delta
method”) (Gilmour et al. 2015). The experimental fixed effects (i.e.
treatment, protection) and design variances were excluded from
the denominator of the heritability equation, as in previous anal-
yses (Nantongo et al. 2021a) and thus the estimates are condi-
tional on these factors. To test whether the additive genetic
variation was greater than zero, full models were compared with
respective reduced models using 1-tailed log LRTs with 1 degree
of freedom in ASReml (Butler et al. 2009). The single-trait ABLUP
heritability values presented were those from Nantongo et al.
(2021a). The heritability estimates and SE reported for height and
marsupial bark stripping of multitrait models are average values
obtained from the 15 models.

Comparisons of the heritability estimated were made between
pedigree-based and marker-based models. The single-trait
GBLUP estimates were compared to single-trait ABLUP estimates
calculated using only the genotyped individuals (n¼ 390). The
multitrait ssGBLUP estimates were compared with the multitrait
ABLUP estimates based on genotyped individuals plus those
which had been measured for height (n¼ 1,372). A 2-tailed paired
t-test was used to test the average difference in the heritability
estimates between the different types of analyses (e.g. ABLUP vs
GBLUP) using estimates from the 15 bark chemicals. The additive
genetic estimates for the 15 chemical compounds from the
single-trait pedigree-based model and the same set of individuals
as used in the GBLUP and GRR analyses have been previously
published (Nantongo et al. 2021a) and are presented here for com-
parative purposes.

Genetic correlations
The multitrait models were also used to study the improvement
of estimates of the genetic correlations of the chemical traits
with spatially adjusted marsupial bark stripping and height. The
multitrait models were as described above which were fitted for
height, spatially adjusted marsupial bark stripping, and one
chemical compound as response variables using ABLUP and
ssGBLUP. The genetic correlation (rg) between 2 traits measured
was estimated as:

rg ¼
raxayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ax � r2
ay

q ; (8)

where raxay is the additive genetic covariance between traits x
and y, r2

ax is the additive genetic variance components for trait x,
and r2

ay is the additive genetic variance components for trait y.
SEs were estimated in ASReml-R (Gilmour et al. 2015, R Core
Team, 2013). To test whether genetic correlations were signifi-
cantly different from zero, a full model was compared with the

J. S. Nantongo et al. | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/12/11/jkac245/6758254 by U

niversity of Tasm
ania Library user on 26 M

arch 2023



respective reduced model that had the additive covariances fixed
to zero using 2-sided LRT with 1 degree of freedom in ASReml-R.
The average difference in the genetic correlation estimates from
ssGBLUP and those obtained with the multitrait ABLUP (Nantongo
et al. 2021a) was tested using a 2-tailed paired t-test. The difference
in the SEs of the genetic correlations was similarly tested, as a test
of the difference in the accuracy of these estimates.

Ridge regression
Ridge regression is one of a family of penalized regression meth-
ods that was originally proposed as a means of estimating regres-
sion coefficients with smaller mean-square error than their least
squares counterparts when predictors are correlated (Frouin et al.
2020). Ridge regression also uses a general linear equation;

y ¼ lþ Z1gþ Z2gþ e; (9)

where y is a (n� 1) vector of a response variable (height, spatially
adjusted marsupial bark stripping, and a chemical variable) and
m is the phenotypic mean. The variable g is the vector of random
effects, Z1 and Z2 are (n� p) design matrices of rank p for SNP and
design effects respectively and e is a (n� 1) vector of random
residuals that are respectively assumed to follow a normal distri-
bution, i.e. g � N (0, Irg

2) and e � N (0, Ire
2), where I is an identity

matrix.
Generalized ridge regression (GRR) estimates marker effects

using linear and penalized parameters. It alters the notations of
parameter b in Equation (8) by allowing variable shrinkage for dif-
ferent markers through the introduction of a diagonal matrix fol-
lowing a 2-step process (Shen et al. 2013).

In the first step, the predicted breeding values are obtained
following the mixed model by the summing of all the marker
effects of an individual tree [Equation (8)]. The solution for the
marker effects is given by the following equation:

ĝ ¼ z0zþ kIð Þ�1z0y; (10)

where k ¼ r2
e=r

2
g, and is the ridge penalty parameter (Shen et al.

2013; Veerman et al. 2022).
In the second step, the BLUPs ĝ are re-estimated using

Equation (9) but with a marker-specific shrinkage parameters
diag (ki) instead of kI, where each ki depends on the value bgi from
the first step. The equation now becomes

ĝ ¼ z0zþ diag kð Þ
� ��1

z0y;

where k is a vector of shrinkage parameters and ĝ is the BLUP
marker effect (from step 1) (Rönnegård and Shen 2016). GRR was
implemented in the “bigRR” package in R (Rönnegård and Shen
2016) using only the genotyped individuals (n¼ 390).

Marker effects for GBLUP and GRR were generated in R using
rrBLUP (Endelman 2011). Design effects were derived from the ex-
perimental blocks and replicates. Treatment effects were not in-
cluded here since they were not significant in previous studies
(Nantongo et al. 2021a).

Cross-validation scheme for estimating
predictive accuracy
The predictive ability and predictive accuracy assess the poten-
tial of the models to estimate the breeding value of individuals

with yet-to-be observed phenotypes (Momen et al. 2018). To test
the predictive ability and accuracy of the 3 genomic and ABLUP
methods, a 10-fold cross-validation scheme was implemented in
ASReml-R (Utz et al. 2000; Gianola and Schön 2016). The model
terms were the same as those used in the previous analyses.
Within each model, all phenotyped and nonphenotyped individu-
als were randomly subdivided into 10 subsets (i.e. folds), and a
leave one out procedure was repeated 10 times until all individu-
als had their breeding values predicted. Predictive ability of phe-
notypes was then defined as the Pearson correlation between the
genomic estimated breeding values predicted in cross-validation
and the observed phenotypes. Predictive accuracy was calculated
by dividing the predictive ability by the square root of the single-
trait ABLUP heritability (Momen et al. 2018). A 2-tailed paired
t-test was used to test the average difference in the prediction
estimates as above. The effect of data distribution on predictive
ability was also assessed as indicated in the Supplementary
methods (Supplementary File 1).

Results
ABLUP vs GBLUP
Additive genetic variance and heritabilities
The single-trait ABLUP and GBLUP models employed the same
number of individuals and random as well as fixed effects and
are directly comparable. The ABLUP narrow-sense heritability
values of the 15 chemical compounds ranged between 0.12 and
0.51 and averaged 0.27 6 0.10 (Table 2). Based on the GBLUP, heri-
tability estimates for the 15 chemical traits studied ranged from
0.18 to 0.57 and averaged 0.43 6 0.11. This average was 1.6-fold
higher than the average of the single-trait ABLUP heritability esti-
mates based on the same model and set of individuals (Table 2)
and represented a significant increase in heritability estimates by
the use of the G matrix rather than the pedigree-derived A matrix
(paired t14 ¼ 7.18, P < 0.001). The highest proportional increase
was exhibited for compounds that had the lowest single-trait
ABLUP heritability. For example, the heritability of citronellal[6],
trans-farnesol[18], agathadiol[20], and inositol[56] increased be-
tween 2.1- and 2.7-fold with the GBLUP. Apart from the heritabil-
ity of linoleic acid[59] that slightly reduced, the compounds
experienced between 1.10- and 2.09-fold increases in heritability
with GBLUP compared to ABLUP. Significant additive genetic vari-
ation was also detected for agathadiol[20], dehydroabietic acid[30],
and inositol[56] that were not significant with the ABLUP models.
Regardless of the set of samples or the type of analysis, the heri-
tability estimates for bark stripping and tree height were low. For
example, the height heritability of the ABLUP (h2 ¼ 0.05 6 0.02)
based on the 20 unprotected replicates as well as the GBLUP heri-
tability (h2 ¼ 0.09 6 0.07) based on 6 protected replicates were
low. Based on unprotected trees, significant additive genetic vari-
ation but low heritability was exhibited for the spatially adjusted
marsupial bark stripping (h2 ¼ 0.09 6 0.03) (Table 2).

Predictive ability/accuracy of ABLUP, GBLUP, and GRR
The predictive ability (Pab) and predictive accuracy (Pac) for the
height and the bark chemical compounds varied between �0.02
to 0.40 and �0.06 to 0.77, respectively, depending on the trait and
statistical model (Table 3). Comparing single-trait models for
chemical traits, the predictive ability for single-trait ABLUP (aver-
age Pab¼ 0.24) did not differ significantly from GBLUP (average
Pab¼ 0.24) (paired t14 ¼ 0.17, P ¼ 0.43) and the GRR (average
Pab¼ 0.23, paired t14 ¼ 0.41, P ¼ 0.34). Accounting for marker het-
erogeneity has little influence on Pab/Pac, although marker
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Table 2. Narrow-sense heritability (h2) and standard error (SE) estimates of selected chemical compounds quantified in P. radiata bark
based on single-trait models for ABLUP and GBLUP (protected replicates only, n¼ 390) and multitrait ABLUP and ssGBLUP (protected and
unprotected replicates, n¼ 1,372).

Single trait Multitrait

Id Compound Group ABLUP heritability (SE) GBLUP heritability (SE) ABLUP heritability (SE) ssGBLUP heritability (SE)

Bark stripping 0.09 (0.03)b 0.04 (0.02) 0.12 (0.04)
Height 0.05 (0.02)a 0.09 (0.07)a 0.05 (0.02) 0.07 (0.03)

1 a-Pinene M 0.26 (0.10)c 0.33 (0.11)c 0.25 (0.10) 0.33 (0.11)
4 b-Pinene M 0.33 (0.11)c 0.57 (0.11)c 0.34 (0.12) 0.60 (0.11)
5 Camphene M 0.30 (0.10)c 0.52 (0.11)c 0.29 (0.11) 0.55 (0.11)
6 Citronellal M 0.19 (0.09)c 0.41 (0.13)c 0.19 (0.09) 0.49 (0.11)
18 Trans-farnesol SS 0.15 (0.09)c 0.34 (0.12)c 0.14 (0.08) 0.44 (0.12)
20 Agathadiol DG 0.22 (0.10)c 0.46 (0.12)c 0.22 (0.10) 0.46 (0.12)
21 Agatholal DG 0.22 (0.10) 0.34 (0.11)c 0.24 (0.10) 0.35 (0.11)
22 Copalol DG 0.29 (0.10)c 0.51 (0.11)c 0.28 (0.10) 0.52 (0.11)
23 Levopimaral DG 0.31 (0.11)c 0.51 (0.11)c 0.32 (0.11) 0.54 (0.11)
30 Dehydroabietic acid DL 0.12 (0.07) 0.18 (0.09)a 0.10 (0.07) 0.18 (0.09)
54 Fructose S 0.31 (0.11)b 0.48 (0.11)c 0.30 (0.10) 0.47 (0.10)
55 Glucose S 0.29 (0.11)b 0.51 (0.10)c 0.27 (0.10) 0.49 (0.10)
56 Inositol S 0.15 (0.08) 0.32 (0.11)c 0.16 (0.09) 0.33 (0.11)
59 Linoleic acid F 0.51 (0.14)c 0.48 (0.10)c 0.55 (0.13) 0.46 (0.10)
60 Linolenic acid F 0.44 (0.13)c 0.48 (0.10)c 0.45 (0.12) 0.47 (0.10)

The single-trait ABLUP heritability estimates of marsupial bark stripping and tree height were derived from the 20 unprotected replicates. The GBLUP heritability
for height is, however, based on the 6 protected replicates. The multitrait models included height, spatially adjusted marsupial bark stripping, and one chemical
compound. The significance that the additive genetic variation from the single-trait ABLUP and GBLUP was greater than zero was tested using the 1-tailed
likelihood ratio test (Nantongo et al. 2021a), where a P< 0.05, b P<0.01, and c P<0.001. Significance tests were not done for the multitrait models. M ¼
monoterpenoids, S ¼ sesquiterpenoids, DG ¼ GC-MS diterpenoids, DL ¼ LC-MS diterpenoids, S ¼ sugars and F ¼ fatty acids. Each chemical compound is given a
unique identifier (Id) for ease of location in the tables. The heritability estimates and standard error (SE) reported for height and marsupial bark stripping from
multitrait models is an average of heritability values obtained from the 15 models. The ABLUP additive genetic and heritability estimates for the 15 chemical
compounds from the single-trait pedigree-based model are based on the same set of individuals as used in the GBLUP and GRR analyses and have been previously
published (Nantongo et al. 2021a) and are presented here for comparative purposes.

Table 3. The predictive ability (Pab) defined as the correlation of breeding values from 10-fold cross-validation with observed phenotypic
values and predictive accuracy (Pac) of the bark chemical compounds.

Predictive ability Predictive accuracy

Single-trait Multitrait Single-trait Multitrait

Id Trait Group ABLUP GBLUP GRR ABLUP ssGBLUP ABLUP GBLUP GRR ABLUP ssGBLUP

Bark stripping 0.16 0.17 0.62 0.65
Height 0.09 0.09 0.47 0.46

1 a-Pinene M 0.23 0.22 0.22 0.25 0.25 0.46 0.44 0.42 0.49 0.49
4 b-Pinene M 0.27 0.31 0.30 0.26 0.37 0.46 0.54 0.52 0.46 0.64
5 Camphene M 0.24 0.36 0.28 0.22 0.34 0.44 0.66 0.50 0.40 0.63
6 Citronellal M 0.25 0.30 0.29 0.24 0.33 0.58 0.69 0.66 0.54 0.77
18 Trans-farnesol SS 0.23 0.20 0.24 0.11 0.28 0.59 0.51 0.62 0.29 0.71
20 Agathadiol DG 0.27 0.24 0.27 0.16 0.26 0.58 0.50 0.57 0.35 0.55
21 Agatholal DG 0.21 0.22 0.23 0.19 0.26 0.46 0.46 0.49 0.40 0.56
22 Copalol DG 0.29 0.36 0.35 0.30 0.40 0.53 0.67 0.66 0.55 0.74
23 Levopimaral DG 0.40 0.33 0.30 0.30 0.35 0.72 0.59 0.55 0.55 0.63
30 Dehydroabietic acid DL 0.02 �0.02 �0.11 0.07 0.08 0.07 �0.06 �0.32 0.21 0.24
54 Fructose S 0.20 0.26 0.27 0.22 0.32 0.35 0.47 0.49 0.39 0.57
55 Glucose S 0.17 0.25 0.26 0.19 0.36 0.31 0.46 0.48 0.36 0.66
56 Inositol S 0.25 0.04 0.11 0.12 0.20 0.64 0.11 0.27 0.31 0.52
59 Linoleic acid F 0.32 0.17 0.20 0.33 0.31 0.45 0.24 0.28 0.46 0.44
60 Linolenic acid F 0.27 0.32 0.29 0.33 0.40 0.40 0.49 0.44 0.50 0.60

Each chemical compound is given a unique identifier (Id) for ease of location in the tables. The single-trait analyses are based on the protected replicates (n¼390)
and the multitrait analyses include the protected and unprotected replicates (n¼1,372) of the field trial. The predictive accuracy is calculated as the predictive
ability divided by the square root of single-trait ABLUP heritability (i.e. Pac ¼ Pab/h). M ¼monoterpenoids, S ¼ sesquiterpenoids, DG ¼ GC-MS diterpenoids, DL ¼
LC-MS diterpenoids, S ¼ sugars and F ¼ fatty acids. Each chemical compound is given a unique identifier (Id) for ease of location in the tables.
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effects changed up to 10-fold in GRR compared to GBLUP
(Supplementary Fig. 2). For example, the Pab of GBLUP did not dif-
fer from that of GRR (paired t14 ¼ 0.37, P ¼ 0.36). Similarly, the
predictive accuracy did not differ between the ABLUP (average
Pac¼ 0.47) and GBLUP (average Pac¼ 0.45) (paired t14 ¼ 0.37,
P ¼ 0.36), ABLUP and GRR (average Pac ¼0.44) (paired t14 ¼ 0.61,
P ¼ 0.27), nor between GBLUP and GRR (paired t14 ¼ 0.36, P ¼ 0.36).

Multitrait ABLUP vs ssGBLUP—incorporating
genotyped and ungenotyped individuals
Additive genetic variance and heritabilities
The heritability estimates for the 15 bark chemical compounds
were similarly improved with the incorporation of genomic-
derived pedigree information and additional phenotyped individ-
uals through the use of the H matrix in the multitrait ssGBLUP
analysis compared with estimates from the equivalent ABLUP
analysis which incorporates genotyped (6 replicates) and un-
genotyped trees (20 replicates) (Table 2). The multitrait ssGBLUP
heritability estimates for individual bark compounds ranged be-
tween 0.18 and 0.61 and averaged 0.45 6 0.10. As with the single-
trait analyses, these estimates were significantly (paired t14 ¼
5.96, P < 0.001), and on average 1.5-fold, greater than the herit-
abilities estimated from multitrait ABLUP (average¼ 0.27 6 0.10).
In the multitrait analysis of height involving all individuals in the
trial, the improvement in heritability was increased 1.4 times
(ABLUP h2 ¼ 0.05 6 0.02, ssGBLUP h2 ¼ 0.07 6 0.03). However, for
bark stripping the multitrait ssGBLUP heritability estimate (h2 ¼
0.12 6 0.04) was 3 times higher than the ABLUP estimate (h2 ¼
0.04 6 0.02). The multitrait ABLUP heritability estimates for mar-
supial bark stripping and height were relatively constant irre-
spective of the chemical compound fitted in the model (data not
shown).

Predictive ability/accuracy of multitrait ABLUP
and ssGBLUP
For bark chemicals, the predictive ability for the multitrait mod-
els increased significantly from an average of 0.22 with multitrait
ABLUP to 0.30 with ssGBLUP (paired t14 ¼ 5.72, P < 0.001). The pre-
dictive accuracy similarly increased from an average of 0.41 to
0.69 (t14 ¼ 5.56, P < 0.001). The linear relationship between herita-
bility and predictive ability for the 15 chemical compounds was
high, indicating that there was a tendency for compounds with
higher heritability estimates to reach higher predictive ability for
all models (Supplementary Fig. 3). There was no significant linear
relationship between heritability and Pac (results not shown), as
this was in part corrected for heritability (by definition).

Genetic correlations

The genetic correlations of chemical compounds with marsupial
bark stripping or height varied from positive to negative for both
multitrait ABLUP and ssGBLUP (Table 4). Although most correla-
tions retained the same sign across analyses, shifts from the low
negative (ABLUP) to low positive (ssGBLUP) genetic correlations
were common. The absolute values of positive correlations
detected with ABLUP marginally increased with ssGBLUP
(Table 4). The ABLUP negative correlations either changed to pos-
itive or reduced in magnitude with the ssGBLUP. Overall, the av-
erage of the genetic correlations between chemical compounds
with bark stripping increased with ssGBLUP (rg ¼ 0.21) compared
with ABLUP (rg¼ 0.11, paired t14 ¼ 3.09, P < 0.01). Similarly, ge-
netic correlations between chemical compounds with height in-
creased with ssGBLUP (rg ¼ 0.19) compared with ABLUP (rg ¼ 0.10,
paired t14 ¼ 2.66, P < 0.01). Further, the SE of the genetic

correlation estimates obtained with ssGBLUP were on average
significantly lower than those obtained with ABLUP for both mar-
supial bark stripping (ABLUP average SE¼ 0.28, ssGBLUP average
SE¼ 0.25, paired t14 ¼ 3.38, P < 0.01) and height (ABLUP average
SE¼ 0.32, ssGBLUP average SE¼ 0.29, paired t14 ¼ 5.86, P < 0.001),
suggesting slightly more accurate estimates with the ssGBLUP
model. The ABLUP correlation estimates that were associated
with the highest SEs more strongly increased in accuracy than
those that had low SEs of estimation (Table 4). The genetic corre-
lation between height and marsupial bark stripping did not
change with ssGBLUP (av. rg 6 av. SE¼ 0.41 6 0.27) compared to
ABLUP (av. rg 6 av. SE¼ 0.41 6 0.29) although the correlation var-
ied depending on the chemical compound in the model
(Supplementary Table 2).

No new insights were obtained in terms of the chemical com-
pounds associated with bark stripping. Importantly, the genetic
correlations of the sugars—glucose[55] and fructose[54]—as well as
the fatty acids—linoleic acid[59] and linolenic acid[60]—with mar-
supial bark stripping that were significant with the multitrait
ABLUP model were still significant with the multitrait ssGBLUP,
although the magnitude of the genetic correlations slightly re-
duced (Table 4). The positive genetic correlations of 3 compounds
with height that were significant with the ABLUP models were
slightly reduced with ssGBLUP, but 2 of the 3 compounds still
retained a statistically significant genetic correlation (Table 4).

In multitrait models, better prediction is expected in the pres-
ence of high genetic correlation between the traits. However,
there was no significant linear relationship between the predict-
ability of the chemical traits and the genetic correlation of the
chemical traits with marsupial bark stripping or height (results
not shown). Instead, the SE of the genetic correlation estimates
showed a negative linear relationship with predictive ability. This
suggests that the precision rather than the magnitude of the cor-
relation (precision interpreted based on SE) has a greater impact
on the predictive ability/accuracy. The genetic correlations that
were associated with low ABLUP error for estimating the genetic
correlation were better predicted than those that had higher ge-
netic correlation SEs (Fig. 1). The effect of data distribution on ge-
nomic predictions is presented in Supplementary results
(Supplementary File 1).

Discussion
The heritability estimates were moderate for pedigree-based
models. However, significant improvement in the estimates were
detected for both single-trait and multitrait genomic models.
Various studies have provided evidence that genomic models, us-
ing realized relationships based on marker information, lead to a
substantial increase in the prediction accuracies for various traits
in trees compared to those using pedigree-based relationships
(Kláp�st�e et al. 2014; Ratcliffe et al. 2017; Kláp�st�e, Dungey, Graham,
et al. 2020), except for a few cases (Munoz et al. 2014). This im-
provement is related to their ability to accurately trace genetic re-
latedness, eradicate pedigree errors and the ability to track the
genetic variability among full-sibs due to the inheritance of ran-
dom alleles from the parents—Mendelian sampling variance
(Kláp�st�e et al. 2018). In forest tree breeding, ssGBLUP that com-
bines phenotype, pedigree and genomic information through a
single-step genomic evaluation approach has been highlighted as
the preferred strategy for evaluation of breeding values where it
is not practical to genotype all trees in the large progeny tests
used in most forest tree breeding programs (Ratcliffe et al. 2017).
In this study, while direct evaluations for the impact of GBLUP
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Table 4. Additive genetic correlation of different bark chemical compounds with marsupial bark stripping and height estimated using
the pedigree-based method (ABLUP) and single-step GBLUP (ssGBLUP) multitrait models (protected and unprotected replicates,
n¼ 1,372).

Genetic correlation with bark stripping (rg) (SE) Genetic correlation with height (rg) (SE)

Id Compound ABLUP ssGBLUP ABLUP ssGBLUP

1 a-Pinene �0.20 (0.29) �0.01 (0.28) 0.02 (0.33) 0.15 (0.30)
4 b-Pinene �0.01 (0.28) 0.14 (0.25) �0.04 (0.32) 0.15 (0.26)
5 Camphene �0.12 (0.28) 0.01 (0.26) �0.00 (0.33) 0.07 (0.27)
6 Citronellal �0.14 (0.32) �0.17 (0.27) �0.32 (0.36) �0.16 (0.29)
18 Trans-farnesol 0.08 (0.35) 0.25 (0.26) �0.37 (0.39) 0.01 (0.29)
20 Agathadiol �0.03 (0.31) 0.14 (0.27) 0.00 (0.36) 0.18 (0.29)
21 Agatholal �0.12 (0.29) 0.07 (0.27) 0.18 (0.33) 0.24 (0.29)
22 Copalol �0.09 (0.28) 0.05 (0.26) �0.20 (0.32) �0.02 (0.28)
23 Levopimaral 0.08 (0.27) 0.16 (0.25) 0.04 (0.31) 0.11 (0.27)
30 Dehydroabietic acid �0.27 (0.37) 0.10 (0.33) 0.39 (0.39) 0.43 (0.32)
54 Fructose 0.55 (0.23)a 0.51 (0.22)a 0.06 (0.31) 0.08 (0.27)
55 Glucose 0.80 (0.20)b 0.71 (0.19)b 0.62 (0.24)b 0.52 (0.23)a

56 Inositol �0.14 (0.33) �0.04 (0.29) �0.01 (0.38) �0.01 (0.32)
59 Linoleic acid 0.68 (0.16)b 0.65 (0.19)b 0.69 (0.22)a 0.61 (0.24)a

60 Linolenic acid 0.65 (0.19)b 0.62 (0.20)a 0.50 (0.26)b 0.47 (0.25)a

The multitrait models always included the spatially adjusted marsupial bark-stripping scores, tree height, and one of the listed bark chemical compounds as
response variables. The significance that the additive genetic correlation (rg) is different from zero was tested using a 2-tailed likelihood ratio test (Nantongo et al.
2021a) and is presented here for comparative purposes. a P<0.05, b P<0.01.

Fig. 1. Scatter plots showing regression line and the coefficient of determination (r2) between predictive ability (Pab) of the bark chemical compounds
from multitrait ABLUP and ssGBLUP models and the standard error (SE) of the multitrait ABLUP genetic correlation of the chemical compounds with
marsupial bark stripping (BS, above) and height (HT, below). The multitrait models included spatially adjusted marsupial bark stripping, height, and a
chemical compound.
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and ssGBLUP models were made for chemical compounds and
height, it was not possible to directly evaluate the impact of
GBLUP on marsupial bark stripping estimates since the geno-
typed trees were not scored for bark stripping. Therefore, the im-
provement detected in the multitrait ssGBLUP genetic estimates
of bark stripping indirectly links to the changes in the accuracy of
estimating the genetic estimates of the chemical compound and
height that were simultaneously analyzed as response variables
in multitrait models. Genotyping of marsupial bark stripped trees
is needed to enable a direct assessment of the impact of genomic
models to the genetic parameters of bark stripping.

While there are few comparative studies related to herbivory
in conifers, one recent study assessed the genomic prediction of
resistance against weevil herbivory in spruce (Lenz et al. 2020).
The authors indicated a 2-fold reduction in the GBLUP heritability
compared to pedigree-based prediction for the number of weevil
attacks, and also the wood property traits assessed in their study
(Chen et al. 2018). This is the opposite to what was observed in
the current study, which could be related to the nature of SNPs
used. The desirable SNPs set will yield optimum genetic esti-
mates if they can capture much information on genetic variation
within a defined chromosomal region without introducing redun-
dancy due to extensive linkage disequilibrium (LD) between
nearby SNPs (Sun et al. 2016). Defining the optimum set of SNPs
will, therefore, require knowledge of the patterns of LD across the
genome under study, but where that knowledge is lacking, desir-
able SNPs may possibly increase with the number of SNPs used in
a study. In the above study on weevil herbivory for example, Lenz
et al. (2020) used 4-fold less SNPs than in the current study. Chen
et al. (2018) and Lee et al. (2017) also noted that LD could be re-
duced by increasing the number of families especially in full-sib
populations, so possibly the 40 families (35 parents) used by Lenz
et al. (2020) were not sufficient to capture the additive genetic var-
iation, although the trees per family were more compared to the
current study that used 74 families with up to 6 trees per family.
In Norway spruce, predictive ability for several wood traits stabi-
lized as the number of trees within-family reached 6 (Chen et al.
2018). Therefore, the optimal parameters to realize the benefits
of genomic selection for herbivory may need more research.
However, more evidence of the superior performance of genomic
models in resistance studies is available from pathosystems in P.
radiata (Kláp�st�e, Meason, et al. 2020) and other conifers (Resende
et al. 2012; Carpenter et al. 2018; González-Camacho et al. 2018).

Comparing heritability estimates for ABLUP and genomic
models showed that the application of genomic-based models
significantly improved the narrow-sense heritability estimates of
individual chemical compounds compared to the pedigree-based
(ABLUP) method. In addition, several chemical traits that did not
exhibit statistically significant additive genetic variance with the
single-trait ABLUP model did with the GBLUP model. The GBLUP
performed better than the ABLUP for most chemical traits except
linoleic acid[59], indicating that markers provided additional infor-
mation. The ssGBLUP, compared to the multitrait ABLUP further
improved the estimates highlighting use of correlated informa-
tion from other traits. However, for some traits like linoleic
acid[59], no difference between GBLUP and ssGBLUP were
detected, suggesting that the benefit of correlated information in
the ssGBLUP is trait specific. Overall, the ssGBLUP and GBLUP
should in theory perform well for traits that are under quantita-
tive genetic control. Indeed, there is evidence for their superior
performance for different quantitative traits in conifers such as
growth and wood traits (Ratcliffe et al. 2017; Gamal El-Dien et al.
2018; Cappa et al. 2019). The genetic control and genomic

selection of most chemical compounds have been less studied,
and the genetic architecture is less well-known.

Similar to the chemical traits, heritability for height slightly im-
proved with the multitrait ssGBLUP compared with the multitrait
ABLUP, consistent with the observations in Norway spruce popula-
tions (Chen et al. 2018). Our results, however, contrasted with observa-
tions in white spruce and Norway spruce (Gamal El-Dien et al. 2018;
Lenz et al. 2020), where multifold reduction in heritability values for
height were documented for GBLUP vs ABLUP models. Likewise, in
Douglas-fir, Thistlethwaite et al. (2019) did not show any relative im-
provement in heritability estimates in height with genomic models.
These contrasting results suggest that improvement in genetic pa-
rameter estimation using marker-based approaches relative to
pedigree-based methods is contingent upon the trait as well as other
factors such as size of the genotyped population, sample size and re-
latedness of the population, and marker density, which have been
variously documented in the literature (Desta and Ortiz 2014; Kláp�st�e
et al. 2018; Momen et al. 2018; Stejskal et al. 2018). The change in height
heritability based on single-trait models is not directly comparable in
the present case as the 2 models used different sample sets.

Multitrait models mostly gave higher heritability estimates com-
pared to single-trait models for most of the compounds, which is
the norm for most traits (Karaman et al. 2020; Lenz et al. 2020).
Multitrait selection models can improve the accuracy of predictions
by taking advantage of the genetic correlations between traits
(Calus and Veerkamp 2011). In our case, the benefits of multitrait
models were realized since chemical traits had fewer phenotypic
records and could be better predicted genetically when coupled
with other traits that were extensively assessed (Covarrubias-
Pazaran et al. 2018). The increase in heritability estimates with mul-
titrait over single-trait models was especially high for traits that
had very low heritability values in the single-trait models. However,
the magnitude of the genetic correlation from multitrait ABLUP rel-
ative to ssGBLUP changed little, consistent with Lenz et al. (2020) for
the wood and herbivory traits in spruce. Nevertheless, evidence for
better performance of the ssGBLUP was derived from the reduction
in the SEs of the genetic correlation estimates.

The predictive ability and accuracy (i.e. the ability to predict fu-
ture phenotypes) were higher with the multitrait ssGBLUP than the
multitrait ABLUP. This finding is consistent with some studies in
conifers that demonstrated potential improvement of prediction of
breeding values with genomic models (Goddard 2009; Hayes et al.
2009; Iwata et al. 2011; Gamal El-Dien et al. 2016; Kláp�st�e et al. 2018;
Stejskal et al. 2018; Suontama et al. 2018). However, the improve-
ment was only evident in our multitrait models. In multitrait mod-
els, studies have indicated that correlations can further improve
prediction accuracy when phenotypes are genetically correlated, be-
cause measurements on each trait provide information on the ge-
netic values of the other correlated traits (Jia and Jannink 2012). In
our study, the ssGBLUP genetic correlations improved relative to
ABLUP and consequently the Pab/Pac. Our single-trait models
showed no relative advantage of genomic over single-trait pedigree-
based models in predictive ability and accuracy, suggesting the in-
fluence of genetic correlations between the traits in the improve-
ments noted in the multitrait models (Song et al. 2019). This
improvement could also reflect the importance of additional indi-
viduals in the analysis, especially in that the study showed no linear
relationship between predictive ability and genetic correlations in-
volving the other traits in the multitrait model. It could also reflect
a reduction in absolute values of the correlations. Instead, predic-
tive ability was strongly negatively correlated with the SE of the ge-
netic correlation estimates. In single-trait models, the lack of
improvement in Pab/Pac for the genomic vs ABLUP could be due to
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various reasons. Firstly, the genotyped reference population may
not have been large enough to improve the genomic predictive abil-
ity, although it was sufficient to improve the heritability estimates.
Few comparative studies exist in conifers, but in animal studies for
example, Pab/Pac drastically reduced for genomic compared with
ABLUP when the genotyped reference population was small
(Lourenco et al. 2015; Song et al. 2019). In pigs, the change in Pab was
insignificant for genomic compared with ABLUP when the geno-
typed reference population size was <500 (Song et al. 2019).
Secondly, the parameters selected for the construction of the H-ma-
trix, especially w (the proportion of the genetic variation not cap-
tured by the markers) as well as a and b (the scaling factors) have a
significant impact on the predictive ability. In this study, a low w
was selected, which signified that most of the additive genetic vari-
ance was captured by the markers, which may not have been the
case especially given that the genotyped population was small. The
effect of the scaling factor, w, has been assessed in various studies
and a range of optimum w for different traits, up to 0.95 have been
established (Oliveira et al. 2019; Song et al. 2019). Even then, these
studies have indicated that w, a, and b can be population and trait
specific, such that using the same parameters for different traits
may lead to inaccuracy of prediction. Therefore, determining the
optimal parameters for these traits is worth investigating.

The GRR modeled increased effects of specific markers, al-
though allowing for such heterogeneity did not improve the Pab/
Pac when compared to GBLUP. This contrasts with some studies
that have indicated that Pab/Pac could be improved by utilizing
the subset of markers with the largest magnitude rather than all
markers (Chen et al. 2018). Finally, the spread of the data around
the mean was of concern in this study since chemical data is of-
ten skewed and this distribution has a potential influence on the
estimation of the genetic parameters (Kärkkäinen and Sillanpää
2012; Muranty et al. 2015). However, skewness (a measure of sym-
metry) and kurtosis (a measurement about the extremities, i.e.
tails, of the distribution of data, which provides an indication of
the presence of outliers) had negligible impact on the predictive
ability of the pedigree-based or the genomic-based models, al-
though there was a tendency for positively skewed chemical
compounds to have higher heritability estimates for all models.
Similarly, there was a tendency for compounds with expected
kurtosis coefficient (�3.0) to have higher heritability estimates
for all the models (Kim 2013), indicating that the presence of out-
liers in the data affects the prediction of breeding values more
than the symmetry for these models.

In summary, the results here provide the expected response to
genomic selection of chemical defense traits in the context of
breeding. The results suggest that genomic selection can be use-
ful for improving the accuracy of selecting for chemical pheno-
types. This is in addition to other benefits such as reducing the
length of the selection cycle, which has been demonstrated in
other studies (Li and Dungey 2018). Genomic selection is espe-
cially useful for improving selection of traits that exhibit low her-
itability estimates. Phenotyping has always been a bottleneck in
classical breeding programs but the use of high-throughput, low-
cost, and labor-saving NIRS enabled the chemotyping of the sam-
ples, which provides a promising approach to enable breeders to
perform large-scale phenotyping.
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