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Abstract

Background: Knee osteoarthritis is the most prevalent chronic musculoskeletal debilitating disease. Current treat-
ments are only symptomatic, and to improve this, we need a robust prediction model to stratify patients at an early
stage according to the risk of joint structure disease progression. Some genetic factors, including single nucleotide
polymorphism (SNP) genes and mitochondrial (mt)DNA haplogroups/clusters, have been linked to this disease. For
the first time, we aim to determine, by using machine learning, whether some SNP genes and mtDNA haplogroups/
clusters alone or combined could predict early knee osteoarthritis structural progressors.

Methods: Participants (901) were first classified for the probability of being structural progressors. Genotyping
included SNP genes TP63, FTO, GNL3, DUS4L, GDF5, SUPT3H, MCF2L, and TGFA; mtDNA haplogroups H, J, T, Uk, and
others; and clusters HV, TJ, KU, and C-others. They were considered for prediction with major risk factors of osteoar-
thritis, namely, age and body mass index (BMI). Seven supervised machine learning methodologies were evaluated.
The support vector machine was used to generate gender-based models. The best input combination was assessed
using sensitivity and synergy analyses. Validation was performed using tenfold cross-validation and an external cohort
(TASOACQ).

Results: From 277 models, two were defined. Both used age and BMI in addition for the first one of the SNP genes
TP63, DUS4L, GDF5, and FTO with an accuracy of 85.0%; the second profits from the association of mtDNA haplo-
groups and SNP genes FTO and SUPT3H with 82.5% accuracy. The highest impact was associated with the haplogroup
H, the presence of CT alleles for rs8044769 at FTO, and the absence of AA for rs10948172 at SUPT3H. Validation accu-
racy with the cross-validation (about 95%) and the external cohort (90.5%, 85.7%, respectively) was excellent for both
models.
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Conclusions: This study introduces a novel source of decision support in precision medicine in which, for the first
time, two models were developed consisting of (i) age, BMI, TP63, DUS4L, GDF5, and FTO and (i) the optimum one as
it has one less variable: age, BMI, mtDNA haplogroup, FTO, and SUPT3H. Such a framework is translational and would
benefit patients at risk of structural progressive knee osteoarthritis.

Keywords: Knee osteoarthritis, Prediction, Structural progressors, Early prognosis, Biomarkers, Machine learning,
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Background

Osteoarthritis (OA), a debilitating musculoskeletal dis-
ease, is the main reason for permanent work incapaci-
tation and seeing primary care physicians. The current
therapies available to treat OA only relieve pain and not
the structural alteration of the joint. Moreover, conven-
tional diagnosis is ineffective in the early identification of
patients in whom the disease will progress rapidly. This
situation is a bottleneck for developing effective treat-
ment aiming at the joint structure and attaining pre-
cision medicine. Finding biomarkers that will enable
stratifying OA patients into subgroups/phenotypes will
assist in a better understanding of individual patient
needs and the development of disease-modifying OA
drugs (DMOADs). In this line of thought, genetics have
been shown to play an important role in the prevalence
and progression of OA [1-5], and genetic markers are
believed to be important for the stratification of patients
with OA.

Extensive genome-wide association studies (GWAS)
yielded several single nucleotide polymorphisms (SNPs)
within different gene loci associated with OA and
included GDF5, MCF2L, TP63, FTO, DUS4L/COGS,
GNL3, SUPT3H, and TGFA, to name a few [1-10]. Some
SNPs were specific for a population, joint site, and/or
gender.

Mounting evidence also suggests the implication of
some mitochondrial DNA (mtDNA) SNPs in the patho-
genesis of OA. The mtDNA is exclusively maternally
transmitted, and its sequence evolution rate is higher
than the average nuclear DNA. As a result, a signifi-
cant number of mtDNA mutations have accumulated
sequentially along radiating maternal lineages [11]. These
accumulated mtDNA mutations (haplogroups) are char-
acterized by the presence of a particular set of SNPs in
their sequence. The most frequent Caucasian mtDNA
haplogroups are H, J, T, U, K, and others (the latter not
ascribed to any of these haplogroups) [4, 12—-15], in which
the H variant was the most frequent (about 48%) [16]. In
addition, haplogroups with a common phylogenetic ori-
gin are organized into clusters and named HV, TJ, KU,
and C-others. Although these mutations have been criti-
cal for human adaptation, some may be maladaptive in
a different environment with new lifestyles. This could

have occurred as these mutations lead to modifications
in cytoplasmic signaling molecules, thus reprogramming
nuclear DNA gene expression [11, 17]. Moreover, certain
are related to the pathogenesis of OA [4, 12, 18-23].

The need to develop tests to facilitate early and more
appropriate therapeutic intervention is widely recognized
and crucially required in the field of OA. The objective
is to obtain not only an early and accurate diagnosis but
also an early prognosis of the disease progression for a
given individual. Precision and personalized medicine or
at least stratified interventions could be achievable with
biomarkers.

During the last few decades, researchers have looked at
biomarkers mostly related to proteins in the serum/urine
for an early diagnosis, monitoring, or prediction of the
course of the disease. Yet, none is sufficiently specific or
sensitive nor has been accepted by the regulatory agen-
cies. In contrast to serum proteins, genes are not sus-
ceptible to daily activities and therefore are more stable.
Having a genetic OA biomarker should provide a robust
and powerful tool for the early identification of OA
patients at risk of structural progression.

In recent years, instead of using individual features to
identify progressors, a combination of OA markers and
patient parameters conjointly with machine learning
(ML) approaches have been found successful. However,
studies using ML methodologies generally included a
small number of patients, did not lead to robust predic-
tions, and used radiography and/or symptoms to define
OA progressors [24—31]. The two latter are well known to
lack sensitivity to early knee structure (tissue) alterations
and their changes over time [32, 33]. Moreover, symp-
toms are not recommended as, in addition to not corre-
lating well with knee OA structural progression, they are
very subjective and dependent on the population stud-
ied. However, combining radiography with quantitative
magnetic resonance imaging (MRI) variables improves
the identification of structural progressors [30]. Hence,
MRI methodology is very sensitive to knee structural
alterations, which could be detected even before mor-
phological alterations are seen with other imaging-based
technologies [34].

For the first time, the present study aims to deter-
mine, by using ML technologies, the gender-based
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predictability of some SNP genes and mtDNA haplo-
groups/clusters alone or combined with two OA major
risk factors (age and body mass index [BMI]) in the risk
of being a structural progressor of the knee. Knee struc-
tural progression was determined using features from
both radiography and quantitative MRI. The developed
models were validated using tenfold cross-validation
experiments and an external OA cohort from the com-
munity-based Tasmanian Older Adult Cohort Study
(TASOACQ).

Methods

Study population

The DNA from the peripheral blood using buffy coat
methodology was performed on 901 Caucasian (non-
Hispanic white) individuals from the Osteoarthritis
Initiative (OAI) baseline. In brief, the OAI established
and maintained a natural history database for knee OA
through yearly visits over 9 years that included 4796
participants divided into three subcohorts: control, inci-
dence, and progressor. As previously described, selected
participants were from the OAI progressor subcohort
[20]. The name “progressor” of this subcohort was given
based on having symptomatic and radiographic tibiofem-
oral knee OA at baseline. As our goal is to determine a
predictability model in participants at risk of being a
structural progressor of the knee, the participants were

Table 1 OAl participant baseline characteristics
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further classified as structural progressors or no-progres-
sors (see below).

Classification of structural progressors/no-progressors
Each participant (n=901) was assigned a label for
their probability values of being structural progressors
(PVBSP), defined as progressors/no-progressors as previ-
ously described [35]. In brief, the classification was done
using the developed ML algorithm in which the values
of five features at baseline (two X-rays: joint space width
[JSW] and joint space narrowing [JSN], and three MRI
values: mean cartilage thickness of peripheral, medial,
and central plateaus) were used as the input. Moreover,
JSN > 1 at 48 months was used as the outcome as in [35]
it was ranked the most important outcome for discrimi-
nating structural progressors. Furthermore, a threshold
of the prediction value was established for discriminating
each participant into structural progressor/no-progres-
sor. This was calculated with the F1 Max from the data
model metrics as described [36], in which all predicted
probabilities greater than or equal to the FI Max thresh-
old are labeled progressors, and the 1-FI Max threshold
values are labeled no-progressors.

The OAI participant characteristics are shown in
Table 1. Of the 901 individuals, 276 (31%) were labeled
structural progressors and 625 (69%) no-progressors
(Table 1).

Total (n=901) Progressors® (n=276) No-progressors® (n=625) p-value
Age, years 61£9 63£9 60£9 <0.0001
Gender, man, % (n) 39 (347) 41 (114) 37 (233) 0.266°
BMI, kg/m? 283+46 289+48 280+£45 0.005
WOMAC
Pain (0-20) 21£29 27+£34 19+£26 0.0003
Function (0-68) 68+92 9.1+£111 58+8.1 <0.0001
Stiffness (0-8) 15+15 174117 14114 0.015
Total (0-96) 104£129 1354156 90+£113 <0.0001
Kellgren-Lawrence grade, % (n) <0.0001°
0-1 53 (476) 26 (73) 64 (403)
2 34(310) 41(112) 32(198)
3 10 (93) 28 (77) 3(16)
4 2(22) 5(14) 1(8)
(n=796) (n=268) (n=528)
Joint space width, mm 43413 32411 49410 < 0.0001
Joint space narrowing score® 04+£06 1.1£05 0.1£0.2 <0.0001

BMI Body mass index, WOMAC Western Ontario and McMaster Universities Osteoarthritis Index, mm Medial minimum, n Number of participants

2 Structural progressors and no-progressors were as defined in the “Methods” section

Continuous variables were compared using the Student’s t-test/Mann-Whitney test, and Pproportions using the chi-squared test/Fisher’s exact test; p-values
compared progressors from the no-progressors, and a p <0.050 (in bold) was considered statistically different

“The joint space narrowing (JSN) scoring at baseline was 0-2, as described in the OAl database [37]
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Genotyping the predictors: SNP genes and mtDNA
haplotypes/clusters

A set of eight SNPs, previously associated with the sus-
ceptibility to knee OA or with cartilage thickness in
well-powered studies performed by robust GWAS, were
selected [1, 3, 5, 10].

As previously described, the SNP mtDNA haplogroups
were assigned using a single base extension (SBE) assay
[18]. The haplogroups studied were the H, ], T, Uk, and
others and the clusters HV, TJ, KU, and C-others. Of
note, as the haplogroup K is a subtype of the U, these two
haplogroups were combined as Uk.

The assignment approach of SNP genes was similar to
that of the mtDNA haplogroups. In brief, a multiplex pol-
ymerase chain reaction (PCR) was performed to amplify
the fragments that contain each of the informative SNPs
in the following genes: rs12107036 at TP63, rs4730250 at
DUS4L, rs10948172 at SUPT3H, rs11842874 at MCF2L,
rs8044769 at FTO, rs11177 at GNL3, rs143383 at GDFS5,
and rs3771501 at TGFA. The resulting PCR fragments
were further purified and assigned by the SBE assay, and
the informative SNPs were visualized after loading the
purified SBE product into an ABI 3130XL genetic ana-
lyzer (Applied Biosystems, Foster City, CA, USA). The
assigned SNP genes and mtDNA haplogroups were veri-
fied by direct capillary sequencing in 30% of the samples.

Model development

Twelve independent variables in PVBSP estimation were
used and included the two major OA risk factors, age and
BMI, and SNPs in eight genes, and mtDNA haplogroups/
clusters as in Eq. 1.
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would permit the highest accuracy. Consequently, the archi-
tecture of the ML methodologies could be different for each
gender in that some parameters should be modified for each
gender (Additional file 4), resulting in different models.

Figure 1 illustrates the methodology used for PVBSP
forecasting for each gender.

Data loading The first step was data loading, which was
randomly separated into training (70%) and testing (30%)
datasets for both progressors and no-progressors.

Input variables Next was the definition of the input var-
iables in PVBSP forecasting consisting of the 12 above-
described variables.

Machine learning models For each gender, seven ML-
based approaches (single and hybrid) were applied to
model the PVBSP. These ML classification methodologies
included the single algorithm support vector machine
(SVM) [36], K-nearest neighbor (KNN) [52], random for-
est (RF) [53], decision tree (DT) [54], and extreme learn-
ing machine (ELM) [55], as well as the hybrid self-adap-
tive ELM (SA-ELM) [56], and a combination of decision
tree and self-adaptive ELM (DT-SAELM). For details on
their implementation, refer to Additional file 5.

Feature selection, sensitivity, and synergy analyses As a
convention, the model with a minimum of variables that
estimates the outcome with high accuracy is desirable.
We then analyzed if using lesser input variables can pro-

PVBSP = f (age, BMI, mtDNAhaplogroup, cluster, TP63, FTO, GNL3, DUS4L, GDF5, SUPT3H, MC2FL, TGFA) 1)

A dominant model of the risk alleles was used to assess
the influence of the SNPs as we assume that one copy
of the risk allele is enough to modify the risk. The fac-
tors, age and BMI, were included as in addition to being
interconnected with structural OA [38-40], some genetic
polymorphisms, as well as mtDNA variants, have been
found associated with these factors [41-47].

Additional file 1: Fig. S1 shows the frequency of eight
SNP genes for the whole population, Additional file 2: Fig.
S2 shows the association and frequency of mtDNA hap-
logroups and clusters in the study population (7=901),
and data are described in Additional file 3.

Gender-based model development for PVBSP forecasting

As it was reported that some genetic polymorphisms affect
serum factors in a gender-dependent manner [47-51], we
elected to build the models using gender separation, which

vide a simpler but accurate model compared to the one
that uses all 12 variables. Using the best ML methodol-
ogy found when the seven ML methodologies were com-
pared, feature selection was then performed using a sen-
sitivity analysis. To this end, all the 12 variables and the
effect of each input variable were evaluated.

This was followed by evaluating the impact effect of the
variable synergistically. For this analysis, two parameters
were removed from the input variables and the accuracy
of the new ML model was evaluated. This approach is
directly linked to the model’s response with 12 variables
with the synergy between two input variables for esti-
mation of the PVBSP. Moreover, when one variable was
linked to another, we defined it as a fixed variable, and the
variable that could have an impact along with the fixed
variable was considered a flexible variable. According to
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Fig. 1 Flowchart of the proposed methodology in probability values of being structural progressors (PVBSP). DT, decision tree; DT-SA-ELM, decision
tree and self-adaptive ELM; ELM, extreme learning machine; KNN, K-nearest neighbor; mtDNA, mitochondrial DNA; PVBSP, probability values of
being structural progressors; RF, random forest; risk factors, age and bone mass index; SA-ELM, self-adaptive ELM; SVM, support vector machine;
TASOAC, external cohort from the community-based Tasmanian Older Adult Cohort Study

the accuracy of the models, three impact levels named Validation and reproducibility of the developed

highest, moderate and lowest were defined. Further- gender-based models

more, we used the variables from the highest and moder-  To ensure the generalization of the developed models, a
ate impacts and delineated two scenarios. The optimum  two-step validation was performed. Internal validation
model was selected from these analyses by simultane- was done using the tenfold cross-validation technique
ously considering the accuracy and simplicity (i.e., lower  [57], and a reproducibility analysis was performed with
number of input variables).
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an external cohort (TASOAC) [58] to check the general-
izability of the models with a new data set.

Cross-validation was used to measure the skill of the
established ML model in that it verifies how the results
of the model may generalize to an independent dataset,
removes the redundancy in the model ensuring its reli-
ability with a different subgroup of the dataset, and pre-
vents overfitting. The chosen model was evaluated using
tenfold cross-validation, which measures the level of fit-
ness in prediction to derive a reliable estimation of the
model’s performance for independent datasets. Hence, all
individuals were randomly and equally divided into ten
different groups (also refer to Additional file 6: Fig. S3).
One group was reserved as a test sample (validation), and
the remaining nine were considered training samples.
After training, the reserved sample (validation) was used
to evaluate the model. This process was repeated ten
times to check the accuracy of the ML models.

Each TASOAC participant was, as for the OAL labeled for
the PVBSP classification. From this cohort, 229 participants
had the DNA and the required features for PVBSP classifi-
cation. The TASOAC participant baseline characteristics
are described in Table 2. Of the 229 individuals, 71 (31%)
were labeled progressors and 158 (69%) non-progressors.

Results

Participant characteristics

Comparison of the OAI cohort (Table 1) baseline
characteristics between the structural progressors
and no-progressors showed, for the former, a higher
percentage of participants with a Kellgren-Lawrence
(KL) score>0-1, Western Ontario and McMaster

Table 2 TASOAC participant baseline characteristics
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Universities Osteoarthritis Index (WOMAC) scores and
JSN, and a lower JSW. Age and BMI were also slightly
higher in the structural progressor group, but although
they reached statistical differences, they were not clini-
cally significant.

For the TASOAC cohort (Table 2), a comparison
between the two groups showed that the structural pro-
gressors have a higher WOMAC score and JSN, a lower
JSW, and fewer men.

OAI and TASOAC cohorts have the same proportion for
structural progressors (31%) and no-progressors (69%).

Comparison of the machine learning methodologies

With the OAI cohort, seven methodologies were com-
pared using the 12 independent variables (Eq. 1). Figure 2
indicates the accuracy of the different ML methodolo-
gies in PVBSP forecasting at both the training and testing
stages.

Data from the whole population showed that in the
training stage (Fig. 2a), both the SVM and RF method-
ologies had good performances in all the population
for structural progressors and no-progressors (mean
of about 93%). The other methodologies resulted in
poorer performances, primarily related to the progres-
sor population. To select the superior model in PVBSP
forecasting, the performance of different methodolo-
gies was analyzed in individuals who had not played
a role in the calibration process, the testing stage
(Fig. 2b). Data showed that only SVM demonstrated
excellent accuracy for both groups. SVM methodology
was thus further used for the development of the pre-
diction models.

Total (n=229) Progressors® (n=71) No-progressors® (n=158)  p-value
Age, years 62+7 63+7 61+7 0.155
Gender, man, % (n) 48 (109) 37 (26) 53(83) 0.032°
BMI, kg/m2 275445 283+50 27.0£4.1 0.127
WOMAC
Pain (0-20) 13+£25 17+28 12124 0.045
Function (0-68) 44490 56+104 38+83 0.055
Stiffness (0-8) 07+13 10£15 05412 0.002
Total (0-96) 64+£124 83£140 55+£116 0.027
Joint space width, mm 47+£10 38408 51408 < 0.0001
Joint space narrowing, score® 05405 1.0+0.2 0305 < 0.0001

BMI Body mass index, WOMAC Western Ontario and McMaster Universities Osteoarthritis Index, mm Medial minimum, n Number of participants

2 Structural progressors and non-progressors were as defined in the “Methods” section

Kellgren-Lawrence was unavailable for the Tasmanian Older Adult Cohort Study (TASOAC) cohort. Continuous variables were compared using the Student'’s t-test/
Mann-Whitney test; Pproportions were compared using the chi-squared test/Fisher’s exact test; p-values compared progressors from the no-progressors, and a
p <0.050 (in bold) were considered statistically different. The p-value in italic indicates that it did not quite reach the statistical significance

“The joint space narrowing (JSN) scoring was 0-2, as described [37]
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Fig. 2 Comparison of the different machine learning methodologies in PVBSP in the OAIl population. a Training (train) and b testing (test) stages
accuracy for all the population. DT, decision tree; DT-SA-ELM, decision tree and self-adaptive ELM; ELM, extreme learning machine; KNN, K-nearest
neighbor; OAl, Osteoarthritis Initiative; PVBSP, probability values of being structural progressors; RF, random Forest; SA-ELM, self-adaptive ELM; SVM,
support vector machine; train, training stage; test, testing stage

Feature selection: sensitivity analysis

Using the whole OAI population, the effect of each 12 vari-
ables (Eq. 1) was evaluated in which all the models, except
model 1, consisted of removing a variable (Fig. 3a). Data
showed that model 1 had 94.8% accuracy in the training
stage and 96.8% in the testing stage (Fig. 3b, c). Moreover,
the removal of each variable demonstrated in the train-
ing stage (Fig. 3b) that not using GDF5 (model 5), DUS4L
(model 6), TP63 (model 9), and age (model 13) as input
variables slightly reduced the model’s accuracy in pre-
dicting PVBSP compared to model 1. At the testing stage
(Fig. 3c), the variables BMI (model 12) and age (model 13)
were also reduced compared to model 1. These data thus
suggest that although the accuracy of these models is close,
based on slight differences in training and testing stages,
the important variables are age, BMI, TP63, DUS4L, and
GDFS5, and the following Eq. 2 can be considered as a
model for PVBSP forecasting the progressor population:

PVBSP = f (age, BMI, TP63, DUS4L, GDF5) (2)

When the population was divided into structural pro-
gressors and no-progressors, findings (data not shown)
revealed that the difference found for the whole popula-
tion was related to the progressor population. Hence,
when only the progressor population was used, the
model using all the 12 variables (model 1) showed an
accuracy of 88.8% in the testing stage. For the no-pro-
gressors, there was no difference in the accuracy between
the different models suggesting that the variables did not

impact the outcome. Therefore, the no-progressor popu-
lation was not detailed further.

Machine learning model development

To find if lesser input variables can provide an accurate
model, we further evaluated, by using the structural
progressor population and the five variables as in Eq. 2,
the scenarios of using one variable at a time followed by
combining two to five variables. As illustrated in Fig. 4,
31 different ML models in PVBSP forecasting were devel-
oped. Data revealed that for models with only one vari-
able (Fig. 4a), the accuracies of TP63 (M3), DUS4L (M4),
and GDFS (M5) at both training and testing stages were
nil. Although the accuracy improved for age (M1) and
BMI (M2), the numerical values (<21.3%) were still very
low. However, this improvement substantiates the impor-
tance of these two variables (age and BMI) as found in
the sensitivity analysis (Fig. 3).

For the models with two variables (Fig. 4b), the highest
accuracy (testing stage 41.3%) considered age and BMI
simultaneously (M6). A comparison of the combination
of each of these variables with age (M7-M9), with one
consisting of age and BMI together (M6), showed that
replacing BMI with TP63 (M7), DUS4L (M8), and GDF5
(M9) reduced the modeling accuracy in the testing stage
by 12.5%, 18.8%, and 11.3%, respectively. However, if one
of the inputs was BMI and the other two were one of the
SNP genes (TP63 [M10], DUS4L [M11], GDES [M12]), the
prediction accuracy was further reduced. Moreover,
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Fig. 3 Sensitivity analysis using the support vector machine. a Representation of the different input combinations. Model number (No.) 1 includes
all 12 variables, and one variable is removed in each of the others. A black rectangle indicates the used variable, while the white cells the non-used
variable. In b and ¢, accuracy data in the training (train) and testing (test) stages of the developed support vector machine (SVM) with the different
variable combinations using the whole (all) population (n =901) is shown. The ovals in b and c indicate the models having a lower accuracy when
the given variable is removed. BMI, body mass index

by not using age and BMI as one of the inputs of the
models with two variables, we could not predict any of
the progressors; the accuracy value was zero. These find-
ings indicate that using TP63, DUS4L, and GDFES without
the risk factors cannot yield an efficient model in PVBSP
forecasting.

As shown in Fig. 4c, adding one of TP63, DUS4L,
or GDF5 as a variable to both age and BMI showed an
increased accuracy. Models with three features that
employed only one of the risk factors (M19-M21 for age
and M22-M24 for BMI) had lower accuracy (range 21.3—
40.0%) than the model with these two variables (M6,
41.3%). It should be noted that the simultaneous use of
three variables without those of the two risk factors did
not predict the progressors with high accuracy. Hence,
the significant effect of age and BMI on PVBSP forecast-
ing was confirmed.

For models with four and five variables (Fig. 4d), M26—
M28 had higher accuracy than the best model offered
among those using only three variables, i.e., M16. M27
demonstrated the best performance (testing stage,
73.8%). This model uses, in addition to age and BMI,
TP63 and GDF5. The combination of DUS4L and GDF5
(M28) and DUS4L and TP63 (M26) were in the second
and third place, respectively. As for the models with
fewer variables (Fig. 4b, c), the non-simultaneous use of
BMI and age (M29 and M30) led to a model with lower
accuracy.

These results (Fig. 4) show that increasing the number
of inputs is effective when both age and BMI are con-
sidered. However, the best performance (testing stage
78.8%) was obtained with M31, which considers the five
variables as in Eq. 2.
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a) Input combinations - Models with one variable Accuracy (%)
Age BMI TP63 DUS4L  GDF5 Train Test

M1 ] 17.9 21.3

M2 ] 15.8 17.5

M3 | 0.0 0.0

M4 ] 0.0 0.0

M5 ] 0.0 0.0

b) Input combinations - Models with two variables Accuracy (%)
Age BMI T7P63 DUS4L  GDF5 Train Test

M6 ] ] 50.0 413

M7 ] ] 25.0 28.8

M8 ] ] 245 22.5

M9 ] ] 29.1 30.0

M10 ] ] 15.3 15.0

Ml1 ] ] 16.3 17.5

M12 ] | 13.8 15.0

M13 ] ] 0.0 0.0

M14 ] [ ] 0.0 0.0

M15 | | 0.0 0.0

C) Input combinations - Models with three variables Accuracy (%)
Age BMI TP63 DUS4L  GDF5 Train Test

M16 u u u 58.2 56.3

M17 | ] ] 60.2 53.8

M18 u ] ] 57.1 55.0

M19 ] ] ] 27.0 27.5

M20 u ] ] 383 40.0

M21 u ] ] 34.7 27.5

M22 ] u u 20.9 25.0

M23 ] ] 235 26.3

M24 ] ] ] 20.9 21.3

M25 u | | 0.0 0.0

d) Input combinations - Models with four and five variables Accuracy (%)
Age BMI TP63  DUS4L  GDF5: Train Test

M26 u ] ] ] 68.9 66.3

M27 u ] ] ] 72.4 73.8

M28 u u u u 64.3 71.3

M29 ] ] ] ] 459 41.3

M30 u ] | u 34.7 28.8

M31 ] ] ] | u 75.5 78.8

Fig. 4 Finding the best input variable combinations. The combinations with the most important variables from sensitivity analysis for the
progressor population used models built with a one variable, b two variables, ¢ three variables, and d four and five variables. BMI, body mass index;
M1-M31 number of models; train, training stage; test, testing stage
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Synergy of variables

The above data showed that, for the structural progres-
sor population, the accuracy of M31 (five variables;
testing stage, 78.8%) was lower than model 1 (12 vari-
ables; testing stage, 88.8%). Therefore, we assumed that
some variables that are not considered in M31, includ-
ing mtDNA haplogroup, cluster, FTO, GNL3, SUPT3H,
MCPF2L, and TGFA, could exert a synergistic effect with
one or more variables in M31. This led to examining
the synergy between the variables, and 66 new and dif-
ferent ML models were developed. Three impact levels
were defined by comparing the results of each of these
models with model 1 (Eq. 2) as the base model and
according to the accuracy.

Table 3 illustrates, from highest to lowest, the impact
effect between a fixed variable (variable 1) and one of
the variables as listed in variable 2. Data revealed that
the highest synergy impact was found for age with (i)
BM]I, (ii) GNL3, (iii)) MCF2L, and (iv) FTO. Those hav-
ing a moderate impact were age with (i) mtDNA hap-
logroup, (ii) GDFS, (iii) SUPT3H, (iv) TGFA, and (v)
TP63; BMI with (vi) TP63 and (vii) SUPT3H, and (viii)
GDFS5 and MC2FL.

According to the highest and moderate impacts, two
different scenarios were defined to find the optimum
model (Table 4). In scenario 1, in addition to the combi-
nation of age and BMI, the factors found to have a high
impact on synergies, GNL3, MCF2L, and FTO, were
added one at a time to M31. In scenario 2, as the mtDNA
haplogroup showed a moderate impact with age, it was
used in addition to age and BMI as a fixed input variable,
and the other SNP genes, TP63, FTO, GNL3, DUS4L,
GDFS5, SUPT3H, and TGFEA, were added one at the time
or in combination. All of the SNP genes were tested to
ensure the accuracy and reliability of the final results.

Table 3 Impact effect of the variable synergies in PVBSP forecasting
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Scenario 1

Three different models (Table 4, scenario 1) named
M32-1 to M31-3 were defined and included the five
variables of the model M31 plus GNL3, MCF2L, or
FTO, respectively. The performance in the testing stage
of M32-1 (82.7%), M32-2 (81.3%), and M32-3 (85.0%)
was slightly lower than model 1 (12 variables, 88.8%)
but higher than that of M31 (five variables, 78.8%).
M32-3 (M31+ FTO) outperformed M31 and M31-2.
Therefore, and to have a model with a lower number of
variables, M32-3 appeared to be a very good model and
consisted of:

PVBSP = f (age, BMI, TP63, DUS4L, GDF5, FTO).
(3)

Scenario 2

To verify if we could obtain a better accuracy with fewer
variables, we analyzed another scenario consisting of age,
BMI, and mtDNA haplogroup as fixed variables with one
to seven SNP genes. This resulted in 109 combinations
with four to ten variables and was named MH1-109. The
analyses of all input combinations showed that the best
accuracy range at the testing stage was 80.0-88.8%, and
only those are represented in Table 4, scenario 2. Data
showed that for four models with six to nine variables,
the accuracy was identical (MH46, MH80, MH101, and
MH106) in the testing stage (88.8%) as the one for model
1 with 12 variables. The model MH2 with four variables
was at 80.0%, and MH17 with five variables at 82.5%.
Given that the optimum model should not only have
an excellent accuracy but the least number of variables,
MH17 was selected as the optimal model:

PVBSP = f(age, BMI, mtDNAhaplogroup, FTO, SLIPTSH).
(4)

PVBSP forecasting Variable 1 Variable 2
Highest impact Age BMI, GNL3, MCF2L, FTO
Moderate impact Age mtDNA haplogroup, GDF5, SUPT3H, TGFA, TP63
BMI TP63, SUPT3H
GDF5 MCF2L
Lowest impact TGFA mtDNA haplogroup, cluster, FTO, GNL3, SUPT3H, MCF2L
SUPT3H mtDNA haplogroup, cluster, FTO, GNL3
GNL3 mtDNA haplogroup, cluster, FTO
FTO mtDNA haplogroup, cluster
Cluster mtDNA haplogroup

Variable 1 indicates a fixed variable, and variable 2 is a flexible variable that could have an impact along with variable 1

PVBSP Probability values of being structural progressors
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Table 4 Synergy analysis in PVBSP forecasting

Scenario 1
Model Input combinations Accuracy (%)

Train Test
Model 1 Equation 1 (12 variables) 83.2 88.8
M31 Equation 2 (5 variables) 75.5 788
M32-1 M31+4GNL3 814 82.7
M32-2 M314+MCF2L 77.0 81.3
M32-3 M314FTO 82.7 85.0
Scenario 2
No. of inputs Model no Accuracy (%)

Train Test
(34 1) variables MH2 755 80.0
Age, BMI, mtDNA haplogroup, FTO
(34 2) variables MH17 852 825
Age, BMI, mtDNA haplogroup, FTO, SUPT3H
(34 3) variables MH46 82.1 88.8
Age, BMI, mtDNA haplogroup, FTO, SUPT3H, GNL3
(34 4) variables MH80 82.7 88.8
Age, BMI, mtDNA haplogroup, TP63, DUS4L, GDF5, TGFA
(34 5) variables MH101 83.2 88.8
Age, BMI, mtDNA haplogroup, TP63, GNL3, DUS4L, GDF5, TGFA
(34 6) variables MH106 83.2 88.8

Age, BMI, mtDNA haplogroup, TP63, FTO, SUPT3H, GNL3, DUS4L, GDF5

Model 1 is Eq. 1: PVBSP =f(age, BMI, mtDNA haplogroup, cluster, TP63, FTO,
GNL3, DUS4L, GDF5, SUPT3H, MC2FL, TGFA), and M31, Eq. 2: PVBSP =f(age, BMI,
TP63, DUS4L, GDF5)

M Model, No. Number, PVBSP Probability values of being structural progressors,
test Testing stage, train Training stage

Effect of each variable on the optimum model, MH17

The effect of each variable on the model MH17 was done
using sensitivity analysis. Figure 5 demonstrates the
impact of each SNP mtDNA haplogroup (others, H, Uk,
T, J) and gene genotype for FTO (CC, CT, and TT) and
SUPT3H (AA, GA, and GG) in PVBSP forecasting. The
high percentage of error indicates the high impact of the
studied variable.

Data showed that the mtDNA haplogroup H has the
highest impact with an error of 35.0%, followed by UK
with 16.1%, and <10% for the mtDNA haplogroup oth-
ers, T, and J. FTO and SUPT3H both showed an identi-
cal highest error (37.3%) for both the presence of CT and
absence of AA, respectively. The lowest error of FTO and
SUPT3H was attained for the absence of TT (17.4%) and
the presence of GG (9.8%), respectively.

Validation of the developed models using cross-validation

and reproducibility with an external cohort (TASOAC)

The performance of M32-3 (Eq. 3) and MH-17 (Eq. 4)
models when using the ten repetitions of tenfold
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Fig. 5 Effect of each variable of the model MH17. Impact of each
mtDNA haplogroup and genotype alleles on the accuracy of the
model MH17: PVBSP =f(age, BMI, mtDNA haplogroup, FTO, SUPT3H)
for the progressor population. The high percentage of error indicates
the highest impact of the variable. rs8044769 at FTO, presence of CC
and CT, absence of TT: the risk allele C; rs10948172 at SUPT3H absence
of AA, presence of GA and GG

cross-validation showed an average accuracy of 95.1%+2.1
for M32-3 and 94.6%+2.1 for MH-17 (Additional file 7:
Fig. S4).

Reproducibility experiment with the external cohort
TASOAC also demonstrated an excellent accuracy for
both M32-3 (90.5%) and MH17 (85.7%), confirming the
reliability and performance of these two developed ML
models in the early detection of at-risk knee OA struc-
tural progressors.

Discussion

The current study’s main goal was to improve the clinical
prognosis of knee OA for a better therapeutic approach.
In this perspective, genetic biomarkers hold great poten-
tial for improving clinical outcomes in OA. We investi-
gated, using ML methodologies, the prediction of SNP
genes and mtDNA haplogroups/clusters as early predic-
tors of knee OA structural progression.

All the SNPs evaluated in this work were shown to be
related to OA [1, 3, 5-10]. Likewise, the mtDNA haplo-
groups/clusters H, J, T, Uk, and others and the clusters
HYV, TJ, and KU have all been associated with the disease.
Hence, the ] and T, as well as the cluster T], have not only
been associated with a decreased risk of knee OA but
also with a lower rate of incidence and progression of
knee OA [4, 12, 18-21, 23] and that patients belonging
to cluster T] had a slower OA progression than patients
belonging to cluster KU [22]. In contrast, patients with
knee OA carrying (i) the haplogroup U and the cluster
KU showed a more severe progression of the disease [18],
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(ii) the haplogroup H was more prone to OA progression
and also total joint replacement [12, 19, 22], and (iii) the
cluster HV had a marginal correlation with OA [59].

Data-driven approaches were used as such methodolo-
gies do not require an a priori hypothesis and are, there-
fore, able to identify unanticipated patterns in the data
and offer the potential to provide new insights. These
methods are widely used in medical research but only
recently applied to OA. In an ML-based study, one of the
important challenges is the selection of an appropriate
supervised methodology enabling optimal performance
in classifying the dataset. Here, we compared seven ML
techniques in which each of them was fine-tuned with
hyperparameters. Data showed that the supervised SVM
methodology had the highest accuracy.

Using the SVM ML methodology, the gender-based
models consisting of all the variables (n=12) had high
accuracy (88.8%). However, in general, a model should
have a minimum of features in addition to the maximum
possible accuracy to be more easily applicable. To this
end, and to determine the optimum model, 277 models
were evaluated, and two gender-based scenarios were
developed. The first ones (scenario 1) consisted of age,
BMI, and four SNP genes (TP63, DUS4L, GDF5, FTO)
with an accuracy of 85.0%.

Furthermore, a second scenario was developed by
exploiting data from the synergy analysis, in which a
moderate level of synergy is found between age and
mtDNA haplogroup, and using them as a fixed variable
in addition to the BMI. This latter consisted of one less
variable and included the three fixed ones (age, BM],
and mtDNA haplogroup) in addition to the SNP genes,
FTO and SUPT3H, and with excellent accuracy (82.5%).
Therefore, the latter was selected as the optimum model
to predict early structural OA knee progressors, as it has
one less variable than the other model. In this model,
the mtDNA haplogroup H, as well as the presence of the
alleles CT for rs8044769 at FTO and the absence of AA
for rs10948172 at SUPT3H, demonstrated the highest
impact.

The involvement of the mtDNA haplogroup H as a
predictor of poor OA prognosis is not new. Different
studies demonstrated that compared to other mtDNA
haplogroups, especially those belonging to the mtDNA
cluster JT, patients with the haplogroup H (or cluster
HV) show a higher rate of OA incidence and progression
[4, 12]. Among the proposed functional consequences
of harboring this variant, higher free radical production,
lower cell survival under oxidative stress conditions, and a
higher grade of apoptosis stand out [12].

In addition, the effect of specific nuclear risk alleles
can be conditioned by the mitochondrial background
and vice versa through mitonuclear interactions [60—62].

Page 12 of 16

This was reported in diseases such as Alzheimer’s, where
an association between the cluster HV and the risk of
this disease following adjustment for the apolipoprotein
E gene (APOE4) status was detected [63], and in obese
patients with type 1 diabetes mellitus [45]. Mitonuclear
interactions have also been described in terms of the dif-
ferential association of the haplogroups H and ] with the
methylation status of articular cartilage by which apop-
tosis, among other biological processes, is enhanced in
cartilage with the haplogroup H and repressed in those
having the haplogroup J [64].

Interestingly, the rs8044769 at the FTO variant was
found to be linked to OA via its effect on the BMI [43].
Taking into account, on the one hand, previous asso-
ciations of mitochondrial background with the risk of
obesity [44—46] and, on the other hand, the differen-
tial methylation pattern between haplogroups H and
J in cartilage in genes related to developmental pro-
cesses, including the homeobox family [64], potential
interactions between haplogroup H/cluster HV able to
modify the risk of structural progression in OA are not
surprising.

This study has several strengths. The population
included a sensible number of participants for both gen-
ders, enabling the models to be developed in a gender-
based fashion, permitting a high accuracy of the models.
The validation and reproducibility of the developed
models using cross-validation and an external cohort,
respectively, demonstrated excellent accuracies for both
M32-3 and MH17 models, reinforcing the robustness
and generalizability of the developed models. In addi-
tion, OAI and TASOAC cohorts consist of people in the
mild-moderate stage of the disease, thus representing a
general population. Another strength is that, for classi-
fying joint structural progressors (PVBSP) for each indi-
vidual, and as suggested by Nelson et al. [30], we applied
an image-based prediction algorithm using both radio-
graphic and MRI variables and an overtime X-ray as the
outcome from our previous study [35]. Finally, the devel-
opment of our models using genetic and demographic
information could have improved the ability of the mod-
els to predict knee structural alterations compared to
having only genetic information, as previously described
[65]. Moreover, incorporating modifiable risk factors
(e.g., BMI) could also have increased the accuracy of the
predicted models, such as previously described for knee
OA [66].

Like all studies, the present has limitations. First, the
participants were all of Caucasian origin; therefore, the
results of this study did not extend beyond this ethnicity.
Second, although we used the most common SNP genes
and Caucasian mtDNA haplogroups associated with OA,
others could also be tested. Third, for some SNP genes,
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the number of participants having a specific allele was
limited (Additional file 1: Fig. S1). Fourth, although unbi-
ased evaluation of models in training and testing stages
were confirmed by tenfold cross-validation, one might
argue that the results from the OAI cohort be optimistic
in forecasting PVBSP as a nested cross-validation could
have been used. However, this concern is alleviated by
the validation analysis using an independent external
cohort in which an excellent accuracy was obtained for
both developed ML models. Fifth, we acknowledge that
one of the important challenges in performing this study
was the proximity of the results in the development of
the models, and more specifically, in the sensitivity anal-
ysis. Hence, the results of the different models for SNP
genes and mtDNA haplogroups/clusters were very close,
and the important variables were selected based on small
differences using both training and testing stages. How-
ever, by doing this, we were able to decrease the number
of variables from 12 to only five or six, while maintaining
high accuracies for the models.

Results from this study are translational for Caucasians
at risk of structural progressive knee OA and could have
high and direct clinical relevance as they could improve
clinical prognosis with real-time patient monitoring. The
next step will be to transform these automated models
of OA knee structural progressors into an application
that will make it practical for use by clinicians for a given
patient. These models could be used early during the
OA process and guide clinicians to adapt the therapeu-
tic strategy to improve long-term harmful outcomes. In
addition, they could assist in the design of knee DMOAD
clinical trials. As the disease progression may be slow
for many OA patients, DMOAD trials require extremely
large numbers of patients and longer follow-up peri-
ods. However, stratifying patients who will likely have
more rapid knee structural progression would result in
enriched trials with appropriate patients as a result of dis-
criminating potential responders from non-responders
for a given therapeutic approach. Such a selection of OA
patients, which at present is a major hurdle for DMOAD
clinical trials, would result in lower trial costs, opportu-
nities for testing more products, and faster end results.

Conclusions

Understanding the links between efficient therapies and
customized treatment plans in OA requires the ability
to subgroup the patients at an early stage of the disease.
ML provides reliable methodologies to classify these
patients for tailoring decisions/treatments to individuals
and to improve the recruitment of the right patient for
a clinical trial. This study introduces a novel source of
decision support in precision medicine in which, for the
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first time, two models consisting of (i) age, BMI, TP63,
DUS4L, GDF5, and FTO and (ii) age, BMI, mtDNA hap-
logroup, FTO, and SUPT3H with the latter having one
less variable are considered the optimum one. Such a
framework would benefit Caucasian patients at risk of
structural progressive knee OA, as it will personalize
and improve the care of patients with knee OA.
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Additional file 1: Fig. S1. Frequency of single nucleotide polymor-

phism (SNP) genes in the studied population (n=901). We performed

a dominant model of the risk alleles for the 8 SNPs: rs12107036.TP63,
rs4730250. DUS4L, rs10948172.SUPT3H, rs11842874.MCF2L, rs8044769.FTO,
rs11177.GNL3, rs143383.GDF5, rs3771501.TGFA. The column indicates the
frequency for all the population. No, absence of the allele; NP, the number
of no-progressors; P, the number of progressors; Yes, presence of the allele.
Progressors and no-progressors are defined in the Methods section.

Additional file 2: Fig. S2. Association and frequency of mtDNA haplo-
groups and clusters in the studied population (n=901). a) Association
between mtDNA haplogroups and clusters. The number of participants

is indicated in parenthesis and above the arrows. The yellow line circle
indicates that all J and T are associated with TJ, the dotted blued lined
circle that all the Uk are associated with KU, and the black line circle that
the mtDNA haplotype others are related in part to HV (dotted arrow) and
the C-others (bold arrow). In b) the frequency in the studied population of
the mtDNA haplogroups and ¢) the frequency of the mtDNA haplogroup
clusters; the column indicates the frequency for all the population; NP, the
number of no-progressors; P, the number of the progressors. Progressors
and no-progressors are defined in the Methods section.

Additional file 3. Data of the frequency of single nucleotide polymor-
phism (SNP) genes and association of the mtDNA haplogroups with the
clusters and their frequencies in the studied population (901).

Additional file 4. The optimum values of the different machine learn-
ing tools. DT, Decision Tree; ELM, Extreme Learning Machine; SA-ELM,
Self-Adaptive Extreme Learning Machine; DT-SA-ELM, Decision Tree and
Self-Adaptive Extreme Learning Machine; KNN, K-Nearest Neighbor; RF,
Random Forest; SVM, Support Vector Machine; L1TQP, L1 soft-margin
minimization by quadratic programming; SMO, Sequential Minimal
Optimization.

Additional file 5. Methods of the implementation of the machine learn-
ing classification methodologies.
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Additional file 6: Figure S3. K-fold cross-validation methodology. All
individuals were randomly divided equally into ten different groups. One
group was reserved as a test sample (validation), and the nine remaining
groups were considered as training (train) samples.

Additional file 7: Figure S4. Ten-fold cross-validation of the M32-3 and
MH17 models. Validation of the model a) M32-3 (age, bone mass index
[BMI], TP63, DUS4L, GDF5, FTO) and b) MH17 (age, BMI, mtDNA haplo-
group, FTO, SUPT3H) was done using the ten-fold cross-validation (k-fold)
methodology, as described in the Methods section and Additional file 4.
Train, training stage; test, testing stage.
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