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Fish feeds supplemented 
with calcium‑based buffering 
minerals decrease stomach acidity, 
increase the blood alkaline tide 
and cost more to digest
Harriet R. Goodrich1*, Alex A. Berry2, Daniel W. Montgomery3, William G. Davison2 & 
Rod W. Wilson2*

Predatory fish in the wild consume whole prey including hard skeletal parts like shell and bone. Shell 
and bone are made up of the buffering minerals calcium carbonate (CaCO3) and calcium phosphate 
(Ca3(PO4)2). These minerals resist changes in pH, meaning they could have physiological consequences 
for gastric acidity, digestion and metabolism in fish. Using isocaloric diets supplemented with either 
CaCO3, Ca3(PO4)2 or CaCl2 as non-buffering control, we investigated the impacts of dietary buffering on 
the energetic cost of digestion (i.e. specific dynamic action or SDA), gastric pH, the postprandial blood 
alkalosis (the “alkaline tide”) and growth in juvenile rainbow trout (Oncorhynchus mykiss). Increases 
in dietary buffering were significantly associated with increased stomach chyme pH, postprandial 
blood HCO3

−, net base excretion, the total SDA and peak SDA but did not influence growth efficiency 
in a 21 day trial. This result shows that aspects of a meal that have no nutritional value can influence 
the physiological and energetic costs associated with digestion in fish, but that a reduction in the 
SDA will not always lead to improvements in growth efficiency. We discuss the broader implications 
of these findings for the gastrointestinal physiology of fishes, trade-offs in prey choice in the wild, 
anthropogenic warming and feed formulation in aquaculture.

Digestion and assimilation of ingested food incur an energetic cost to the animal known as the specific dynamic 
action (SDA). The SDA arises as a result of the physical, biochemical and physiological processes necessary to 
capture, breakdown and assimilate a meal1–4. Meal type, size, feeding frequency, and environmental conditions 
like temperature, salinity, and hypoxia are all known to affect the magnitude, duration and peak of the SDA3,5–9. 
How these factors influence the SDA, relates to how they affect the physiological, biochemical or mechanical 
costs associated with digestion. For example, feeds with a higher protein content elicit a greater SDA due to the 
costs associated with protein synthesis10, while liquid, cooked or soft tissue meals result in a reduced SDA due 
to the lesser requirement for mechanical breakdown in the stomach7,11. Recently, dietary buffering (ability to 
resist changes in acidity) and diet acidity have been shown to have a significant effect on the SDA in juvenile 
barramundi (Lates calcarifer) due to impacts on gastric acid secretion and the recovery of acid–base homeostasis 
following feeding12.

During feeding and digestion gastric hydrochloric acid (HCl) secretion is necessary for the activation of 
proteolytic enzymes in the stomach which break down long chain amino acids13. Acid-secretion by gastric 
oxyntopeptic cells (the equivalent of parietal cells in mammals) is driven by the intracellular reversible hydration-
dehydration reaction of CO2:

Acid secretion consumes energy directly through the use of H+/ K+-ATPase in the oxyntopeptic cells that 
line the stomach in most fish, with one ATP consumed by H+/K+ ATPase for every H+ pumped across into the 

CO2 +H2O ⇋ HCO−
3 +H+
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stomach lumen14–16. As a result, for every O2 consumed, gastric H+/K+ ATPase will pump a maximum of 5 H+ 
into the gastric lumen, but due to the inevitable back-leak of protons, the efficiency is likely to be lower (e.g. 2.3 
H+ per O2 consumed16). This same reaction will also create equimolar amounts of bicarbonate (HCO3

−) within 
oxyntopeptic cells17. In order to maintain intracellular acid–base balance, excess cellular HCO3

− is transferred 
into the blood across the basolateral membrane. The entry of HCO3

− into the blood causes a rapid rise in blood 
pH and HCO3

− concentration following feeding, a phenomenon known as the post-prandial alkaline tide18–20. 
Freshwater fish are able to balance this blood alkalosis by excreting most of the excess HCO3

− via the gills18. 
This consumes further energy because the net excretion of HCO3

- into the water involves the basolateral extru-
sion of H+ into the blood by vacuolar H+-ATPase21.

Aspects of a meal that buffer the acidity of the stomach contents should therefore influence gastric acid 
secretion, the alkaline tide and recovery of acid–base balance following feeding12. For wild fish with true acidic 
stomachs consuming whole prey, significant buffering components would come from the calcium minerals in 
bone and shell. Rainbow trout (Oncorhynchus mykiss) are an important commercial fin fish that are known to feed 
on a variety of vertebrate and invertebrate prey types in nature22,23. In the wild, rainbow trout prey on bony fishes, 
crustaceans, insects and gastropods23. When calcium carbonate from shell (CaCO3) and calcium phosphate from 
bone (Ca3(PO4)2) dissolve within the stomach, their extra buffering will require additional gastric acid secretion 
which could enhance the physiological and energetic costs associated with digestion in fish.

This concept presents a significant knowledge gap, considering that the maintenance of an acidic stomach is 
an energy-consuming process, and diets containing minerals that resist changes in acidity may require more acid 
and, in turn, energy to digest. Not only could this influence the magnitude and duration of the SDA response, 
but it has previously been suggested that an increase in the energy required for digestion could have impacts 
on fish growth4,24. To address this knowledge gap, the present study aimed to measure the SDA, alkaline tide, 
base excretion and growth of juvenile (100—200 g) rainbow trout fed on isocaloric pelleted diets that differed 
only in the calcium salt added (CaCO3, Ca3(PO4)2, or CaCl2 [as a non-buffering control with the same calcium 
content]). It was hypothesised that the digestion of a highly buffered feed will lead to increased acid secretion in 
the stomach, a more pronounced alkaline tide and a greater net bicarbonate excretion to the surrounding water. 
It was predicted that these increased energy demands would produce a greater SDA and result in reduced fish 
growth efficiency.

Results
Gut pH and intestinal HCO3

– concentration after feeding.  At 48 h after feeding stomach pH sig-
nificantly increased with dietary buffer capacity (R2 = 0.23, P = 0.046) (Fig.  1A). Stomach pH increased from 
pH 2.10 ± 0.15 in fish consuming the CaCl2 diet treatment to pH 3.41 ± 0.37 in fish consuming the CaCO3 diet 
treatment. Tukey’s multiple comparisons reveal that stomach pH significantly differed between fish consuming 
the CaCO3 and CaCl2 diet treatment only (F2, 14 = 8.32, P < 0.01).

All fish showed high intestinal pH (> 8) and concentrations of HCO3
− (~ 50 mM) that was similar across diet 

treatments (pH: R2 < 0.01, P = 0.76, HCO3
–: R2 = 0.04, P = 0.46; (pH: F2, 14 = 0.26, P = 0.78, HCO3

–: F2, 14 = 0.30, 
P = 0.75) (Fig. 1 B,C). The average intestinal pH was 8.12 ± 0.13, 8.26 ± 0.09 and 8.17 ± 0.19 in the CaCl2, Ca3(PO4)2 
and CaCO3 feeding treatments respectively, while intestinal HCO3

– was 50.0 ± 2.8, 47.2 ± 3.9 and 52.6 ± 7.8 mM 
in the CaCl2, Ca3(PO4)2 and CaCO3 feeding treatments, respectively.

The alkaline tide.  At 24  h post feed fish fed the CaCO3 and Ca3(PO4)2 diet treatments experienced an 
increase in blood HCO3

− concentration of 32 and 29%, or 2.7 and 2.4 mM, respectively. However, the corre-
sponding rise in blood pH of ~ 0.15–0.17 units was not significant in either treatment (Fig. 2A, B), and by 48 h 
these blood acid–base variables were back to pre-feeding levels (see Table S1). Fish feeding on the control CaCl2 
diet did not experience any change in blood HCO3

− concentration or pH following feeding and values from this 
group remained similar to pre-feeding levels for the entire measurement period (P > 0.05—see Supplementary 
Table S1). Blood pCO2 was unaffected by feeding and remained similar across all diet treatments and time points 
post feed (Fig. 2C) (P > 0.05 see Supplementary Table S1 and S2).

Net acid–base fluxes.  Following feeding, all diet treatments experienced an increase in the fluxes of titrat-
able alkalinity (JTalk) and ammonia (JTamm). Fluxes of JTamm and JTalk peaked between 7 and 23 h post feed and 
remained elevated above pre-feeding levels until after 48 h post feed (Fig. 3). Within each flux period there 
was no significant effect of diet, except at 24–47 h post feed for JTalk and at 0–6 h post feed for JTamm (See Sup-
plementary Table S3) (Fig. 3). At 0–6 h post feed JTamm was 55% greater in the CaCl2 diet when compared to 
the Ca3(PO4)2 diet treatment (P = 0.04). However, diet had no effect on the cumulative flux of Tamm (F2, 18 = 0.21, 
P = 0.81) (Fig. 4B) over the entire measurement period, and the cumulative flux of JTamm did not change with 
dietary buffer capacity (R2 < 0.01, P = 0.37).

In contrast, the cumulative flux of TAlk significantly increased with dietary buffer capacity (R2 = 0.15, 
P = 0.018). The cumulative flux of TAlk was almost 2.5 times greater in fish consuming the CaCO3 diet treatment 
(−66,213 ± 11,797 µmol kg−1) when compared to fish consuming the CaCl2 diet (−29,126 ± 8257 µmol kg−1) 
(Fig. 4A), however this result between groups was not significantly different (F2, 18 = 3.36, P = 0.06).

The cumulative average net acid or base equivalent flux was positive in fish consuming the CaCl2 diet which 
is indicative of a net acid excretion (or base uptake), while fish consuming the Ca3(PO4)2 or CaCO3 diets had 
an average negative net acid–base flux which is indicative of a net base excretion (or acid uptake). The cumula-
tive net acid–base fluxes were 13,240 ± 8,419, −6,586 ± 5,804 and −22,753 ± 10,201 µmol kg−1 in fish consuming 
the CaCl2, Ca3(PO4)2 and CaCO3 diet treatments, respectively. Net base excretion significantly increased (i.e. 
values became more negative) with increases in dietary buffer capacity (R2 = 0.12, P = 0.03). However, multiple 
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comparisons show that there was only a significant difference between the cumulative net acid–base flux of fish 
consuming the CaCl2 and CaCO3 diet treatments (F2, 18 = 4.21, P = 0.03) (Fig. 4C). In this comparison net base 
excretion was three times greater in fish fed the CaCO3 when compared to fish consuming the CaCl2 diet.

The specific dynamic action after feeding.  All fish experienced an increase in the rate of oxygen con-
sumption following feeding that peaked between 19 and 21  h and lasted between 125 and 130  h after meal 
ingestion (Fig. 5, Table 1). The peak in postprandial oxygen consumption was greatest in fish consuming the 
CaCO3 diet (127 ± 7 mg O2 min−1 kg−1), lowest in the CaCl2 group (115 ± 7 mg O2 min−1 kg−1) and intermediate 
in the Ca3(PO4)2 group (122 ± 8 mg O2 kg−1 min−1) (F2, 14 = 4.21, P = 0.04; R2 = 0.89, P = 0.014) (Table 1, Fig. 6A). 
Multiple comparisons show that peak oxygen consumption significantly differed between the CaCl2 and CaCO3 
groups only (P = 0.03) (Table 1).The timing of this peak was similar across diet treatments (F2, 13 = 0.05, P = 0.94; 
R2 = 0.13, P = 0.22) (Fig. 6B, Table 1).  

The regression analysis showed that the total cost of digestion (the SDA) significantly increased with dietary 
buffer capacity (R2 = 0.89, P = 0.04) (Fig. 6C). Fish consuming the non-buffering CaCl2 diet had the lowest cost 
of digestion at 3,822 ± 401 mg O2 kg−1 body mass (53.5 ± 5.6 kJ kg−1) while fish consuming the CaCO3 diet had 
the greatest cost of digestion at 4,327 ± 395 mg O2 kg−1 (59.3 ± 5.5 kJ kg−1), i.e. ~ 11% higher. However, following 
a RM-one way ANOVA, there was no significant difference between diet groups (F2, 14 = 2.11, P = 0.16) (Table 1). 
Similarly, the SDA coefficient (%) significantly increased with dietary buffering (R2 = 0.89, P = 0.04), but the RM-
ANOVA and multiple comparisons showed no difference in the SDA coefficient between diet groups (F2, 14 = 2.11, 
P = 0.16).

The duration of the SDA (time when metabolic rate is no longer significantly different from SMR) did not 
vary with dietary buffering (R2 = 0.57, P = 0.19) or between groups (F2, 14 = 0.63, P = 0.54) (Fig. 6D, Table 1). 
Rates of oxygen consumption returned to pre-feeding levels for all diet treatments within the same 5 h window 
(between 125–130 h post feed).

Trout growth efficiency.  The feed conversion ratio (FCR) ranged between 0.72 ± 0.04 in fish consuming 
the Ca3(PO4)2 diet and 0.89 ± 0.06 in fish consuming the CaCO3 diet. Similarly, the specific growth rate (SGR) 
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Figure 1.   Change in stomach pH (A), intestinal pH (B) and intestinal HCO3
− concentration (C) of juvenile 

rainbow trout (Oncorhynchus mykiss) 48 h after consuming a 2.5% ration of one of three experimental feeds 
(n = 6 for the CaCl2 and Ca3(PO4) treatments; n = 5 for CaCO3 treatment) of varying buffer capacity. The ranked 
order (and relative magnitude) of the dietary acid-buffering capacity of each diet was CaCO3 > Ca3(PO4)2 > CaCl2 
(2.4 > 1.4 > 1). Solid line represents the regression line while the dotted line represents the 95% confidence 
interval (CI). Significance was accepted at P < 0.05 following a simple linear regression. Each data point 
represents values from individuals.
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was greatest in the Ca3(PO4)2 diet group (1.19 ± 0.06%), lowest in the CaCO3 diet group (0.96 ± 0.05%) and 
intermediate in the CaCl2 diet group (1.09 ± 0.06%). Dietary buffer capacity had no effect on the FCR or SGR 
(FCR: R2 = 0.15, P = 0.1; SGR: R2 = 0.16, P = 0.1). Similarly, the FCR did not differ between any treatment groups 
(F2, 13 = 3.09; P = 0.08) (Fig.  7B). However, there was a significant difference in the SGR of fish fed each diet 
(F2, 13 = 4.0, P = 0.04). Fish consuming the highest buffered CaCO3 feed had a significantly lower SGR than the 
Ca3(PO4)2 diet treatment (P = 0.034) but not the CaCl2 diet treatment (P = 0.35) (Fig. 7A). Similarly, there was no 
significant difference in SGR between the CaCl2 and Ca3(PO4)2 treatments (P = 0.39).

Discussion
This study shows that the acid buffering properties of food, independent of caloric or macronutrient content, 
can influence the magnitude and/or peak in energetic and physiological costs associated with digestion in fish. 
We show that this is due to the impact of buffering minerals on the physiological processes associated with 
digestion. Increasing the buffering capacity of a pelleted fish diet with calcium salts known to be present in bone 
(Ca3(PO4)2) and shell (CaCO3) increased gastric pH, the alkaline tide, base excretion, and the SDA following 
feeding. Unexpectedly, despite enhanced energetic and physiological costs, increasing the buffer capacity of fish 
diets did not influence the duration of the SDA or fish growth efficiency over a 21 day growth trial.

Increases in dietary buffer capacity led to an increase in stomach chyme pH with the CaCO3 diet generating 
the most alkaline stomach pH compared to all other diet treatments. The need for greater gastric acid secretion 
in the two diets with enhanced buffering (CaCO3 and Ca3(PO4)2) coincided with a significant increase in blood 
HCO3

− at 24 h post feed and greater cumulative net base excretion following feeding. More specifically, following 
meal consumption, fish consuming the highly buffered CaCO3 diet had a net base excretion almost three times 
greater than fish consuming the non-buffering CaCl2 diet. This suggests that fish consuming this most buffered 

7.5

7.6

7.7

7.8

7.9

8.0

8.1

B
lo

od
 p

H

2

4

6

8

10
B

lo
od

 H
C

O
3-   

(m
M

)

b

a*

a*

-5 0 5 10 15 20 25 30 35 40 45 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

pC
O

2 
(m

m
H

g)

Time post feed (h)

CaCl2

Ca3(PO4)2 

CaCO3

C

A

B

Fasted

Figure 2.   The average change in blood pH (A), plasma HCO3
− concentration (B) and pCO2 (C) over time in 
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supplemented with either CaCl2, CaCO3 or Ca3(PO4)2. Data are expressed as means ± SE. Different letters (abc) 
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diet required the greatest gastric acid secretion in order to complete digestion, and therefore experienced the 
greatest increase in blood HCO3

− and net base excretion following feeding.
It is likely that the high rates of base excretion during the first 24 h after feeding allowed all fish to recover 

from the post prandial alkaline tide by 48 h after meal consumption. Cooper and Wilson (2008)19 show that blood 
pH and HCO3

− concentration following the consumption of a 1% ration in rainbow trout was greatest 6–24 h 
after feeding, and had returned to pre-feeding levels by 48 h post feed. Wood et al. (2005) also reported a large 
efflux of basic equivalents to the external water by the spiny dogfish (Squalus acanthias) after voluntary feeding 
at these same time points. In the current study all fish were able to recover from the post prandial alkaline tide 
by at least 48 h after feeding, but the CaCO3 group actively compensated for a significantly greater HCO3

− base 
load via greater cumulative net base flux to the water.

Here we also provide evidence to suggest that the intestine may play a greater role in recovering from the 
post prandial alkaline tide than previously thought. Previous studies delineate the role of the fish gill and kidney 
in recovering from the alkaline tide25,26, with the majority of research suggesting the gills may contribute more 
so than the kidney27. In the present study we observed large concentrations of intestinal HCO3

− in all fish and 
diet treatments at 48 h post feed. Across all three diets, intestinal chyme pH ranged between 8.12 ± 0.13 and 
8.26 ± 0.18 in the CaCl2 and Ca3(PO4)2 diet treatments, while the concentration of intestinal chyme HCO3

− ranged 
between 47 and 60 mM in the two more buffered diet treatments. Interestingly these values are more similar 
to that of a marine fish than a freshwater fish when not feeding. It is suspected that some of the blood load of 
HCO3

− resulting from gastric acid secretion was transported to the intestinal lumen and excreted to contribute to 
the recovery of internal acid–base and ion balance. This finding is supported by two separate studies on marine 
teleosts, European flounder (Platichythus flesus)28 and gulf toadfish (Opsanus beta)29. These studies observed 
elevated levels of HCO3

− in the intestine following the consumption of a meal and concluded that the intestine 
functions in contributing to recovery from a metabolic alkalosis28,29. The current study provides further evidence 
to support the role of the intestine in post prandial base excretion in fish, and the first record of HCO3

− secretion 
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to the intestine by a freshwater-acclimated euryhaline species. However, despite working on the same species as 
the present study, Cooper and Wilson (2008)19 concluded that the intestine did not contribute to the recovery 
from the alkaline tide and suggested this may be due to the delayed expression of the necessary transporters 
required for intestinal HCO3

− secretion. Although, in their study fish were fed on a substantially smaller ration 
of feed (1%) than in the present study (2.5%). A smaller ration would reduce the requirement for gastric acid 
secretion, resulting in a smaller alkaline tide and lesser need to excrete excess blood HCO3

−. In the present study 
the 2.5 times greater ration would mean that even the non-buffered diet would have resulted in a proportion-
ally higher rate of gastric acid secretion and presumably bicarbonate loading in the blood which would require 
excretion. This may contribute to the intriguingly higher levels of intestinal bicarbonate in the present study. 
We also speculate that the ingestion of equimolar amounts of additional calcium in all three diets could have 
generated a phenotypic change in intestinal function in freshwater rainbow trout. High levels of calcium in 
ingested seawater are thought to be a key stimulus of the intestinal bicarbonate secretion process when marine 
teleosts drink seawater for osmoregulation30,31. Indeed calcium-sensing receptors are believed to be a key sensor 
that induces osmoregulatory processes generally in fish32. It is therefore possible that the extra calcium in all the 
diets of our freshwater trout played a similar stimulatory role and facilitated the intestinal secretion of excess 
blood HCO3

−. In doing so this would presumably contribute to a speedier than otherwise recovery of internal 
acid–base balance following the post prandial alkaline tide (i.e. earlier than if the extra calcium was not present 
in the diet). These findings provide interesting new avenues of investigation for the study of gastrointestinal 
physiology in freshwater fishes.

We propose that these enhanced physiological costs associated with more buffered diets led to the significant 
increase in the peak oxygen consumption and the total energetic cost of digestion in the current study. These 
results are consistent with the hypothesis that increasing the requirement for gastric acid secretion and recover-
ing from the associated blood alkalosis is energetically expensive in fish. Previous research has highlighted that 
gastric HCl secretion is a relatively expensive process14,15,17. In the recent study from Goodrich et al. (2022)12, 
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Data are presented as mean values for each respirometry cycle time point (A) and smoothed pattern over 
time using a cubic squared spline (B). The horizontal line represents the average resting (pre-feeding) oxygen 
consumption of all treatments 24 h prior to feed. The vertical dotted line represents time of feeding.

Table 1.   Summary of SDA responses in juvenile rainbow trout (Oncorhynchus mykiss) fed a 2.5% ration of 
a diet supplemented with either CaCl2, Ca3(PO4)2 or CaCO3 (n = 8 animals each consuming all three diets). 
Lowercase letters and bold text indicate significant differences between diets at P < 0.05 following a repeated 
measures one-way ANOVA (RM- ANOVA) and Tukey multiple comparisons test. Data are presented as 
mean ± SE.

Diet (Buffer capacity: μmol HCl required to titrate 1 g of material to pH 3.5)

CaCl2 Control (228 μmol HCl) Ca3(PO4)2 Bone (320 μmol HCl) CaCO3 Shell (550 μmol HCl)

Magnitude (mg O2 kg−1) (Total 
cost of digestion) 3822 ± 401a 3896 ± 293a 4238 ± 396a

Duration (h) 128.50 ± 4.52a 129.63 ± 3.72a 123.61 ± 6.21a

Initial peak MO2 (mg O2 kg−1 h−1) 115.57 ± 7.75a 122.49 ± 8.58ab 126.07 ± 7.51b

Time to initial peak (h) 20.97 ± 3.04a 20.47 ± 1.47a 20.97 ± 7.57a

SDA coefficient (%) 9.30 ± 0.98a 9.48 ± 0.71a 10.32 ± 0.96a

SDA (kJ kg−1) 53.52 ± 5.62a 54.55 ± 4.10a 59.34 ± 5.54a

SDA scope 2.12 ± 0.09a 2.22 ± 0.08a 2.27 ± 0.09a
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Figure 6.   Change in the peak SDA (MO2) (A) time of peak (B), total energetic cost of digestion (SDA; C) and 
total duration of the SDA (D) in juvenile rainbow trout (Oncorhynchus mykiss) fed voluntarily on a 2.5% ration 
of one of three experimental feeds (n = 8) of varying buffer capacity. The ranked order (and relative magnitude) 
of the dietary acid-buffering capacity of each diet was CaCO3 > Ca3(PO4)2 > CaCl2 (2.4 > 1.4 > 1). Solid line 
represents the regression line while the dotted line represents the 95% confidence interval (CI). Significance was 
accepted at P < 0.05 following a linear mixed effects model. Each data point represents values from individuals.
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Figure 7.   The average specific growth rate (SGR) (A) and feed conversion ratio (FCR) (B) of juvenile rainbow 
trout (Oncorhynchus mykiss) fed a daily 1% ration of three experimental feeds (N = 5 for CaCl2 and CaCO3 
treatments; n = 6 for Ca3(PO4)2 treatment) over a 21 day period. Data are presented as a six number summary: 
minimum, first quartile (Q1), median (horizontal line), mean (+), third quartile (Q3) and the maximum. Open 
circles represent values from each individual. Different letters (abc) indicate statistical significance between 
groups following a one-way ANOVA and Tukey’s multiple comparisons test. Significance was accepted at 
P < 0.05.
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acidifying a commercial fish feed led to a reduction in the energy cost of digestion by almost half in juvenile bar-
ramundi (Lates calcarifer) when compared to fish consuming a control non-acidified feed. The apparent energetic 
costs of gastric acid secretion during digestion are also corroborated by a multitude of studies in snakes. Secor 
(2003)33, stated that as much as 55% of the SDA response could be linked to gastric processes in the Burmese 
python (Python molurus). Similarly, in the garter snake (Thamnopis sirtalis), the consumption of vertebrate prey 
led to a larger SDA than when compared to softer body prey34. Here, the increased buffer capacity of a vertebrate 
prey item would have increased gastric handling and likely contributed to the increase in SDA. In a study on the 
Atlantic cod (Gadus morhua) gastric emptying (the process of chyme release from the stomach to the intestine) 
was significantly delayed in prey types with increased ash and carbonate content35,36. The authors theorised that 
the elevated ash and carbonate content of some prey items would have increased the buffering capacity of the 
meal, thereby elevating stomach pH and prolonging gastric handling time. Likewise, we expect that the increased 
requirement for HCl secretion in fish fed the highly buffered CaCO3 or ‘shell’ diet would have increased energy 
demands and contributed to the observed increase in energy expenditure during digestion.

Alongside the energetic costs associated with gastric acid secretion, it’s likely that fish consuming the 
more highly buffered “shell” and “bone” diets would have experienced additional physiological costs from the 
enhanced base excretion associated with a greater alkaline tide. In the current study, we observed a greater blood 
HCO3

− concentration at 24 h post feed in fish fed the CaCO3 and Ca3(PO4)2 diets. As discussed previously, this 
was associated with a greater net base excretion to the external environment when compared to fish fed the non-
buffering CaCl2 meal. Despite what we know about the energetic costs associated with gastric acid secretion, 
much less is known about the energetic costs associated with other tissues (gills, kidney, intestine) in recovering 
from metabolic acid–base disturbances like the alkaline tide in fish. However, it is widely accepted that acid–base 
and ion regulation will incur some energetic cost, although quantifying these costs has been difficult. Some stud-
ies have suggested that ion regulation in response to living in either hypo- or hyper-saline environments (i.e. 
freshwater or seawater) could account for as much as 30% of an animals standard metabolic rate37. In addition to a 
greater cost at the gills for fish fed a buffered diet, it is likely that an enhanced feeding-induced metabolic alkalosis 
also has consequences for oxygen transport via haemoglobin38. A rise in blood pH increases haemoglobin’s affin-
ity for oxygen39 which would enhance oxygen uptake at the gills39,40 but could impair oxygen delivery to tissues. 
In theory this should present a significant challenge for fish during digestion, due to the increased demand for 
oxygen necessary to breakdown and assimilate a meal (i.e., the SDA). In turn highly buffered diets may not only 
enhance the magnitude of the alkaline tide but could also lead to energetic and physiological consequences for 
blood oxygen delivery via haemoglobin. This could create an additional challenge to the respiratory transport 
systems during digestion, which would require further physiological responses potentially with additional costs; 
e.g. if it requires a compensatory increase in cardiac output to overcome. Therefore, future studies may wish to 
assess the affinity of haemoglobin for oxygen during digestion in fish fed diets with varying buffer capacity as a 
tool to manipulate this particular respiratory challenge.

Interestingly, the cumulative costs associated with the digestion of a buffered feed did not influence fish 
growth over 21 days in the way we expected. Despite a greater physiological and energetic burden, there was no 
relationship between fish growth and dietary buffering. These results show that a reduction in the SDA will not 
always coincide with greater growth efficiency. Similar growth results were observed by Goodrich et al. (2022) 
following chronic exposure to a feed that significantly reduced the SDA. In the current study, when compared 
to the Ca3(PO4)2 treatment group, fish consuming the CaCO3 diet grew significantly less. It is expected that the 
slight but not significant increase in growth of fish consuming the Ca3(PO4)2 diet when compared to the CaCl2 
diet could be attributed to greater bone growth. Phosphate supplementation is a common practice in aquaculture 
due to its pivotal role in intracellular processes such as muscle contraction, but also its key role in bone growth 
(the most abundant use of phosphate in the body)41,42. Adebayo and Akinwumi (2015)43 found significantly 
greater concentrations of phosphorous in the carcass of Clarias gariepinus fingerlings consuming a diet sup-
plemented with bone meal. This finding also coincided with a greater specific growth rate in this treatment 
group43. In contrast, we predict that the slight but not significant decrease in fish growth and increase in the feed 
conversion ratio of fish consuming the CaCO3 diet when compared to the CaCl2 diet can be in part attributed 
to the greater costs associated with the digestion of a highly buffered feed, but without the benefit of additional 
phosphate to support greater bone growth. As well, the growth trial in the current study was conducted on a 
daily 1% ration of feed, which was much less than the 2.5% ration used to conduct the SDA trials. It is likely that 
growth differences could exist if fish were fed more each day or if fish were fed diets with greater differences in 
dietary buffering, or if the trial was extended to a longer period of time. However, it is also possible that stomach 
acidification and its associated responses may not contribute as greatly to the SDA in rainbow trout, or that reduc-
tions in the SDA do not always coincide with greater growth efficiency. Future studies could assess the growth 
effects of a buffering diet on smaller fish for a longer time period and over a greater range of dietary buffering to 
determine if naturally occurring buffering minerals have the capacity to affect growth through impacts on the 
costs associated with gut digestion.

The results presented in this study have important implication for the design of fish feeds in aquaculture. 
Meeting the needs of the growing human population has already led to the over exploitation of most wild fisheries 
and driven the exponential growth of and requirement for intensive aquaculture. Recognising this demand, the 
Food and Agriculture Organisation (FAO) of the United Nations has called for aquaculture to double seafood 
production by 2050. Improving the efficiency and sustainability of intensive finfish aquaculture will be key to 
address this aim. Fish feeds provide an avenue to directly influence the efficiency and sustainability of aqua-
culture. Currently, many fish feeds have buffering properties (ability to resist change in pH) that could have 
physiological and energetic consequences for digestion in fish. Reported previously by Goodrich et al. (2022), 
the raw ingredients used by feed manufacturers can vary substantially in their buffering properties. Depending 
on demand and product availability, different types or combinations of raw materials can be used to produce 
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the exact same fish feed product12. This can cause variation in the total buffering properties between batches of 
the same feed. Based on the results from the current study, variation in dietary buffering could unintentionally 
influence the physiological and energetic costs associated with digestion in aquacultured fish. Designing feeds 
with raw materials that reduce the physiological and energetic burden placed on the animal could provide benefits 
to the production of fish in aquaculture.

In wild fish additional energy costs associated with the digestion of more highly buffered diets could influence 
prey choice. Understanding the feeding responses, patterns and preferences of fish in the wild helps to understand 
fundamental ecological principles, can inform the management of aquatic environments and be used to make 
predictions about current and future impacts of climate change on fish communities. The results presented here 
show how the non-nutritive parts of a diet can influence energetic costs associated with digestion. Interestingly, 
we show that increases in dietary buffer capacity can increase the peak oxygen consumption associated with the 
SDA. This is an effect of dietary buffering that was also observed in Goodrich et al. 202212. In that study fish fed 
on an acidified diet experienced a ~ 18% reduction in the secondary peak of the SDA when compared to a more 
buffered control diet. This could have important implications for the feeding responses of fish experiencing limi-
tations to their aerobic scope, such as occurs during environmental warming. A recent review has suggested that 
the quantity of food consumed by fish will depend on the available postprandial residual aerobic scope (PRAS) 
during digestion44. Aerobic scope describes the difference between the maximum and resting rates of oxygen 
consumption45, while PRAS describes the available aerobic scope during the peak of the SDA. PRAS governs the 
scope available for activities outside of digestion like swimming and avoiding predation. In elevated tempera-
tures the SDA is temporally compressed leading to an increase in peak oxygen consumption during digestion 
and a reduced post residual aerobic scope. In response to this, it is hypothesised that fish reduce feed intake at 
elevated temperatures in order to protect their post residual aerobic scope and maximise the scope available for 
other activities. This is a clear example of how physiology can influence the feeding behaviour of fishes. Given 
the impact of dietary buffering on peak oxygen consumption during digestion, it’s possible fish may select for 
prey that not only maximises their net energy gain, but simultaneously best protects their aerobic scope. We 
observed no statistically significant effect of dietary buffering on fish growth, but this was using a small ration 
size (1% / day) and short growth period (3 weeks). However, when faced with a physiological challenge such 
as warming or hypoxia, it would be logical for fish to preferentially select for prey items that maximise PRAS. 
This could influence the feeding responses of fishes in the wild and lead to shifts in prey selection as a result of 
anthropogenic warming. To investigate this idea, future studies may wish to investigate the relationship between 
dietary buffering, warming, PRAS and prey selection.

In predatory fish species with flexible prey choices, differences in prey selection may be more pronounced. 
For example, the lionfish Pteroid volitans is an invasive species that has occupied reefs in the Western Atlantic 
Ocean and continues to spread throughout the Caribbean and the East Coast of the United States. This predatory 
species is responsible for a drastic decline in the diversity of reef fishes from these regions46–48. The invasive abil-
ity of the lionfish has been helped by its lack of natural predators, opportunistic lifestyle and ability to consume 
most prey types. Research into the foraging ecology of lionfish found that stomach contents consisted of 78% 
teleosts and 14% crustaceans, suggesting a preference for bony fishes over shelled crustaceans49. The potential 
energy gain and reduced impact on PRAS during digestion of a meal of fish (with a calcium phosphate-based 
skeleton) versus crustaceans (with a calcium carbonate-based shell) could in part help to explain why lionfish 
have a preference towards bony fishes. To investigate these ideas, future research could assess the relationships 
that exist between dietary buffering, the SDA and the prey choices of predatory fish. Indeed, such studies would 
provide great insights into predator prey interactions and the feeding ecology of wild fishes.

Conclusion and future directions
Most nutritional-focused studies measuring the SDA response in fish have worked to understand how the 
nutritional composition of a meal (lipid, carbohydrate, protein) influences the energy cost of digestion and 
fish growth. For the first time we show that the non-nutritive components of a diet can also have implications 
on energy use during digestion in fish. We demonstrate that the digestion of diets with elevated buffering can 
enhance requirement for acid secretion to the stomach, increase the alkaline tide and net base excretion, cost 
fish more to digest, but don’t influence fish growth efficiency. Given the findings from this study and current 
known gaps in knowledge, we suggest a number of future directions for research:

1.	 Investigate the relationship between dietary buffering, the SDA and growth efficiency using a larger daily 
feed ration, diets with a greater difference in dietary buffering and longer growth trial period.

2.	 Assess the effect of feeding, digestion and the alkaline tide on the affinity of haemoglobin to bind oxygen in 
fish, i.e. the blood P50 value.

3.	 Investigate the relationships between temperature and or hypoxia on the post-residual aerobic scope (PRAS), 
SDA, prey choice and feed intake in fishes.

4.	 Test the application of an aquaculture diet made from raw materials with reduced dietary buffering.
5.	 In wild fish, determine whether dietary buffering and the cost of digestion can influence prey choice and/or 

preferences.

Materials and methods
Animal ethics.  All experiments were conducted under the UK Home Office licence P88687E07 and with 
approval from the University of Exeter Ethics Committee.
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Fish husbandry.  Juvenile rainbow trout (Oncorhynchus mykiss) (n = 42; body mass: 159.9 ± 5.2  g), were 
obtained from Houghton Spring Fish Farm (Dorset, UK) and housed in the Aquatic Research Centre at the 
University of Exeter (UK). Before transfer to individual experimental chambers, all fish were housed across two 
400 L tanks (n = 21 per tank) supplied with recirculated fresh water for 14 days. During this 14 day acclimation 
period, fish were maintained at 15 °C and fed on a 1% ration of commercial trout feed (Aller platinum 4.5 mm 
(Aller AQUA ©) three times a week. Prior to experimentation, fish were fasted for seven days.

Acid buffering diets.  Diets were prepared by adding one of three calcium-based salts, CaCO3, Ca3(PO4)2 or 
CaCl2 (as non-buffering control) with isomolar quantities of calcium to a commercial trout pelleted diet (Skret-
ting 4.5 mm Horizon, Skretting, UK). The quantities of these salts used were designed to mimic the calcium 
content of the skeletal component of crustacean or bony fish prey.

Cameron (1985)50 estimated that the bone of teleost fish represents 16.3% of whole-body mass (and there-
fore soft tissue represents 83.7%). However, bone is not just calcium phosphate, but includes numerous organic 
components as well as water content. By comparing titrations of pure calcium phosphate salt and samples of 
ground-up teleost (rainbow trout) bone, we established that it required 10.25 times less calcium phosphate 
salt to achieve the same acid-buffering capacity as that of an equal mass of bone. We therefore created a diet 
that was supplemented with 1.9 g calcium phosphate for every 100 g of trout pellets (i.e. [16.3 g ÷ 10.25] x 
[100 ÷ 83.7 g] = 1.9 g), in order to match the bone content of calcium phosphate typically found in fish prey 
as a proportion of the soft tissue mass. This amounted to 18.4 mmoles of calcium phosphate salt (Ca3(PO4)2; 
M.W. = 310.2) per 100 g of trout pellets. For the two other diets we aimed to maintain the same molar amount 
of calcium cation added whilst varying the anionic component of the salt added. So, for the unbuffered version 
of the diet 2.7 g of calcium chloride (CaCl2.2H2O; M.W. = 147.0) was added, whilst for the calcium carbonate 
(CaCO3; M.W. = 100.0) buffered diet 1.84 g was added, per 100 g of trout pellets.

To form each diet, 100 g of Skretting 4.5 mm Horizon trout pellets were ground to a fine powder using a 
pestle and mortar. Following grinding, 1.9, 1.84 and 2.7 g of Ca3(PO4)2, CaCO3 and CaCl2 were added to the 
ground pellet and mixed. Then, 70 ml of ultrapure water was added to the dry material to form a paste. This 
paste was pressed into commercial 4 mm moulds, removed and dried at 70 °C for 24 h. An acid titration test 
was conducted to ensure that diets remained representative of the buffer capacity of prey and each calcium salt. 
For this test, 60 ml of ultrapure water were added to 1 g of each experimental diet and titrated down to pH 3.5 
using 0.05 mol L−1 HCl. The CaCl2 diet treatment required 4.56 ml of the acid which was only slightly less than 
the 6.4 ml required to titrate the Ca3(PO4)2 diet. In contrast it took almost double the amount of acid (11 ml) to 
titrate the CaCO3 diet. In molar terms it took 228, 320 and 550 µmoles of HCl to titrate 1 g of the CaCl2, Ca3(PO4)2 
and CaCO3 feeds to pH 3.5, respectively. To calculate the total acid-buffering consumed, the buffer capacity (per 
g of food) was multiplied by the actual ration ingested for each individual. Based on manufacturer details each 
diet had a gross energy of 23 kJ per gram of feed.

Acid secretion in the stomach and the blood alkaline tide.  To investigate the effect of dietary buffer 
capacity on the blood acid–base chemistry (alkaline tide) and gut secretions, blood and gut samples were taken 
from fish to determine blood gas and acid–base balance and haematology variables of fish fed each experimental 
diet. Fish were fasted for 7 days and then fed a 2.5% ration of one of three experimental feeds. Diet was randomly 
allocated to each individual (n = 6 per diet). At 24 and 48  h following meal ingestion fish were anesthetised 
using benzocaine (100 mg l−1). Once fish had lost equilibrium and were un-responsive to a tail pinch, fish were 
transferred to a gill irrigation system dosed with a lower concentration of benzocaine (75 mg l−1). Fish were 
placed upside down within the irrigation chamber so that the head was fully submerged, and the entire gill bas-
ket covered. A micro pump was used to artificially ventilate the gills via a tube placed into the fish mouth. This 
allowed for the continuous ventilation of fish gills and ensured there was no build-up of CO2 or lactic acid during 
blood sampling that could unintentionally affect blood acid–base status. Blood was then drawn into a sodium-
heparinised syringe via caudal puncture. Fish were then euthanased via pithing and dissected to collect stomach 
and intestinal contents. Gut samples were centrifuged to isolate gastric and intestinal juices.

Blood and gastric pH were measured using an Accumet CP-620-96 MicroProbe (Accumet Engineering Cor-
poration, USA) connected to a Hanna HI 8424 m (Hanna Instruments, Woonsocket, Rhode Island, USA). Whole 
blood PO2 was measured using a Strathkelvin 1302 electrode, housed within a thermostatted glass chamber 
(Strathkelvin), and connected to Strathkelvin 781 m (Strathkelvin Instruments Ltd., Scotland)51. Blood was drawn 
into three micro-haematocrit tubes (Hawksley) via capillary action and anaerobically sealed using Hawksley 
Critaseal Wax Sealant, then centrifuged (Hawksley microhaematocrit centrifuge, 10,000 rpm for 2 min) and 
then used to record haematocrit and held on ice before using the plasma. Plasma and intestinal total CO2 was 
then measured using a Mettler Toledo 965 carbon dioxide analyser and together with blood and intestinal pH 
measurements was used to calculate plasma and intestinal HCO3

− and PCO2 by rearranging the Henderson–Has-
selbalch equation and using values for solubility and pKapp from Boutilier et al. (1985)52.

Net acid–base fluxes to the external water.  The effect of diet on the net flux of acid–base relevant ions 
to the external water was measured in a separate subset of juvenile rainbow trout (n = 10, 161.8 ± 6.9 g). Prior to 
measurements fish were weighed and transferred to individual 25 L chambers supplied with recirculated fresh-
water maintained at 15 °C. Following a 3-week acclimation period, fish were fed weekly on a 2.5% ration of one 
of three experimental feeds, with diet order randomised to each individual (See Supplementary Table 4). Initial 
and final water samples were taken from each chamber over six flux periods each week for three weeks (−23 to 
1 (fasted), 0–6, 7–23, 24–47, 48–71 and 72–96 h post feed). Water inflow to each chamber was turned off during 
each flux period whilst aeration was maintained. Following the final measurement from each flux period, tanks 
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were flushed with dechlorinated freshwater for 60 min so to ensure solid faeces and dissolved waste products 
(e.g., ammonia) were removed.

Total ammonia was measured in triplicate on 200 µL water samples using the colourimetric salicylate-based 
method adapted from Cooper and Wilson (2008)19 and Verdouw et al. (1978)53 and the Infinite 200 PRO micro-
plate reader (Tecan Trading AG Switzerland ©). Titratable alkalinity was measured in 20 ml water samples using 
an auto-titrator with autosampler (Metrohm 907 Titrando with 815 Robotic USB Autosampler XL) running 
double titrations with 0.02 mol l−1 of HCl and 0.005 mol l−1 NaOH. The double titration method calculates 
titratable alkalinity based on the difference in HCl required to titrate each water sample down to pH 3.9 and 
the amount of NaOH required to bring the sample back to the starting pH. During the titration, the sample is 
continuously bubbled or ‘purged’ with the inert gas N2 to remove any CO2. The net fluxes of titratable alkalinity 
(JTalk) and total ammonia (JTamm) were calculated using the following equation from Cooper and Wilson 2008:

where Xi and Xf are the initial and final ion concentration in each tank (μmol l−1) from each flux period, V is the 
tank volume (L), M is the animal mass (kg) and t is the flux duration (h).

The net acid–base flux was calculated as the difference between the flux of titratable alkalinity (JTalk) and the 
flux of total ammonia (JTamm).

Measuring the SDA.  Intermittent flow-through respirometry was used to determine the rate of oxygen 
consumption (MO2) by juvenile rainbow trout fed voluntarily on a 2.5% ration of three experimental feeds. Prior 
to measurements, juvenile rainbow trout (n = 8, 162.2 ± 7.5 g) were weighed and transferred to individual 25 L 
chambers supplied with recirculated freshwater at 15 °C for 3 weeks. During this acclimation period, fish were 
fed weekly on a 2.5% ration of Skretting 4.5 mm Horizon trout pellets (Skretting UK). Following this acclimation 
period, measurements were conducted after 7 days of fasting. Each fish was fed once per week on all three diets 
over a 3-week period, with diet order randomised for each individual.

During experimentation, fresh water was supplied continuously to two aerated 160 L sumps each fitted with 
a ballcock valve and overflow. Aerated freshwater was then pumped from the sump to the eight respirometry 
chambers in a loop for the duration of the testing period. Water within each fish chamber was continuously mixed 
using a submerged mini-pump (WP300; Tetra Werke, Melle, Germany). During measurements, water inflow 
to each chamber was shut off and the decline in O2 was recorded by PO2 OxyGuard Mini Probe (OxyGuard ® 
International, Denmark) connected directly to the mini-pump. Oxygen partial pressure values were logged con-
tinuously by Pyro Oxygen Logger software (Pyroscience GmBH, Germany) which interfaced with a respirometry 
software package (AquaResp3: aquaresp.com, see Svendsen et al. 2016 54) to instantaneously convert PO2 into 
O2 content and calculate the rate of oxygen consumption (MO2, mg O2 kg−1 body mass h−1) based on the fish 
body mass in kg (m), chamber water volume in L after discounting the fish body volume (Vresp), and the slope 
(s) of the decline in oxygen concentration (kPa O2 h−1) versus time using the following equation from Svendsen 
et al. (2016)54:

where:

Following each closed measurement period, the chamber was automatically flushed with freshwater from 
the aerated sumps by two AquaMedic Ocean Runner pumps (Aqua Medic, Ocean Runner 6500). The length of 
the flush and measurement periods was controlled by two USB- 4 Cleware switches (Cleware GmbH, Germany) 
which were also interfaced with the AquaResp software to ensure that the partial pressure of oxygen (PO2) within 
the respirometry chambers never fell below 90% of the starting value. This meant that the measurement period 
of 15 min was followed by a flushing period of 2 min and a wait time of 60 s.

Prior to feeding a baseline 24 h period of standard metabolic rate (SMR) was recorded. The mean SMR of 
each individual was calculated using the R package ‘fishMO2’ and the ‘calcSMR’ function. Following Chabot et al. 
(2016)55, the coefficient of variation (CVmlnd) was used to determine whether the mean of the lowest normal 
distribution (MLND) or the quantile method (P = 0.2) was used to estimate SMR for each individual. Following 
the SMR measurement, fish voluntarily fed on a 2.5% ration of experimental feed and MO2 recorded continu-
ously for six days. This procedure was repeated for two more consecutive weeks to measure MO2 in fish fed all 
three experimental diets. Background oxygen consumption was recorded overnight (18 h) in blank (no fish) 
chambers. Oxygen consumption was not corrected for background respiration as it was considered negligible 
(< 1% of resting fish MO2).

The respirometry chambers used in this study were open to the atmosphere (water exposed to air) meaning 
O2 exchange could have occurred at the surface. Therefore, prior to placing fish into respirometry chambers, 
experiments were conducted to determine the maximum rate of exchange of O2 at the water surface in the current 
study and its influence on observed rates of fish oxygen consumption. Oxygen was purged from each respirometry 
chamber down to 50% air saturation by bubbling water with N2 and left to re-equilibrate back up to 95–100% 
air saturation. Re-equilibration was recorded using the respirometry software described above. This revealed 
that at water O2 levels typically observed during respirometry measurements with fish (decline in air saturation 
from 100 to a minimum of 90%), the rate of O2 diffusion from air into the water would have been equivalent 

(1)JnetX =
[([X]i − [X]f )× V]

(M × t)

MO2 = sVRespαm
−1

s =
O2 initial − O2 final

time initial − time final
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to at most 1.8% of the O2 removal by fish respiration. Also, this worst-case-scenario rate of O2 diffusion would 
only have occurred when the diffusion gradient was largest between the water and the air, i.e. at the end of the 
15-min measurement period. Therefore, the rate of O2 diffusion prior to this point, would have been slower and 
somewhere between zero and 1.8% of the fish respiration rate (MO2). Given the negligible impact on rates of 
oxygen consumption, fish oxygen consumption was therefore not corrected for O2 diffusion. This is similar to the 
conclusions of a previous study by McKenzie et al. (2007)56 that used open top respirometry to measure oxygen 
consumption in rainbow trout maintained at 10 °C. Following a similar test on rates of O2 diffusion, their study 
determined that surface exchange would have modified the decline in O2 concentration caused by fish respiration 
by less than 2%, and they also considered this negligible and not requiring any correction.

If the slope of change in O2 over time used to calculate MO2 had an R2 < 96% it was removed from the data set 
for that fish. The total SDA was measured as the area under the curve of oxygen consumption rate versus time 
from the time of feeding until MO2 values returned to SMR. The energetic cost of digestion for each individual 
meal ingested was standardised to kilojoules (kJ) using the total magnitude of the SDA and the conversion fac-
tor of 1 mg O2 = 14 J3,57–59. The SDA scope was calculated by dividing the post-prandial peak in MO2 by SMR, 
and the SDA coefficient (energy cost of digestion relative to the energy content of the meal) was calculated by 
dividing the total SDA (in kJ) by meal energy.

Growth.  To determine whether an acid buffering diet influenced growth efficiency, 18 fish (n = 6 per diet) 
were isolated into individual 25 L tanks supplied with dechlorinated freshwater and fed daily on a 1% ration of 
one of three experimental feeds for 21 days. Initial and final body mass were recorded at the beginning and end 
of the experimental period and total feed consumed was calculated each day. The feed conversion ratio (FCR) 
and specific growth rate (SGR; % growth per day) of each individual was then calculated as follows:

Statistical analyses.  All statistical analyses were performed in R version 4.0.3 (R Development Core Team, 
2020) in the RStudio environment Version 1.3.1093–1 ‘Apricot Nasturtium’ (RStudio, Inc 2020). All graphics 
were produced in Prism Version 9.00 for Mac (GraphPad Software, La Jolla California USA). Analyses were 
conducted following a D’Agostino & Pearson normality test. The R package ‘fishMO2′52 (Version 0.43) was used 
to determine standard metabolic rate (SMR) and the magnitude, duration and peak MO2 of the SDA from each 
individual (where τ = 0.2, λ = 1). MO2 values with an R2 < 0.96 were removed from further SDA analyses55. A 
repeated-measures one-way analysis of variance (RM- ANOVA), and Tukey’s multiple comparisons test was 
used to determine differences in the SDA (total magnitude, duration, peak, time to peak, SDA coefficient and 
SDA scope) and cumulative acid–base fluxes (ammonia (JTamm), titratable alkalinity (JTalk) and net acid or base 
flux) between diets. A standard one-way ANOVA and Tukey multiple comparisons test was performed to assess 
differences between diets for changes in mean blood pH, HCO3

−, the partial pressure of CO2 (pCO2), hourly 
fluxes of JTalk and JTamm, gut pH and HCO3

− concentration, the feed conversion ratio (FCR) and specific growth 
rate (SGR). Where applicable comparisons to fasted animals were conducted using a two-sample t-test. As an 
additional measure, a linear mixed effects model was used to examine the relationship between total acid-buff-
ering consumed (μmol HCl required to titrate the food ingested (per 100 g of fish) to pH 3.5) and the SDA. 
Similarly, a simple linear regression was performed to assess the relationship between total acid-buffering con-
sumed, gut pH, HCO3

−concentration, cumulative fluxes, FCR and SGR. Model selection was determined using 
the AIC function, and where suitable diet order, fish mass, tank and/or individual were included in the model 
as a fixed or random factor. Data are expressed as means ± SE where n = number of fish or samples. Significance 
was accepted at P < 0.05.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files—available to download).
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