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Developmental differences in vital rates are especially
profound in polygamous mating systems. Southern elephant
seals (Mirounga leonina) are highly dimorphic and extremely
polygynous marine mammals. A demographic model,
supported by long-term capture–mark–recapture records,
investigated the influence of sex and age on survival in this
species. The study revealed clear differences between female
and male age-dependent survival rates. Overall juvenile
survival estimates were stable around 80–85% for both sexes.
However, male survival estimates were 5–10% lower than
females in the same age classes until 8 years of age. At this
point, male survival decreased rapidly to 50% ± 10% while
female estimates remained constant at 80% ± 5%. Different
energetic requirements could underpin intersex differences in
adult survival. However, the species’ strong sexual
dimorphism diverges during early juvenile development
when sex-specific survival rates were less distinct.
Maximizing growth is especially advantageous for males,
with size being a major determinant of breeding probability.
Maturing males may employ a high-risk high-reward
foraging strategy to compensate for extensive sexual selection
pressures and sex-specific energetic needs. Our findings
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suggest sex-specific adult survival is a result of in situ ecological interactions and evolutionary
specialization associated with being a highly polygynous marine predator.
lsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221635
1. Introduction
Studying extreme cases of long-lived polygynous and sexually dimorphic species informs the broader
field of ecology by assigning weight to the contribution of evolutionary (genetic and phenotypic
advantages), ecological (behavioural adaptation, intra- and interspecific competition and predation)
and external (environmental) influences on population dynamics [1]. To analyse these complex
interactions, modern demographic models are informed by advanced knowledge of the life history,
developmental and reproductive biology of the study species [2]. Many mammals exhibit sexual size
dimorphism, often with sexual selection pressures and resource limitation favouring larger males in
polygynous mating systems [3–5]. These sexually mature males evolved distinct physiological
characteristics (large body size, ornaments, reproductive organs, etc.) and behaviours (aggression,
mating call, etc.) to increase their chances of gaining access to reproductive females [6]. Usually, these
traits are gained or expressed as individuals mature, making them age-dependent. Thus, for many
sexually dimorphic vertebrate species, intersex differences in survival rates become more apparent for
adults, due to the discrete energetic requirements and behavioural traits that influence reproductive
fitness, individual behaviour and vital rates [1].

Adult male southern elephant seals reach nearly five times the body mass of females (figure 1; [9]).
This species represents a model example of a polygynous mating system, which is mediated by sex-
dependent developmental differences. Recent demographic research into southern elephant seal
population dynamics (growth or decline) has concentrated on female survival and reproduction,
quantifying important factors such as juvenile survival and fecundity [10–13]. Males do not contribute
to parental care and so do not influence pup survival or recruitment [14]. However, the few (approx.
4%) adult males that do control breeding harems make a disproportionately large contribution to the
gene pool of the next generation. Consequently, it is important to understand the vital rates of both
sexes to determine the underlying evolutionary processes which influence the demography of such
sexually dimorphic polygynous mammals [15]. Globally, demographic studies of the species illustrated
a snapshot of early development by analysing sex-dependent differences in juvenile survival [16,17].
Other studies solely compared intersex differences in adult survival [18]. Very few have illustrated
progressive changes to survival rates with age, and those that did were challenged by analytical
limitations with the computing capacity of demographic models at the time of publication [19–21].
Advanced modern matrix population modelling techniques incorporate ontogenetic groupings to
identify observed differences in survival probability across different developmental stages [22]. These
approaches are frequently challenged by uncertainty in state assignment and many use proxies such
as age to determine the ontogenetic status of individuals [23]. This research aimed to illustrate age-
dependent survival for both male and female southern elephant seals using age- and time-dependent
demographic models. Understanding these core survival parameters aids in assessing external
influences on population viability, which enables projecting future threats to populations facing
inevitable shifts in ecosystem composition.

Besides sex and age, developmental stage is one of the main distinguishing characteristics influencing
southern elephant seal demography [24]. Studies report sex-specific adult survival, while juvenile
survival is regarded as equal between sexes [25]. Juvenile males and females are similar in size and it
is not until they reach biological maturity that strong sexual dimorphism is exhibited (figure 1) [26].
For juvenile seals from Macquarie Island, foraging ground segregation is related to age, rather than
sex, with younger seals staying closer to their natal island, making shorter and more frequent trips
than older juveniles [27]. But for southern elephant seals from Îles Kerguelen, habitat partitioning
occurs before males and females diverge in body size [28]. It remains unclear whether sexual
segregation in their foraging range is due to a difference in prey sources, intraspecific competition or
physiological constraints [9]. Females forage across broad ranges of the Southern Ocean, but largely
avoid sea ice [28,29]. By contrast, adult males concentrate their foraging effort in shallower waters
[29,30]. These highly productive locations are frequented by other marine predators, such as orcas
(Orcinus orca) and sleeper sharks (Somniosus antarcticus). Males may be employing a high-risk high-
reward foraging strategy to attain a competitively large body size as quickly as possible [28]. Females
in turn, maximize their lifetime reproductive output by using a less risky foraging strategy. This
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Figure 1. Average growth by age for male (dark grey) and female (light grey) southern elephant seals (Mirounga leonina). The
comparable nose-to-tail lengths between sexes are illustrated by overlaying the average size of males and females in each age
category. Age classes are divided into major developmental stages: black pup (0); yearling (1); juvenile (3) and mature adult
females with sub-adult (6), subordinate (9) and socially mature (12) males. Mean length by age approximation inspired by
Laws [7] and validated through records of known age individuals from Macquarie Island [8].
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distinction would result in intersex differences in survival. Historic long-term capture–mark–recapture
records from Macquarie Island present a great opportunity to test this theory.

We estimated age-specific survival rates for male and female southern elephant seals from Macquarie
Island. A long-standing assumption that survival in this species is influenced by developmental (e.g.
energetic cost of growth and reproduction) [8,21,31] and evolutionary (e.g. sexual selection,
competition and predation) [28,32] constraints underpinned this approach. To investigate the effect of
polygyny on demographic rates, we quantified the influence of sex and age on southern elephant seal
survival and investigated a range of theories including if juvenile survival differs from adult survival
in both sexes; if overall male survival is significantly lower than female survival; and lastly, in line
with other populations, if intersex differences in survival become more apparent as individuals age
and sexually mature. This research illustrates key demographic processes that influence survival in a
highly polygynous marine mammal.
2. Methods
2.1. Study species
Southern elephant seals are large, capital breeding marine mammals. Figure 1 highlights the differences
in growth between the sexes for different developmental stages. Most females make their first breeding
attempt at 3–5 years old [12,24]. Males attain biological maturity at 6–7 years old, meaning they are
physiologically capable of reproduction [33]. However, in order to make a successful mating attempt,
they must spend another 4–5 years growing to competitive bull size [26]. We refer to biologically
developed males which are not yet socially mature as sub-adult (ages 5–8) and subordinate (ages
9–12). A small number of males survive beyond these stages and grow large enough to control a
harem of up to 100 females in the breeding season [26]. This adult sex ratio makes them one of the
most polygynous of all mammals [9].
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2.2. Data collection
At Macquarie Island (54°300 S, 158°570 E), 14 175 pups from seven cohorts (1993–1999) were marked by
hot-iron branding shortly after weaning [34]. Branding does not negatively affect survival [35] and
produces a lifetime individual mark that is easily read from a safe distance [36]. Until 2001,
standardized surveys collected resights of marked individuals (i) daily on the main breeding site of
the northern isthmus beaches, (ii) every 10 days on the northern third of the island, and (iii) once a
month across the whole island [37]. After that, resights were collected ad hoc through alignment with
other projects and population censuses up until 2015. Sex was recorded at weaning and confirmed
through ongoing records. Only individuals of known sex were included in the analysis, resulting in a
sample size of 6999 males and 7009 females. Individual resights were converted into an encounter
history format by summarizing sightings annually (electronic supplementary material, appendix S2).

2.3. Demographic analysis
Data extraction and analyses were performed in R v. 4.2.1 [38] with RStudio 2022.07.01 [39]. Capture–
mark–recapture data were analysed using the software MARK v. 9.0 [40] through RMark [41]. Various
single-state demographic models were constructed to estimate survival and detection probabilities
using Cormack–Jolly–Seber models and derivatives (electronic supplementary material, appendix S3).
We first selected the most parsimonious model structure for detection probabilities ( p) by running
alternatives of the global (most saturated) model. These were tested for temporal and intersex
differences by including an interaction effect (electronic supplementary material, appendix S3).
Survival probabilities (Phi) were modelled with various combinations of three possible covariates: age,
time and sex (table 1). We included uniform baseline models with constant detection, as well as single
effect models and additive as well as multiplicative interaction terms. A global model with a three-
way interaction influencing survival was also included. Models were compared by Akaike
information criterion (AIC) [42] and ultimately ranked by quasi-AIC corrected (qAICc) [43] to
incorporate a conservative overdispersion factor c ̂ of 1.7 (electronic supplementary material, appendix
S1). Goodness-of-fit tests were conducted on single-state encounter histories using Median-c ̂
simulation in MARK ([40], electronic supplementary material, appendix S1).
3. Results
3.1. Model selection
Goodness-of-fit testing indicated a small level of overdispersion, which was accounted for by incorporating
a conservative c ̂= 1.7 (electronic supplementary material, appendix S1), using qAICc as the main statistic
for model selection (table 1). The most parsimonious model included sex for both detection (p) and survival
estimates (Phi). Additionally, the selected model included time-varying detection probabilities in addition
to incorporating an age effect into survival estimates (table 1). These were included as a multiplicative
interaction term, which varies survival with all ages ‘Phi(~SEX× age)’ and detection across all years
‘p(~time × SEX)’ (electronic supplementary material, appendix S3).

3.2. Demographic model
Figure 2 illustrates annual detection probabilities over the study period (a) and modelled probabilities of
survival with age (b) for male and female southern elephant seals. Annual variation in detection
accounted for varying resight effort over the study period. Throughout the active monitoring period
(1993–2001), mean detectability of both male and female seals was evenly high (approx. 50% F and
60% M). During ad hoc sampling from 2001, sex-specific detection became more variable with high
fluctuations between the sexes, before declining rapidly after 2009 (figure 2a).

Mean estimates of female survival (0.741 ± 0.077) were higher than male survival (0.637 ± 0.102) in all
age classes (figure 2b). Young (ages 1–4) survival of both sexes followed a similar increasing trend.
Female survival declined rapidly from age 3 (90%) to age 4 (85%), then remained steady with a very
slight decreasing trend until age 12 (75%). However, the variance around these estimates also
increased with age. The model results make it difficult to distinguish slightly decreasing adult female
survival from steady 80% survival with greater variability. Male survival estimates were consistently



Table 1. A combination of single-state age- and time-dependent demographic models were tested for intersex differences in
detection (p) and survival (Phi) with package RMark [41]. Model selection table, organized by qAICc values in decreasing order.
To demonstrate robustness, additional columns show rankings by AIC and AICc. The ‘order’ column indicates the order in which
the models were ranked for each statistic. The ‘model’ column details the components and interaction terms tested in each
model. The number of parameters is listed in the column labelled ‘npar’, as estimated by MARK [40], and adjusted for full rank
by RMark.

model npar

qAICc with ĉ = 1.7 AIC AICc

order qAICc ΔqAICc order AIC order AICc

Phi(~SEX × age) p(~time × SEX) 88 1 68032.05 0.00 1 115530.7 1 115531.0

Phi(~SEX + age) p(~time × SEX) 67 2 68044.43 12.38 2 115581.4 2 115581.6

Phi(~time + SEX) p(~time × SEX) 67 3 68202.36 170.32 4 115849.9 4 115850.1

Phi(~time × SEX) p(~time × SEX) 88 4 68206.10 174.06 3 115826.6 3 115826.9

Phi(~SEX) p(~time × SEX) 46 5 68280.24 248.19 5 116011.8 5 116011.9

Phi(~age) p(~time × SEX) 66 6 68408.33 376.29 8 116201.4 8 116201.6

Phi(~time) p(~time × SEX) 66 7 68538.32 506.28 10 116422.4 10 116422.6

Phi(~time × SEX × age)

p(~time × SEX)

592 8 68753.16 721.12 6 116024.5 6 116040.4

Phi(~time × SEX × age)

p(~time + SEX)

571 9 68807.78 775.73 7 116148.6 7 116163.5

Phi(~time × SEX × age) p(~time) 570 10 68915.90 883.85 9 116333.9 9 116348.7

Phi(~time × SEX × age) p(~SEX) 550 11 70334.66 2302.62 11 118775.6 11 118789.3

Phi(~time × SEX × age) p(~1) 549 12 70481.29 2449.24 12 119026.3 12 119040.0
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lower than females in the same age classes until 8 years of age, after which they feature a sudden
downturn from a steady 74% ± 5% to 50% ± 10% by age 10, a clear diversion from female adult
survival estimates (80%). Modelled estimates become highly variable as sample size decreases, with
mean male survival varying between 35% and 75% from ages 13 onwards (figure 2b). It is possible
that a small sample of successful individuals growing much older than others drives the variability
around modelled predictions close to 0–100% survival. Therefore, we decided to cut off
age-dependent survival results at 15 years for both sexes.
4. Discussion
We quantified age-dependent survival between male and female southern elephant seals. Overall male
survival was lower than female survival, as found previously on Macquarie [16,19] and Marion Island
[21]. By incorporating age, we demonstrated a clear developmental difference in sex-dependent
survival. Male survival was consistently 5–10% below females for juvenile ages (figure 2b). It should
be noted that this model did not account for weaning mass, which is known to influence juvenile
survival in this species [44]. In the first few weeks of development, male pups and weaners are
heavier than females and so might be expected to have higher survival [7,45]. However, the energetic
costs of raising male pups are higher and smaller females may terminate pregnancies to prioritize
their own growth [46]. A covariate of weaning mass would be useful to further investigate intersex
differences in juvenile survival that may not have been accounted for by these models.

Overall, seal detections were high during active monitoring (1993–2001) with greater variation between
and within sexes post 2001 after organized searches were replaced by ad hoc sampling (figure 2a).
Including data post 2001 was essential to determining which seals tagged in the early 1990s survived to
adulthood. Later in the study, (2005–2010) detection of males was higher than females, probably
because larger adult males were easier to see. Additionally, there may be greater chances of
encountering a male during the period of ad hoc sightings because breeding adult males spend more
time on beaches than females, as they arrive prior to the start of the breeding season [47]. Lastly, a
steady decline in estimated detection probabilities for both sexes after 2009 was expected due to
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Figure 2. Estimated probabilities of detection (a) and survival (b) of a single-state demographic model constructed from
comprehensive capture–mark–recapture histories of 14 008 southern elephant seals from Macquarie Island. Estimates are
plotted separately for females (red) and males (blue) with corresponding 95% confidence intervals represented by grey error
shades. The x-axis represents the relevant dependent variable of the most parsimonious model: time (calendar years) for
detection probabilities ( p) and age (years since first capture) for survival estimates (Phi). Probability estimates on the y-axes
are plotted as decimal values from 0 to 1, equivalent to percentages from 0 to 100% respectively.
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conclusion of active monitoring. At this point in time, no new individuals were being marked and the
cohort of branded animals decreased due to age-related mortality. This contributed to increased
variability around survival estimates of older ages.

Goodness-of-fit tests confirmed that age or developmental stage of individuals influenced the
demographic rates of this species. The calculated overdispersion factor was well within acceptable
range. We tested the robustness of the models by including multiple information criteria in the model
selection (table 1; see electronic supplementary material, appendix S1.3: Analysis). Each criteria
selected the same two top-ranked models, both of which included the same parameters in the same
order. Because of these consistencies, the biological interpretation of this analysis is robust to a
reasonable amount of potential overdispersion in the data.
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Survival trends for young (ages 0–4) males and females were similar, increasing in the first 2–3 years
of development, then slowly decreasing at a matching rate. Likewise, growth rates of juvenile males and
young females matched initially, then diverged quickly after 7 years of development, when females are
known to be fully mature [12] (figure 1). Developmental requirements and attempting to breed for the
first time may contribute to the sharp decrease in female survival estimates by age 4 (figure 2b) [12].
Size and overall body condition is a major determinant of survival and reproductive age in maturing
female southern elephant seals [12,48]. As capital breeders, females rely on energy stores to sustain
themselves and to nurse their pups while fasting ashore during three weeks of terrestrial lactation
[14]. Individuals in poor condition can skip a breeding season to conserve energy [11]. By contrast,
males have a very low chance of contributing to future generations. A small proportion of high-
quality males gain dominant breeding status and maintain high survival and reproductive success,
even in future breeding seasons [49]. The remainder of mature males struggle to survive in this highly
competitive breeding system. This effect is captured by the large amount of variability in survival
estimates for adult males in our study (figure 2b). It should be noted that maturing subordinates may
stay away from harems if they made an unsuccessful attempt at establishing dominance [33]. To
account for this, we used a comprehensive suite of resights from whole island surveys to minimize
potential missed counts. Male survival estimates decreased rapidly between the ages of 7–10,
dropping nearly 25% in just 3 years to a mean of 50% by age 10 (figure 2b). During juvenile and sub-
adult development, all accumulated resources are converted to growth (figure 1). Subordinate males
become socially competitive for mating around 10–12 years old [33]. Additionally, maturing males
shift their haul-out patterns to align with the early breeding season [19]. This behaviour requires large
amounts of energy stores to sustain individuals while they are fasting ashore and fighting with other
males for dominance over a harem. Therefore, an energetic need and competition for prey resources
could be underpinning the decrease in survival at these key developmental stages [31,50]. In elephant
seals, energetic costs of growth are tightly linked to reproductive success [51]. This is also the case for
other well-studied polygamous mammals with male-dominant breeding systems and expressed sexual
dimorphism. For example, in terrestrial ungulates such as fallow deer (Dama dama) [52] and bighorn
sheep (Ovis canadensis) [53], dominant males monopolize mating events by having a larger body mass
and greater horn or antler size.

Intersex differences in survival with age are probably the result of the complex social dynamics in this
highly polygynous mating system. Many studies of southern elephant seals have reported a substantial
difference in adult survival between the sexes [19]. Despite a 50/50 sex ratio at birth, adult males make
up only 36% of the adult population [54]. For seals past their first year of life, mortality on land is
negligible [25]. Even in the energetically expensive breeding season, the vast majority of females
return to the ocean after weaning their pups [20]. Adult males can suffer serious injuries from
competing with other bulls over mating access, but these fights rarely end in fatalities [20]. At-sea
mortality is therefore regarded as the major cause of death, either by starvation or predation [20,25].
Outside the breeding season, elephant seals spend most of their life foraging at sea [19]. Tracking
studies from the Kerguelen population found strong evidence for foraging habitat partitioning
between adult male and female southern elephant seals [28]. Females frequented the open mid-ocean
regions, while males preferentially foraged along the Antarctic continental shelf and the shallow
plateau regions surrounding their natal island [28]. This behaviour was also observed in the
Macquarie Island population, although at a limited sample size [29]. By contrast, young (ages 1–4)
juvenile males and females from Macquarie Island visited similar areas, with age being the main
determinant of their at-sea movements [27]. This strongly suggests an age, or developmental,
component to sex-specific foraging behaviour in this species. Diet studies support this assertion, with
age being the sole determinant of prey sources found in 1- to 4-year-old juveniles from Macquarie
Island [55]. Resource partitioning between sexes becomes apparent for mature adults [56–58], which is
attributed to diverging foraging preferences of adults [59].

In conclusion, the overall lower survival of males could be linked to the species’ dimorphism and sex-
specific energetic needs, which diverge early in the seal’s life history [8]. Unsurprisingly, adult females
survived longer than males on average. However, our study illustrated an increased mortality risk for
socially maturing males later in life. Diverging intersex differences in survival became abruptly
apparent for seals aged 9 years or older. This indicates that this species is subject to the pressures
associated with being a highly polygynous and sexually dimorphic marine predator. To develop into
a dominant breeding adult, maturing males must compete for limited prey resources to gain and
sustain an extreme amount of body mass very fast. Simultaneously, socially maturing males must be
able to fight with competing bulls and remain ashore for lengthy periods during the breeding season.
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To compensate for these high energetic demands, adult males employ riskier foraging strategies, placing
them in areas where they may encounter other top predators [30]. Thus, maturing sub-adult and
subordinate males are at greater risk of starvation and predation. Females on the other hand,
maximize their lifetime reproductive output by following a wide-ranging pelagic foraging strategy,
away from productive shelf waters [60]. Additionally, females can compensate for less successful
feeding bouts by prolonging their foraging trips and returning later in the breeding season [19,45]. In
extreme cases, females in poor body condition may skip a breeding season entirely, thereby
conserving the extreme energetic cost of birthing, nurturing and weaning a pup [11]. Our findings
suggest sex-specific adult survival is a result of in situ ecological interactions and evolutionary
specialization associated with being a highly polygynous marine predator.
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