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Abstract. The article describes two new clustering algorithms for DNA nucleo-
tide sequences, summarizes the results of experimental analysis of performance 
of these algorithms for an ITS-sequence data set, and compares the results with 
known biologically significant clusters of this data set. It is shown that both al-
gorithms are efficient and can be used in practice. 

1   Introduction 

The investigation of DNA data sets has broad applications in medical and health in-
formatics and many branches of biology. Data mining and machine learning have 
been crucial in the development of these research areas (let us refer, for example, to 
Gedeon and Fung [3], Kang, Hoffman, Yamaguchi and Yeap [6], Li, Yang and Tan 
[10], Webb and Yu [13], Zhang, Guesgen and Yeap [17], Zhang and Jarvis [18]). 

The present paper describes and investigates two clustering algorithms that can be 
used to group a data set of DNA sequences into clusters. In order to achieve signifi-
cant correlation between clusterings produced by these machine learning algorithms 
and biological classifications, we have relied on measures of strong similarity be-
tween sequences. Such measures have not been considered for these algorithms be-
fore. Here we present the results of an experimental analysis of the performance of 
our new algorithms using a data set derived from the internal transcribed spacer (ITS) 
regions of the nuclear ribosomal DNA in Eucalyptus, and compare the results with 
clusterings published by Steane et al. [12]. 

For preliminaries on DNA molecules we refer to the monographs Baldi and Brunak 
[1], Durbin, Eddy, Krogh and Mitchison [2], Jones and Pevzner [5] and Mount [11]. 
Background information on clustering algorithms can be found in Witten and 
Frank [15].  
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2   Clusters of the k-Means Algorithm with Alignment Metrics 

Both our algorithms use highly biologically significant alignment scores as a metric 
and obtain significant results. The novel character of our method is in using a sophis-
ticated and highly informative distance metric based on alignment scores well known 
in bioinformatics. Every alignment produces an alignment score that measures the 
similarity of the nucleotide or amino acid sequences. 

The alignment scores in our algorithms provide an accurate measure of similarity 
that is more significant biologically. Alignment scores have properties that differ from 
those of the Euclidean metrics and their simple modifications discussed, for example, 
by Witten and Frank [15] (Section 6.4). Hence our algorithms have to be designed 
differently. First, it is impossible to do simple calculations for the alignment score 
metric involved in various Euclidean clustering algorithms. For example, it is impos-
sible to find a DNA sequence that is the “midpoint” or “mean” of two DNA se-
quences. Secondly, it is important to minimize the number of distance calculations, 
because each of them is time consuming. 

Our first algorithm is a new version of the k-means clustering algorithm. The tradi-
tional k-means algorithm implemented in WEKA environment uses standard Euclid-
ean distances (Witten and Frank [15], Section 4.8). Our algorithm uses the metric of 
alignment scores to establish similarity between sequences. The unusual character of 
this metric prohibits direct computation of the mean of a set of sequences in a cluster. 

In order to make the algorithm faster, it is desirable to minimize the number of 
times the alignment scores have to be found. This is why the algorithm operates on 
the set of given sequences only and does not create any new sequences as means of 
the given ones. Every alignment score between each pair of the given sequences is 
found once during a pre-processing stage of the algorithms, and then these scores are 
looked up in a table during the process of looking for clusters. 

The initialization stage proceeds as usual: k sequences are randomly chosen as cen-
troids of clusters, and every other sequence is assigned to the cluster of its nearest 
centroid. Every iteration of the algorithm looks at each current cluster in turn. It then 
analyses all sequences of the cluster trying to determine which of them would be the 
best centroid for this particular cluster. Suppose that the algorithm is considering a 
cluster C. As a new centroid for this cluster our algorithm is going to choose the  
sequence s in C with the property that the sum of all distances from s to all other se-
quences in C is minimal. This is in fact precisely the property of the standard Euclid-
ean means that is essential for the operation of the traditional k-means algorithm.  

The average success rates of this method in comparison with five clusters obtained 
and published by Steane  et  al. [12] are represented in Figure 1. The diagram demon-
strates how the success rates depend on the choice of the local alignment metric. 

3   Nearest Neighbour Clustering Algorithm with Alignment Metrics 

The second algorithm we implemented is an analog of the nearest neighbour cluster-
ing algorithm (Witten and Frank [15], Section 4.7). The standard nearest neighbour 
clustering algorithm implemented in WEKA could not be applied directly to the ITS 
dataset, because it handles data represented as points in an n-dimensional Euclidean 
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space. Thus we had to encode a new version of the nearest neighbour algorithm based 
on optimal local alignments of the given sequences. 
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Fig. 1. Experimental data on success rates of clustering algorithms for several distance metrics 

Given the number k of clusters, the algorithm computes all local alignment scores 
between all pairs of DNA sequences in the data set. It chooses random k sequences as 
representatives of the k clusters. For every other sequence s in the data set, it looks at 
all sequences which have been considered and allocated to the clusters and finds the 
nearest neighbour of s among these sequences. The algorithm then allocates s to the 
cluster of its nearest neighbour. This is repeated until all sequences have been as-
signed to clusters. 

The average success rates of this method using various alignment metrics com-
pared with the clusters obtained and published by Steane  et  al.  [12] are represented 
in Figure 1. 

4   Experimental Results 

We investigated the groupings of an ITS dataset, displayed in Figures 2, 3 and 5 of 
Steane  et  al.  [12]: The dataset includes many of different species from all subgenera 
and sections of Eucalyptus, as well as some other genera that are closely related to 
Eucalyptus. For a detailed description of the dataset we refer to  [12]. 
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Figure 1 summarizes the results of comparison between classifications obtained by 
our two algorithms and known classifications considered in the biological literature 
(see Steane et al. [12]). Our clustering algorithms use the strong similarity measures 
and have achieved high accuracy rates compared to other algorithms considered in 
other similar situations previously (see [14]). 
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Fig. 2. Tenfold cross validation for the accuracy of allocating new sequences 

We investigated the efficiency of the clusters produced by our algorithms for clas-
sifying new sequences (Figure 2), and established that both algorithms are accurate. 
The choice of algorithm is a trade-off between speed and accuracy. The nearest 
neighbor clustering algorithm is more accurate but is slower. 

This research has been supported by the IRGS grant K14313 of the University of 
Tasmania. 
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