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Abstract. Promoter prediction is a well known, but challenging problem in the 

field of computational biology. Eukaryotic promoter prediction, an important 

step in the elucidation of transcriptional control networks and gene finding, is 

frustrated by the complex nature of promoters themselves. Within this paper we 

explore a representational scheme that describes promoters based on a variable 

number of salient binding sites within them. The multiple instance learning 

paradigm is used to allow these variable length instances to be reasoned about 

in a supervised learning context. We demonstrate that the procedure performs 

reasonably on its own, and allows for a significant increase in predictive accu-

racy when combined with physico-chemical promoter prediction.  

1. Introduction and Biological Context 

Deoxyribonucelic acid (DNA) stores the instructions for building complex biological 

organism. Simply speaking, this information is arranged in genes, many of which (but 

not all) code for proteins — the general functional units of biological systems. DNA 

is a long polymeric molecule constructed from monomers (of which there are four). 

Within computational fields, this is commonly represented as a string of letters from 

the alphabet of A, C, T and G (representing the bases Adenine, Guanine, Cytosine and 

Thymine); the length unit is base pairs (or bp) and is analogous to simple string 

length. Although DNA is a double helix in vivo, it is common to give the sequence of 

only one strand as the bases bind complementarily; one strand can be inferred from 

the other. For the purposes of this paper, we will concentrate on the eukaryotic homo 

sapiens genome. Relatively little of the human genome is actually accounted for by 

genes [1], making the localisation of them highly important. Furthermore, the expres-

sion (activity) level of genes is governed by complex regulatory networks involving 

the binding of proteins called transcription factors to the DNA molecule. This regula-

tory network ensures the correct temporal, spatial and contextual expression of each 

gene. A promoter can be thought of as a gene header — a short portion of DNA 

which is not transcribed, but allows the cellular transcriptional machinery to recognise 

and bind at the correct location on the DNA molecule. The point within the promoter 

after which the sequence is transcribed is called the transcription start site (or TSS). 

Transcription factor binding sites are often clustered around, or within, the promoter 



region [2-5]. Transcription factors (regulatory proteins) bind to these sites, modifying 

the expression level of the gene. A common method for identifying transcription fac-

tor binding sites is via position weight matrices (PWMs). Position weight matrices 

model the likelihood of a given nucleotide appearing at a given location within a 

binding site; one matrix is needed for each transcription factor. Given a putative bind-

ing site, the model gives the quality of match and a threshold can be used to predict 

sites. This paper explores a promoter representational scheme based around the loca-

tion of these transcription factor binding sites.  

Prestridge [3] describes an approach based on representing promoters by the loca-

tion of transcriptional elements. This approach uses a collection of position weight 

matrices to build a profile of the promoter region. For each transcriptional element 

considered, the ratio density of occurrences within promoter sequences, as compared 

to non-promoter sequences, is calculated. A score for a putative promoter is calcu-

lated by summing the density scores from the profile which match the transcriptional 

elements found within the sequence in question. In contrast to the method proposed 

here however, this does not take into account the relative positioning of sites.  

Kondrakhin and colleagues [2] propose a similar technique to that of Prestridge, al-

though using consensus sequences rather than position weight matrices to identify 

binding sites. The salient difference is that they consider the localisation of binding 

sites. They split the promoter into regions and construct a two-dimensional matrix 

representing the occurrence of each binding site within each region. Classification is 

performed from this matrix via a weighted sum using a threshold.  

Other work has also investigated the density of particular oligonucleotides in pro-

moter regions [6, 7]. Within the work of Narang et al. [7] a statistical model is created 

from a dataset of positive instances without the need for a collection of weight matri-

ces (or other models of the motifs sought). Negative examples or a background ge-

nomic model are also not required. The fact that this method does not require pre-

existing models of the motifs sought is a major advantage, as many transcription fac-

tors either do not have (or have poorly supported) models.  

The efficacy of characterising promoters by the distribution of salient motifs within 

their primary sequence has clearly been established in previous work. The focus here 

is on a formulation which is amenable to solution within the classic supervised ma-

chine learning framework. To this end the next section explores a possible approach 

utilising the common attribute-vector representation. 

 

 

 

Fig. 1. The process of transcription showing the binding of transcription factors to 

the DNA molecule within the promoter region (adapted from [8]). 



2. Promoter Prediction Using Transcription Factor Binding Sites 

A significant number of approaches have previously been presented aimed at solving 

the promoter prediction problem [9-17]. Bajic [15] et al. report that none of the pro-

grams they tested in their review were able to produce a combined sensitivity and 

positive predictive value of more than 65%, with many falling well below this. We 

use the same accuracy measures here as used in [15] and [18]. Here we explore a new 

approach to promoter prediction utilising the existing idea of describing a promoter 

by the location and name of transcription factor binding sites which fall within it. A 

relatively simple mechanism is employed for locating these binding sites; the putative 

promoter region is scanned using position weight matrices (PWMs). This leads to a 

new consideration: the problem of variable length instances. If one scans the promoter 

sequence using a weight matrix this produces a series of matches (i.e. there may be 

zero or more sites that exceed the threshold). Repeating the process searching for 

binding sites for other distinct transcription factors produces a heterogeneous set of 

matches. This set is the collection of attributes used to describe a single promoter, or 

instance, within the dataset. Although it is conceivable that the number of distinct fac-

tors for which binding sites are sought is known a priori, the number of matches for 

each matrix is unknown and indeed variable across promoters. This introduces an is-

sue for most established classifier learning schemes, as variable length instances are 

not supported. It is possible to place an upper bound on the number of matches to a 

given matrix — one more than the difference between the length of the motif and the 

length of the sequence being searched. This introduces a new problem though. Such a 

representation produces instances of extremely high (albeit fixed) dimensionality. 

With this increased dimensionality, a greater amount of training instances are needed 

to facilitate the learning of salient concepts from the data. This is not practical as there 

are a finite and relatively small number of positive instances available. Rather than 

pursuing this thread of at best marginal utility, the problem can be reformulated using 

multiple instance learning.  

3. Multiple Instance Learning 

Within the classic paradigm of supervised machine learning the learner is provided 

with the correct answers to a set of training instances. Within this paper a variation on 

this technique called multiple instance learning [19] is used. The fundamental differ-

ences are the organisation of instances and the availability of class information. 

Rather than a single instance being described by a vector of attribute values and a 

class value, instances are grouped into bags. Instances no longer have classes, but 

rather it is the bag which has a class value attached. It has been suggested that the 

multiple instance representation lies in generality somewhere between the attribute-

vector representation commonly found in supervised learning and the relational repre-

sentation associated with the field of inductive logic programming [20]. The multiple-

instance problem is really a generalisation of the classic supervised learning problem. 

Alternatively, for ease of expression, classic supervised learning is a special case of 

MIL where each bag contains only a single instance.  



Several approaches have been devised to construct classifiers for multiple instance 

learning problems [19, 21-24]. Xu and Frank [25], later followed by Ray and Craven 

[26], explored logistic regression methods. They propose two methods for determin-

ing the bag-level class probability – one based on the arithmetic mean of the instance 

level probability estimations, the other on the geometric mean. Their underlying gen-

erative model does not assume that the bag class is determined by only a single in-

stance; a point of interest within this work given more consideration later. Multiple 

instance learning has been successfully applied to several domains including drug ac-

tivity prediction [19, 23] and scene recognition [22, 27, 28] where it deals well with 

ambiguity with respect to which part of the image is of interest [29]. However, to our 

knowledge this is the first time it has been utilised for promoter prediction.  

4. Multiple Instance Learning for Promoter Prediction 

With the above approach, it is possible to modify the promoter representation to avoid 

the problem of variable length instances. Instead of a promoter mapping to an in-

stance, it will instead be represented by a bag. Individual instances will be positive 

matches within the promoter sequence for the PWM of a given transcription factor. 

Note that conceptually an instance (a PWM match) can now be described with a 

small, fixed number of attributes. These are the name of the transcription factor in 

question and the location of the hit within the sequence of the promoter (i.e. an in-

dex). Each instance is assigned to a bag. The bag represents the promoter on which 

the matches occurred. That is, each promoter is represented in the dataset by a single 

bag and each bag contains all the (putative) TFBSs found within that promoter. In 

fact, the variability has not been eliminated from the dataset, it has simply moved to a 

higher level – the number of instances within a bag. Table 1 presents a small sample 

dataset, described in the ARFF format [30]. It has two putative promoters (p1, a nega-

tive exemplar and p2, a positive exemplar). The first (p1) is described by two PWM 

hits and the second (p2) by five PWM hits.  

Table 1: A sample MIL promoter dataset in ARFF format 

@relation MIL_SAMPLE 

 

@attribute PROMOTER_NAME {p1, p2} 

@attribute TF_MAT_NAME {MA0001, MA0002, MA0003} 

@attribute HIT_LOCATION numeric 

@attribute PROMOTER? {yes, no} 

 

@data 

p1, MA0001, 36,  no 

p1, MA0003, 124, no 

p2, MA0001, 12,  yes 

p2, MA0001, 34,  yes 

p2, MA0002, 56,  yes 

p2, MA0003, 89,  yes 

p2, MA0003, 156, yes 



It is common when presenting the application of MIL to a problem domain to also 

present results obtained from applying a non-MIL classifier to the dataset to demon-

strate the improvement apparent from using MIL [19]. This is not meaningful here 

since the instances are simply TFBSs. Individually they do not represent a promoter 

and hence a non-MIL classifier could not be expected to learn promoter-level con-

cepts from them. For this reason, standard classifiers are not considered when discuss-

ing the result possible from a multiple instance learning solution to this problem.  

The above paragraph exposes a caveat about this application of MIL. Strictly 

speaking, Dietterich et al. [19] specify that a bag is positive if any instances within the 

bag are positive, or the bag is negative if none of the instances in the bag are positive. 

However, the problem formulation that was given above does not quite align with 

this. Here, a bag contains positive instances (TFBS hits which make this promoter bag 

a positive) and negatives (TFBS hits which do no impart positivity to the bag). So far 

this matches with the general description of an MIL problem, however here it is not 

simply the case that a single positive TFBS hit in a bag makes the bag positive. 

Rather, a more complicated underlying concept exists: some combination of positive 

instances makes the bag positive. Xu and Frank [25] introduce the idea that the label 

of a bag is determined from an equal and independent contribution of all the instances 

within the bag. However, within this application, it is reasonable to assume that there 

is some dependence between the binding sites discovered.  

5. Materials and Methods 

We explore the application of MIL promoter prediction within two contexts. In the 

first, it is applied independently. A dataset is generated using a segment of chromo-

some 21 from the human genome containing fifty-six known promoters. For each 

promoter, 150bp upstream and downstream of the TSS are extracted (i.e. 300bp in to-

tal). Non-promoter sequences are also extracted from the same region, also of 300bp 

in length each and totalling 560 instances. 

In the second context, MIL is applied as a post-processing step to putative promot-

ers predicted by another promoter prediction methodology — specifically physico-

chemical promoter prediction (PCPP) [18]. Here, the full DNA segment is provided to 

the PCPP layer (note that the PCPP layer is trained on a separate segment of the same 

chromosome). Two scenarios are considered — passing all instances to the MIL layer 

or only passing the positive-classified instances. In both cases, the predicted promoter 

locations (there are 61, 21 correct, 40 incorrect) are taken as TSSs and 300bp win-

dows are extracted around these. When passing all instances, positive instances not 

correctly identified by the PCPP layer (there are 35) are included as false negatives. 

True negative instances are generated in the same fashion as above (there are 560). 

Considering a second level as re-labelling the instances, there are four possible transi-

tions; each type is of interest. The first is a transition from FP to TN (improving accu-

racy), the second a transition from TP to FN (decreasing accuracy), the third a transi-

tion from FN to TP (improving accuracy) and the last being from TN to FP 

(decreasing accuracy). Table 2 shows the distribution of instances after applying the 

PCPP layer, but before applying MIL.   



Table 2: Distribution of instances before applying MIL 

  Actual Class 

  Positive Negative 

Positive 21 40 
PCPP Prediction 

Negative 35 560 

 

Each element of the dataset described above (i.e. each 300bp segment of DNA) is 

searched for binding sites using 128 position weight matrices from JASPAR [31] — a 

high-quality, publicly available repository of matrices. The output from this search for 

binding sites is arranged as per the multiple instance learning paradigm described 

above. That is to say, fundamentally, each instance is a matrix hit, described by the 

name of the matrix and an index into the sequence representing where the hit oc-

curred. Instances are assigned to bags representing the promoter from which they 

were drawn. In addition to a class label, when evaluating the MIL layer as a second 

step after PCPP, each bag can also be given the prediction made by the physico-

chemical promoter prediction software. This allows a multiple-classifier approach ut-

ilising the prediction of the lower PCPP layer within the MIL layer. An example data-

set (demonstrating the application of just the MIL layer without the PCPP prediction) 

was presented in Table 2. 

As a source of classifiers, MILK [32], a toolkit of multiple instance learning algo-

rithms written as an extension to WEKA [30], is used. Some of the algorithms in 

MILK are not applicable either due to data incompatibilities or excessive runtime. 

The logistic regression algorithms presented by Xu and Frank [25] are theoretically 

well suited to this application, capable of handling the data representation, and have 

reasonable runtime. Hence, the investigation is concentrated on the use of these. Re-

sults are presented for the classifiers MILRARITH (Multiple Instance Logistic Re-

gression with Arithmetic Mean), MILRGEOM (Multiple Instance Logistic Regression 

with Geometric Mean) and MIRBFNetwork (Multiple Instance Radial Basis Function 

Network). All experiments are performed using stratified ten-fold cross-validation. 

The statistical test employed here is the Wilcoxon signed rank test [33] as de-

scribed by Conover [34]. Observations are the F-measure for each fold before and af-

ter the change in classifier (Note that the split of the dataset into folds is equivalent 

for all such experiments).  Improvements in F-measure, sensitivity or PPV are consid-

ered statistically significant if the p-value is less than 0.05. 

All of the classifier learning schemes mentioned expose the regression ridge pa-

rameter. Empirically it was observed that this parameter influences the quality of clas-

sifiers produced. To select a value for this, a nested tenfold cross-validation approach 

was used. The inner cross validation takes the 90% of the original dataset provided for 

training in each fold of the outer cross-validation and trains the classifier using a 

range of possible values for the ridge parameter. Each training of the classifier is itself 

a complete tenfold cross-validation. The F-measure of each resultant classifier is de-

termined and the parameter value which produces the best F-measure is used to train a 

final classifier for the given fold of the outer cross validation.  



6. Results and Discussion 

To put the following results in perspective, one must first consider the performance of 

the physico-chemical promoter prediction software without the MIL augmentation. 

Before applying the search for TFBSs and MIL, there are 21 true positives, 35 false 

negatives, 40 false positives and 560 true negatives. This equates to a sensitivity of 

0.38 and a positive predictive value of 0.34. Ideally a balance between sensitivity and 

positive predictive value is desired. To capture this, here we use F-measure (the har-

monic mean of sensitivity and positive predictive value) to represent the quality of the 

classifier produced.  

6.1. PCPP and MIL on Positive-Classified Instances 

We begin by examining the main contribution of this paper. That is, the MIL layer 

utilising only the instances predicted as positive by the PCPP layer. As all the true 

positives and all the false positives are being provided to the MIL layer, the final 

count of these is simply the count of true positives and false positives produced by the 

MIL layer. The final count of true negatives and false negatives is the sum of those 

produced by the PCPP layer (as none are passed to the MIL layer, they cannot be re-

classified) and any new true or false negatives produced by the MIL layer (i.e. false 

positives correctly reclassified or true positives incorrectly reclassified).  

It is not possible for a classifier produced from the positive-predictions-only data-

set to demonstrate an improvement in sensitivity over just the PCPP layer. This is ob-

vious if one considers that sensitivity is calculated by dividing the number of true 

positives by the sum of false negatives and true positives. The denominator of this ex-

pression is invariant here since a true positive reclassified becomes a false negative 

and a false negative reclassified becomes a true positive. The numerator however can 

be decreased but never increased (it is possible to incorrectly change a true positive to 

a false negative but there are no false negatives provided to the classifier which might 

be correctly reclassified to true positives). Hence, the upper bound on sensitivity is 

that which was produced by the PCPP layer, specifically 0.38.   

The results of running the three selected classifier learning schemes using only 

positively classified instances from the PCPP layer are presented in Table 3. The most 

striking feature is the improvement apparent from the MIRBFNetwork classifier when 

propagating only positive-classified instances. The results indicate that the PCPP 

classifier and the MIRBFNetwork classifier are complementary. The MIRBFNetwork 

is better at separating true from false positives in the PCPP classifications than the 

other two classifier types, although all show improvement over just the PCPP layer. 

Table 3: Classification performance using PCPP-positive instances. Entries marked in bold 

show a statistically significant improvement over the base-level PCPP classifier. 

 MILRARITH MILRGEOM MIRBFNetwork 

Sensitivity 0.37 0.37 0.37 

Positive Predictive Value 0.42 0.43 0.91 

F-Measure 0.39 0.40 0.52 



6.2. MIL promoter prediction performance in isolation.  

Having demonstrated that MIL can be utilised to improve the classification perform-

ance of the PCPP approach, it is instructive to consider how well it might function on 

its own. Table 4 shows the performance of the three selected classifier learning meth-

ods operating in isolation.  

The results in Table 4 show that each of the classifier learning methods utilised 

was not capable of matching the PCPP layer performance in isolation. This demon-

strates the efficacy of including the lower layer. The F-measure of about 0.25, al-

though low, is competitive with a lot of existing promoter prediction approaches. It is 

however much less than the PCPP layer was capable of in isolation. 

Table 4: Isolated MIL layer. Only the F-measure is presented.  

 MILRARITH MILRGEOM MIRBFNetwork 

F-Measure 0.25 0.25  0.26  

6.3. PCPP and MIL on All Instances  

Within this section we consider passing all instances from the PCPP layer regardless 

of whether they were classified as positive or negative. Recall however, that each in-

stance is appended with the PCPP level classification result. The results for running 

each of the classifiers using this approach are presented in Table 5. Recall that the 

PCPP layer achieved a sensitivity of 0.34 a PPV of 0.38 and an F-measure of 0.36. 

Bold entries in Table 5 are significantly better than the PCPP layer performance. 

The results are somewhat mixed. Here, MILRGEOM shows a statistically signifi-

cant improvement in PPV and a corresponding improvement in F-measure. The 

MIRBFNetwork classifier scores quite poorly on sensitivity and by extension also F-

measure due to a large number of negative predictions.  

Table 5: Classification performance using all instances. Bold entries signify a statistically sig-

nificant improvement over the base-level PCPP classifier.  

 MILRARITH MILRGEOM MIRBFNetwork 

Sensitivity 0.37 0.35 0.15 

Positive Predictive Value 0.40 0.44 1.00 
F-Measure 0.38 0.39 0.26 

7. Conclusions and Further Work 

Within this paper a multiple instance formulation of the promoter prediction problem 

was introduced and several algorithms were tested. It has been demonstrated that, 

with an appropriate selection of learning scheme and parameters, promoters can be 

predicted using multiple instance learning and a representation based on the location 

of transcription factor binding sites. Furthermore, the classification performance of 



this and a physico-chemically based promoter prediction procedure can be improved 

by arranging the two in a combined classifier. By using a database such as JASPAR, 

the performance of such an approach can be expected to improve as more experimen-

tally verified binding sites become available.  

The most expensive operation is searching raw DNA sequences for binding sites. 

In general, the application of this approach in isolation is computationally infeasible. 

However, by considering a multiple classifier system where the MIL layer is only ap-

plied to positive-classified instances from the lower PCPP layer, computational re-

quirements can be sufficiently reduced such that the approach becomes practical. 

Moreover, this multiple classifier system achieves the best performance in terms of F-

measure (0.52), improving upon the PCPP layer (which in this scenario achieved an 

F-measure of 0.36 and in general is capable of an F-measure of approximately 0.40). 

Putting this in context, the F-measure of 0.52 beats 6 out of the 9 approaches investi-

gated by Bajic et al. [15]. 

There are potential avenues for reducing the runtime requirements of this MIL ap-

proach. Most obviously, one could scan for binding sites using fewer matrices. In line 

with this, the identification of which matrices produce hits that are used by the classi-

fier would allow biological insight into promoter function. Those matrices which are 

not important for classification could then be removed allowing for an improvement 

in runtime performance.  

Further to this, there are additional possibilities for combining classifiers. Here we 

explored only the inclusion of the lower layer prediction as an attribute at the higher 

layer, but there is extensive research into multiple classifier systems including ap-

proaches such as bagging [35], boosting [36] and stacking, which may improve classi-

fication performance. 
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