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ABSTRACT 
This paper describes the application of a practical method 
for uncertainty analysis, in which the uncertainties in all 
error sources are considered individually and 
simultaneously in the extrapolation of ship powering 
prediction. Such uncertainty has been investigated by 
utilising the JTTCl 978 performance prediction method 
and an application of Monte Carlo simulations. The error 
sources are: the torque, thrust, towing force, propeller 
revolution from the self-propulsion test; the resistance 
force and the model speed from the resistance test; and the 
torque and thrust coefficient from the open water test. A 
case study was conducted using available sea trials and 
towing tank experimental data of the RTV Bluefin, a 
research and training vessel owned and operated by the 
Australian Maritime College (AMC), see Table 1 for main 
particulars. The levels of uncertainty in ship powering 
were obtained by choosing a random sample from the 
error sources and repeating the calculation a large number 
of times. Then the distributions of the simulation results 
were used to determine the uncertainty in the total result. 

Keywords 
Monte Carlo simulations, model experiments, self­
propulsion test, ITTC 1978 extrapolation. 

1 INTRODUCTION 
One of the most important activities in a ship design 
process is the prediction of the full-scale power 
requirement. Even though the extrapolation of scaled 
model tests is currently the most reliable method available 
for the purpose, verification studies or uncertainty 
analyses are required to provide confidence in the 
accuracy of the results. However, the conventional 
uncertainty analysis recommended by the 22"d ITTC 
(ITTC, 1999) are almost prohibitive for ship model to 
ship extrapolation by the ITTC 1978 method, as the ITTC 
1978 extrapolation procedures are complex and involve 
many steps. One alternative approach to such problems is 
by applying the Monte Carlo method in the uncertainty 

analysis (Bose et al. , 2005). Furthermore with the 
computing power and speed available nowadays, it Jias 
become feasible to perform an uncertainty analysis 
directly using Monte Carlo simulation that could involve 
up to 100,000 iterations. 

Table 1: Main particulars of RTV Bluefin 

32.00 
32.16 

Molded breadth 9.75 
Draft 3.93 
Dis lacement volume 527.2 
Wetted surface area 382.47 
Block coefficient 0.427 

0.616 

0.768 
0.802 

z 4 

D m 2.20 

RPM 240 

knots 10.0 

knots 11.5 

The way Monte Carlo methods are used in uncertainty 
analysis is by assuming a variation in the inputs to a
calculation or numerical method and then calculating tile 
variation in the output for a given number of trials (Bose~ 
2008). The variation in the inputs is given an assumed 
range of a given normal distribution with a set standard 
deviation. This is achieved using a Gaussian random 
generator which is easily available in any computer 
program languages or spreadsheet (Coleman & Steele. 
1999). Often 10,000 to 50,000 iterations are used for 
assigning new randomised inputs to the calculation or 
numerical method. Then the uncertainty of the output 1' 
obtained as the distribution in the values of the ou_!pUI 
from the iterations made. 

The work carried out in this study was based on Mollo) ·, 
(2006) work. 



2 ITIC1978 SHIP POWERING PREDICTION 
In the 1978 International Towing Tank Conference 
(Lindgren et al., 1978), a performance prediction method 
was presented and it is now generally accepted by all 
major testing facilities in the world. The ITTC 1978 
method is used to extrapolate the results of three physical 
model tests to full-scale power. The three discrete tests are 
a resistance test, a propeller open water test and a self­
propulsion test. The resistance test is a bare hull tow test; 
the resistance of the model, RrM, is measured at a number 
of different carriage velocities, V M• without the propeller 
installed. In the propeller open water test, the test is 
performed with the model propeller operating in uniform 
flow without the model hull. While in the self-propulsion 
test, a model complete with appendages and operating 
propeller(s), is towed at the ship self-propulsion point as 
in the continental method, whereas in the British method 
or the load-varied method, the model is towed at a number 
of tow force values and at the intersection of the non­
dimensional KFo curve using Equation 1 and the curve of 
the required towing force coefficient by using Equation 2, 
the towing force at the self-propulsion point is obtained 
(Bose, 2008). The non-dimensional form of the KFo curve 
is given by: 

K - FD (1) 
FD - 2 D4 

p M n M M 

where F0 = towing force; PM = specific density of fresh 
water; and nM= model propeller revolution and DM = the 
diameter of the model propeller. 

Whereas the required towing force at the self-propulsion 
point is given by: 

K = CFD'SS ; 2 
FD 2D; . p 

(2) 

where CFo = required towing force coefficient; Ss = 
wetted surface area of the ship; Ds = the diameter of the 
ship propeller and Jp = advance coefficient at the self­
propulsion point. 

2.1 Powering Prediction Procedure 
In the prediction procedure, all the data from the three 
physical model tests are combined. The outline of the 
ITTC!978 method is described in detail by Bose (2008), 
where once the advance coefficient, Jp, at the model self­
propulsion point is obtained using the curve of KFo and 
KF!:JJ/, the values of the propeller coefficients, in the 
behind condition, Krp and KQP• can be found from the 
results of the self-propulsion test. Then using "thrust 
identity" method, the value of KrP is used to find the value 
of advance coefficient, 10 in the results from the open 
water test of the propeller. 

Some corrections have to be made to the model open 
water thrust and torque coefficients, Kro and KQo, to 
obtain the full-scale open water propeller thrust and 
torque coefficients, Kros and KQoS· The operating point of 
the full-scale propeller can be found from the intersection 
of the curves of Kros. KQos and the requirement for thrust 
given in the form of Kif = Ss.Cd2D/(l-t)(J-wrsJ1 

(Bose, 2008). This intersection leads to the operating 
values of Krs, KQs and Jrs. of the ship propeller. Then it is 
possible to calculate the delivered power, Pos· The flow 
chart of this method is shown in Figure 1 in the dashed 
box at the right hand column of the chart. 

3 RELIABILITY ASSESSMENT METHODOLOGY 
BY MONTE CARLO METHOD 

The Monte Carlo method can be applied into uncertainty 
analysis in a complicated data reduction equation such as 
the ITTC 1978 extrapolations. Bose et al. (2005) 
described the methodology steps are: 

(a) Determine elemental bias/precision error sources 
and their bias/precision limits 

(b) Create Gaussian (or other) error distribution of 
bias/precision errors by assuming a standard 
deviation equal to half of bias/precision error 
limit (for 95% confidence) 

(c) Create a calculation model by using data 
reduction equations. If an elemental 
bias/precision error source is shared among two 
or more variables, the same random value of 
elemental bias/precision error value is used in 
those variables. 

( d) Setup simulations consisting of N number of 
simulations, in which elemental bias/precision 
error values are assigned randomly complying 
with Gaussian error distributions. 

( e) Calculate the result and its distribution. i.e. 
calculate mean and standard deviation of result 
from N simulations. 

(f) Determine the bias limit by taking twice the 
standard deviation. 

(g) Perform repeat tests (minimum 10) and find 
standard deviation. 

(h) Take twice the standard deviation to find the 
precision limit (for 95% confidence) 

(i) Root-sum-square bias and precision errors to find 
the total uncertainty limit. 

4 PROGRAMMING THE MONTE CARLO 
SIMULATION 

In programming the Monte Carlo simulation, the initial 
approach was to program the ITTC 1978 method, with the 
three different sets of test data imported into the main 
body of the program, see Figure l . The first input file 
contained the results of the resistance test: which 
contained the data of velocity of the model, VM in mis and 
the resistance of the model through the water, RrM, in 
Newton (N). Using the MATLAB polynomial function, 
the resistance data were then converted into an equation 
using a 2nd order regression equation. 

The second input file imported to the main program 
contained the results of the open water test. The test 
results were entered into the main program in the form of 
J=VA/nD, Kr = Tlpn2D4

, KQ = Q/pn2D5 (Manen & 
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Oossanen, 1988). The coefficient of Kr and KQ were also 
converted to 2"d order polynomial equations through 
regression. 

The third input file contained the results of the self­
propulsion test in the form of velocity of the model, V M in 
mis, the propeller shaft revolution, nM in rps, the propeller 
thrust, TM in N, the propeller torque, QM in Nm and the 
towing force, FM in N were also imported into the main 
program. There was also a fourth file of inputs containing 
other information such as the model particulars, the test 
temperatures and viscosities, the form factor and 
correlation allowance. 

~ - - - - - - - - - - - - - - - - - - -I 

' ITTC1978 Extrapolation : 
: I 

Input true values of 

variables 

(/)Self-propulsion test 
[VM. nM, FM. TM, QM] 

(2) Resistance test 
[Vu RrM] 

(3) Open water test 
[Jo, Km KQO] 

Input P; say 0.5%, I% or 
5% as the estimated 
uncertainty for each 

variable 

Start simulation i = I to N 
iterations 

Compute new values of 
variable 

New value= true value+/­
random generator * P 

No 

r------------------~ 
I ~-------~ : 

Model Self 
Propulsion Point 

Intersection of KFD and 
Kn/J/ 

Interpolate propeller 
coefficients at Self­

propulsion point 
Jp, KTP. KQP 

T hrust identity 
Use KrP to find Jo in 

open water data 

Calculate 
WTM. 11 R, /, WT.~ 

Correction in open 
water values of K ro 

and KQo 
Obtained Kros and 

KQOS 

Find operating point 
of the full scale 

propeller 
Obtained Jrs. Kr;, KQs 

Compute normal 
distribution of Pos (i) 

results 

I 
I 
I 

Figure 1: ITTC1978 Performance prediction uncertainty 
assessment methodology using Monte Carlo method 

Then, the randomisation using the Monte Carlo simulatio 
"'.'as ap~lied directly to each input, and for this study th~
simulation only focused on the randomisation to input 
from the three discrete physical tests. In a Monte Carls
simulation, an input value to an equation is random) 

0 

varied by a predetermined uncertainty and a distributi/
of the ou~ut result is obtained (Coleman & Steele, 1999)~
The equation referred to in the previous sentence or thi 
study will be the set of non-linear equations that fonn th 

8 

1 
. e

extrapo at10n method itself The original values of fio . ' r 
mstance the propeller thrust, TM, in the self-propulsion 
test, were assigned a standard deviation and distributed 
normally. The approach of this methodology is illustrated 
in Figure 1 at the left-hand column of the chart, where the 
randomisations of the error sources were introduced 
outside the extrapolation process. 

The randomiser in the program randomly varied each test
result with a standard deviation of for example 0.5%, 1%
or 5% for each measured value. A sample of randomised
results with a standard deviation of 1 % for a resistance
test is shown in Table 2 for two iterations. 

Table 2: Example of randomised resistance test values 

Original true Randomised Randomised 
values values, Iteration values, Iteration 

#1 #2 

*VM **RTu *V,, **Rn, *Vu **RTM 
0.222 0.142 0.222 0.142 0.220 0.143 
0.340 0.3 15 0.339 0.314 0.337 0.315 
0.459 0.583 0.458 0.580 0.454 0.584 
0.578 0.918 0.577 0.914 0.572 0.920 
0.685 1.634 0.684 1.627 0.678 1.637 
0.803 1.941 0.802 1.933 0.795 1.944 
0.862 2.411 0.861 2.400 0.853 2.415 
0.921 2.570 0.920 2.558 0.912 2.574 
0.949 3.025 0.947 3.012 0.940 3.030 
0.971 3.219 0.969 3.204 0.961 3.224 
0.972 3.159 0.970 3.144 0.962 3.164 
0.981 3.277 0.979 3.262 0.971 3.282 
1.009 3.505 1.007 3.489 0.999 3.51 1 
1.039 3.789 1.037 3.771 1.029 3.795 
1.089 4.209 1.087 4.189 1.078 4.215 
1.149 5.131 1.147 5.107 1.138 5.139 

1.207 6.161 1.205 6.132 1.195 6.170 

1.275 7.444 1.273 7.4 10 1.262 7.456 

1.383 9.576 1.381 9.532 1.369 9.591 

*VMm mis and **RrMin N 

This process was repeated for a large number of t1m~
specified by the user, and in this study, I 0,000 numbers of 
iteration were chosen as this number are usually sufficient 
(Coleman & Steele, 1999). For every iteration on the 
resistance test values of V M and RrM, a new regression 
equation was calculated using the new data and this ne'1 

regression equation was the new input into the ITTCl97~ 
extrapolation program. 

A similar process was applied to randomise the open 
water test data. These data were converted into J 

regression equation, and at each randomisation, a 
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regression equation was calculated and this new 
regression equation was input to the program. This 
process was also repeated l 0,000 times . 

Similarly the self-propulsion test data was randomised 
although the test runs were less numerous than the 
resistance test or the open water test. The data for K QP• 

Krp, Jp, K Fv and nM were also converted into a regression 
equation, and a new regression was calculated at each 
randomisation. A sample of randomised values with a 
standard deviation of l % for self-propulsion test is shown 
in Table 3 for two iterations. 

Table 3: Example of r andomised se.lf-propulsion test values 

VM FM nM QM TM 

Original 1.152 5.849 300.0 -0.543 0.064 

true values 1.150 4.281 400.0 1.279 0.1 02 

1.152 2.201 500.0 3.727 0. 171 

1.150 -0.865 600.0 7.111 0.278 

Randomised 1.151 5.836 300.8 -0.541 0.064 

values, 1.149 4.272 401.1 1.274 0.102 
Iter ation #1 1.151 2.196 50 1.4 3.713 0.170 

1.149 -0.863 601.6 7.085 0.277 

Randomised I.I S l S.856 299.6 -0.545 0.065 

values, 1.149 4.286 399.4 1.284 0.103 
Iteration #2 l.151 2.204 499.3 3.742 0.173 

1.149 -0.866 599.2 7.139 0.281 

5 METHODS OF UNCERTAINTY ANALYSIS 
In this study, only the three physical test inputs were 
varied by a standard deviation in a normal distribution 
while the propulsion factors such as form factor k and 
correlation allowance CA were not varied. Nevertheless, 
further work will be carried out in order to assess the 
uncertainty when the propulsion factors are varied. The 
output result of interest is the ship delivered power P05. 

As the randomisation was performed 10,000 times, the 
output results of the ship delivered power Pos also 
numbered 10,000. Therefore the results were presented in 
standard deviation as a percentage change from the output 
mean. 

5.1 Variation of propeller open water test inputs 
The values of the advance coefficient J, thrust coefficient 
Kr and torque coefficient K Q in the open water test were 
varied with standard deviation of 0 .5%, 1 % and 5%. The 
resulting standard deviation in predicted power are 0.75%, 
1.5% and 7% when all the open water test inputs were 
varied at 0 .5%, 1 % and 5% respectively. The comparisons 
of p redicted power variation are shown in Figure 2 as 
percentage change from mean for inputs varied with 
standard deviation of 0.5%, I % and 5%. 

5.2 Variation of resistance test inputs 
The simulation was next run with only the values from the 
resistance test varied, which are the measured resistance 
Rru and the velocity of the carriage V M· These values were 
also varied with standard deviations of 0.5%, l % and 5%. 

The resulting standard deviations in predicted power are 
0.20%, 0.41 % and 2.06% when the inputs were varied at 
0.5%, l % and 5% respectively as plotted in Figure 3. 

5.3 Variation of self -propulsion test inputs 
The self-propulsion data then were varied alone. The 
values of carriage speed V M, propeller revolution nM, 
towing force FM, model propeller thrust TM in N and 
model propeller torque QM were varied at standard 
deviation of0.5%, I % and 5%. 
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Figure 2: Variation of open water test inputs - K ro, KQo and 
J0 were varied simultaneously with standard deviations of 

0.5%, 1 % and 5% at a corresponding speed of 10 knots 
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Figure 3; Variation of resistance test inputs - V Mand RrM 
were varied simultaneously with standard deviations of 
0.5%, 1 % and 5% at a corresponding speed of 10 knots. 

The resulting standard deviation in predicted delivered 
power Pos when the inputs of self-propulsion test were 
varied with standard deviations of 0.5%, I % and 5% are 
0.72%, l.42% and 7.08% respectively as plotted in Figure 
4 . 

5.4 Variation of All Measured inputs 
All the measured input values from self-propulsion, 
resistance and propeller open water test were also varied 
simultaneously with standard deviations of 0.5%, I% and 
5%. The simulation was run with variation in all of the 
measured values together. 
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Figure 4: Variation of self-propulsion test inputs - V M• "M• 
FM• TM and QM were varied simultaneously with standard 

deviations of 0.5%, 1 % and 5% at a corresponding speed of 
10 knots. 
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Figure 5: Variation of all measured inputs - all tests inputs 
were varied simultaneously with standard deviation of 0.5%, 

1 % and 5% at a corresponding speed of 10 knots. 

The predicted delivered power when all the inputs were 
varied together was normally distributed as plotted in 
Figure 5 with standard deviations of 1.04%, 2 .1 % and 
10.55% for inputs variation of 0.5%, 1 % and 5% 
respectively. 

The summarised standard deviations of the predicted 
delivered power are shown in Table 4. In comparing the 
three discrete physical tests, it is observed that the 
predicted power is very dependent on the self-propulsion 
test results as the uncertainty of the output results in the 
predicted power were twice the value of the uncertainty of 
the error in the inputs. The results obtained from this 
study with input varied with standard deviation of l % has 
relatively similar results in comparison with Molloy's 
(2006) averaged results for 6 different ships with the 
inputs also varied at 1 %. However the resistance test 
result in Molloy (2006) was higher than the result from 
this study; see Table 4, last row. 

5.5 Variation of Individual Measured Values
The influence of individual test measurements was also 
examined. In each run of the simulations one of the 
measured parameters was varied while the other 
parameters remained constant. 

5. 5. 1 Propeller Open Water Test Results 

The resulting standard deviation in predicted power PDs 
when the propeller open water test parameters were varied 
individually was small except for the torque coefficient as 
shown in Table 5. 

Table 4: Standard deviations in the predicted delivered 
power with the three separate physical test inputs were 
varied 

Inputs OW* RT* SP* ALL* 

Inputs CJ Pos Pos Pos Pos 
(W) (W) (W) (W) 

0.5% 0.75% 0.20% 0.72% 1.04% 

1% 1.5% 0.41% 1.42% 2.1% 

5% 7% 2.06% 7.08% 10.55% 

Results from Molloy (2006) ** 

1% 1.37% 0.91% 1.36% 2.22% 

*OW = Open water test inputs varied, RT = Resistance test 
inputs varied, SP = Self-propulsion test inputs varied, ALL = All 
measured inputs varied 

**Average results for 6 ships with inputs varied at 1 % 

Table 5: Standard deviations in the predicted delivered 
power with individual test inputs of the open water test were 
varied 

Inputs J Kr KQ 

Inputs CJ Pos (W) Pos(W) Pos(W) 

0.5% 0.04% 0.48 0.58% 

1% 0.08% 0.95% 1.15% 

5% 0.4% 4.77% 5.82% 

Results from Molloy (2006) ** 

1%** 0.21% 1.00% 0.66% 

**Average results for 6 ships with inputs varied at 1 % 

The standard deviation of the predicted power when the 
torque coefficient was varied with a 1 % standa:d 

• • l1l 
deviation was 1.15%, whereas the standard deviat.ton 
the predicted power was small when the advance 
coefficients were varied by 0.5%, 1 % and 5%. Therefof( 
it can be concluded that the most influential parameters:
the open water test is the torque coefficient. However,

1
: e 

standard deviation in the predicted power ~om Moda~ 
(2006) when the torque coefficient was vaned stan , 
deviation of 1 % was low at 0.66%, see Table 5, last ro\\ 



Table 6: Standard deviations in the predicted delivered for two parameters which were the propeller revolution 
power with individual test inputs of the resistance test were and the model propeller thrust, see Table 7. The standard 
varied deviations when the propeller revolutions were varied at 

Inputs VM RTM 

Inputs (J Pos (W) Pos(W) 

0.5% 0.20% 0.05% 

1% 0.39% 0.1% 

5% 1.99% 0.5% 

Results from Molloy (2006) ** 

1%** 0.86% 0.32% 

**Average results for 6 ships with inputs varied at 1 % 

5.5.2 Resistance Test Results 
Then the resistance test velocity and the resistance force 
data were individually varied by a standard deviation of 
0.5%, 1 % and 5% and the standard deviations in the 
predicted power was relatively small as shown in Table 6. 

Table 7: Standard deviations in the predicted delivered 
power with individual test inputs of the self-propulsion test 
were varied 

Inputs VM nM FM 

Inputs P0 s Pos Pos 
a (W) (W) (W) 

0.5% 0.16% 0.45% 0.05% 0.43% 0.29% 

1% 0.31% 0.91% 0.09% 0.87% 0.58% 

5% l.57% 4.51 % 0.46% 4.35% 2.89% 

Results from Molloy (2006) ** 

1%** 0.89% 0.65% 0.38% 0.49% 0.89% 

**Average results for 6 ships with inputs varied at I% 

This shows that the resistance test has a small influential 
factor to the overall result of the predicted power from the 
ITTCl 978 prediction method although uncertainty in the 
resistance test results can cause the predicted power to 
skew as shown earlier in Figure 3. Molloy (2006) 
mentioned that the reason of the skew, was due to the 
steepness of the resistance curve slope itself, where at the 
values that corresponded to the higher operating speed, 
which was at the steepest portion of the curve, the varied 
values tend to be more at the higher values of the input 
data, thus giving higher predicted power, which led to 
skewing to the higher side. 

5.5.3 Self-Propulsion Test Results 
Then the self-propulsion test data such as carriage speed 
V M, propeller revolution nM, towing force FM, model 
propeller thrust TM and model propeller torque QM were 
Varied individually at the same standard deviations as in 
Previous simulations. The resulting standard deviations in 
the predicted delivered power were relatively small except 

l % was 0.91 %, whereas when the propeller model thrusts 
were varied at 1 % it was 0.87%. The results when the 
inputs were varied individually with a standard deviation 
of 1 %, is not in agreement with the averaged results for 6 
ships (Molloy, 2006), see Table 7, last row. 

In this study it can be concluded that the propeller 
revolution nM and the model propeller thrust TM, were the 
most influential parameters to the predicted delivered 
power in the self-propulsion test. 

6 CONCLUSIONS 
As seen from the summary results of the standard 
deviations of the predicted delivered power in Tables 4 to 
7, the most influential test to the predicted delivered 
power results was the self-propulsion itself and the most 
influential parameter in the three physical test was the 
torque coefficient in the open water test. Individually the 
standard deviation of all of the tests data varied at 0 .5%, 
l % and 5% was small and all the individual tests do not 
have a large effect on the uncertainty in the predicted 
power, except for the torque coefficient in the open water 
test. A large effect can be defined as when the standard 
deviation in the predicted power is more than the standard 
deviation of the input itself which indicates that the 
ITTC 1978 extrapolation equation amplifies the 
uncertainty of that parameter. In this study the only 
amplification observed was in the self-propulsion test, and 
the contributor to the amplification was the combination 
of two parameters: propeller revolutions and model thrust. 
Some suggestions could be made from these findings, that 
the value of the uncertainty in the predicted power can be 
reduced with additional test points in the resistance, open 
water and self-propulsion test programs. This can be 
clearly observed on why the self-propulsion test has the 
higher standard deviations in predicted power when 
compared to resistance test is that the number of test 
points in the self-propulsion test was limited to only 4 or 5 
points, whereas there were 19 test points in the resistance 
test data. In addition to that, Molloy (2006) recommended 
that repeating and replicating the experiments could 
reduce the uncertainty in the predicted power results. 

Further work will be carried out in order to assess the 
uncertainty when other parameters are varied. The other 
parameters that will be of interest are the coefficient of 
friction and propulsion factors such as the correlation 
allowance, the wake fraction, the thrust deduction fraction 
and the form factor. Molloy (2006) reported that the 
standard deviation of the predicted power was larger when 
the coefficient of friction and the propulsion factors were 
varied. Further work will also be carried out in the 
reliability assessment on another extrapolation method 
that uses only the self-propulsion tests data to predict full 
scale powering from model tests as described in detail in 
Bose (2008). 
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