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INTRODUCTION 
  

The Hellyer - Mt Charter region hosts three known economic 

Volcanic Hosted Massive Sulphide (VHMS) Pb-Zn ore 

bodies.  The dominant rocks in this region are a sequence of 

Cambrian marine calc-alkaline mafic to felsic volcanics and 

volcaniclastics known as the Que-Hellyer Volcanics (Waters 

& Wallace 1992).  Although there is little Quaternary glacial 

cover in the area, detailed field mapping is a challenging 

prospect due to poor outcrop, dense rainforest vegetation and 

thick soil profiles (Corbett & Komyshan 1989).  Thus, 

additional information on the spatial distribution of surface 

geology will be of significant value to mineral explorers.  

Mineral exploration in the region dates from the early 1970s 

has generated a large amount of geophysical and geochemical 

data.  Nevertheless, it is difficult for geologists to analyse and 

interpret this data especially where geological understanding 

comes from complex variable interactions.  We use Random 

Forests for the supervised classification of surface geology 

based on training data obtained from a pre-existing geologic 

map.  Self-Organising Maps are employed to find spatially 

contiguous clusters within individual geologic units using key 

input variables.   

 

Machine learning algorithms provide users with robust 

discrimination capabilities for supervised and unsupervised 

classification problems especially where the dimensionality of 

the input variables is high and where the relationships between 

data and outputs are poorly understood.  They offer 

opportunities for data users to objectively identify patterns in 

multi-dimensional input variables using an inductive approach 

(Hastie et al. 2009).  The Random Forests algorithm (Breiman 

2001) constructs an ensemble of Classification and Regression 

Tree (CART) classifiers from training data using bagging and 

random variable selection.  The Gini index measures class 

heterogeneity and is used by Random Forests to determine a 

“best split” threshold at each node of a tree.  Predictions are 

based on a majority vote cast by the ensemble of CART 

classifiers (Breiman 2001, Hastie et al. 2009).  Random 

Forests is effective at predicting spatially distributed 

geological classes using multisource and high dimensional 

remote sensing data (Waske et al. 2009; Cracknell and 

Reading, under review).  The results of these studies show 

Random Forests performed as well or significantly better than 

standard classifiers (e.g. Maximum Likelihood ) and other 

machine learning strategies (e.g. Artificial Neural Networks 

and Support Vector Machines).  Moreover, Random Forests is 

efficient, insensitive to noisy data and results in good 

performance when faced with limited training data.   

 

Self-Organising Maps (SOM) (Kohonen 1982) are 

information-driven data mining tools that have the ability to 

highlight subtle relationships within high dimensional and 

seemingly disparate datasets (Fraser & Dickson 2007).  SOM 

is an unsupervised clustering algorithm proven to be useful 

and efficient for exploring high dimensional geoscience data 

(e.g., Bierlein et al. 2008, de Carvalho Carneiro et al. 2012).  

SOM treats each sample as an n-dimensional vector in 

variable space.  Using vector quantisation and vector 

similarity measures (i.e. Euclidian distances) SOM segments 

data into a number of distinct clusters via an iterative two-

stage process.  Initially, input samples closest to randomly 

placed seed-nodes are identified.   Seed-nodes are then 

“trained” such that their values are adjusted in order to align 

closely to clusters within the input samples.  This generates a 

mapping of inputs to trained seed nodes (node-vectors) onto a 

2D space.  The topology between node-vectors (clusters) is 

preserved such that those close in nD space maintain their 

relative proximities on the 2D map (Bierlein et al. 2008). 

 

SUMMARY 
 

Remotely sensed geoscience data can assist detailed 

geological field mapping in areas of thick vegetation and 

poor outcrop. However, the potentially high 

dimensionality of these data makes it difficult to visually 

interpret and fully comprehend.  Machine learning 

algorithms provide an efficient semi-automated means of 

recognising and identifying patterns in data.  We use 

Random Forests for supervised classification of geologic 

units from airborne geophysical and soil geochemical 

data in the economically significant Hellyer - Mt Charter 

region of western Tasmania.  A backward-recursive 

variable selection method is used to select the most 

relevant and useful data for this problem.  This reduces 

computation cost and enhances interpretation of results 

without significantly affecting prediction accuracy.  

Random Forests generates accurate predictions of the 

spatial distribution of surface geologic units from these 

data.  An example is provided regarding the use of Self-

Organising Maps, an unsupervised clustering algorithm, 

to identify distinct but spatially contiguous clusters 

within a geologic unit.  By visualising cluster spatial 

distribution and identifying key variable contributions to 

cluster differences, we interpret the geological 

significance of intra-class variability. 

 

Key words: Supervised classification, Unsupervised 

clustering, Geophysics Geochemistry, Tasmania.  
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The main aims of this study are to: 1) demonstrate the 

feasibility of Random Forests for remote sensing geological 

supervised classification applications; and 2) implement SOM 

to identify intra-class clusters and interpret their geological 

significance by visualising differences in key geophysical and 

geochemical input variables.  Data preprocessing, variable 

selection, implementation of Random Forests and SOM, and 

visualisation of their outputs were conducted using the R 

Programming language (Comprehensive R Archive Network, 

http://cran.r-project.org/). 

 

Geology and Data 

 
The geology of the Hellyer - Mt Charter area has been divided 

in to 21 distinct lithological units (Figure 1).  The most 

economically important units are within the Mixed Sequence 

of the Que-Hellyer Volcanics (QHV).  The QHV contains four 

stratigraphic subdivisions.  At its base lies the Lower Basalt 

(LB), exhibiting highly variable thickness.  Conformably 

overlying LB is a unit of feldspar-phyric andesites (Afp) that 

underlies the majority of VHMS mineralisation.  The Mixed 

Sequence, which is the host horizon for economic 

mineralisation, comprises strongly altered rocks (HA), 

polymictic volcaniclastics (Y), andesites (A) and dacites with 

minor basalts (D).  Lateral facies variations are rapid within 

the Mixed Sequence and Y may be intensely hydrothermally 

altered as can the margins of some bodies of D  (Waters & 

Wallace 1992).  The upper most unit in the QHV is a sequence 

of coherent pillowed to massive basaltic rocks called the 

Hellyer Basalt (HB).  Conformably overlying and 

intercalated/intermixed with the HB is the black 

pyritic/carbonaceous Que River Shale (QRS).  Within the 

study region are a series of NE trending normal faults linked 

by NW trending transfer faults of probable Cambrian age.  

These structures are interpreted from a combination of gravity 

and magnetic surveys, rapid changes in volcanic facies and 

variations in unit thickness (McNeill et al. 1998).  Several 

regional scale Late Cambrian-Devonian faults dissect the 

study region accompanied by NNE plunging folds.  Fold 

wavelengths vary from 2 km to 500 m (Corbett & Komyshan 

1989). 

 

Data initially included in this study consisted of 14 

interpolated and levelled geophysical variables, 11 C-horizon 

soil geochemistry variables and 7 bands of Landsat ETM+ 

imagery.  Where required, these data were resampled (using 

bilinear interpolation) to a resolution of 20 m.  All data were 

cropped to an area determined by the spatial distribution of 

soil samples.  Geophysical data were smoothed using a 5x5 

mean convolution filter to reduce the effect of artefacts (e.g. 

high voltage powerlines).  Variables with log-normal 

distributions were transformed to normal distribution using the 

natural logarithm.  All data were scaled to zero mean and unit 

variance.  Total Magnetic Intensity (TMI) was Reduced to 

Pole (RTP) using Aust. Geomagnetic Reference Field 

(http://www.ga.gov.au) parameter estimates.  A regional 

magnetic gradient (Richardson 1994) was removed by linear 

trend surface subtraction.  Gamma-Ray Spectrometry (GRS) 

data were corrected for negative values.  GRS band ratios, 

K/Th, U/Th, and U2/Th, were calculated and included.  Five 

data layers were present in the log10 AEM apparent resistivity 

maps relating to different frequencies of data acquisition.  Soil 

geochemistry data contain ~26,000 individual georeferenced 

samples collected by hand auger, to a depth of 1 m.  These 

samples are assumed to relate to C-horizon of the soil profile.  

Samples were analysed for up to 11 elements: Cu, Pb, Zn, Ag, 

Au, Ba, As, Cr, Zr, Ti, and Ni.  Mean element abundances 

(ppm) were calculated for samples collected within 5 m of 

each other.  Au data was not used in this study as there were 

<200 non-missing values.  Interpolation from irregularly 

spatially distributed samples to a uniform grid with 20 m cell 

resolution was carried out using ordinary kriging with fixed 

covariance parameters for a global neighbourhood.  

Covariance parameters were estimated by fitting parametric 

exponential or spherical models, using weighted least squares, 

to an isotropic empirical variogram for distances of 3 km or 5 

km at 100 m intervals.  Landsat ETM+ image data, unaffected 

by cloud cover, were supplied with Level 1 processing.  Band 

ratios, useful for discriminate geological materials (e.g., 

Durning et al. 1998, Boettinger et al. 2008), were calculated. 

 

 
 

Figure 1.  Geology of Hellyer - Mt Charter study region, 

after Corbett and Komyshan (1989), Waters and Wallace 

(1992) and Richardson (1994) 
 

METHOD AND RESULTS 
 

Supervised classification requires prior information (training 

data) in order to construct a classification model.  In this 

study, we randomly sampled 100 instances (pixels) for each of 

the 21 geologic classes.  This reduced the potential for 

constructing a biased classifier resulting from a large 

difference in sample counts for the classes in the training data 

(Japkowicz & Stephen 2002).  Spatially randomly sampled 

independent test dataset was used to evaluate Random Forest 

classification model performance.  Test data contained an 

equal number of samples to the training data (i.e. 2100) 

resulting in class sample proportions approximately equivalent 

to class coverage over the study region. 

Selection of non-redundant inputs was conducted by 

eliminating variables with mean correlation coefficients >0.8 
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associated with a large proportion of other data.  A recursive 

(backward) variable selection method was then employed to 

find the minimum number of optimal inputs.  Variables are 

ranked, using Random Forest importance measures, and 

recursively eliminated while estimating prediction accuracy.  

The minimum number of important variables was identified 

using a 0.015 threshold from the maximum mean accuracy.  

Mean accuracies were calculated using 10-fold cross-

validation resampled over 10 iterations.  Figure 2a plots cross-

validation accuracy as a function of the 24 ranked variables 

after the removal of redundant data.  Figure 2b presents the 11 

selected variables in ranked order of importance.  Selected 

variables contain geophysics data and soil geochemistry data. 

   

 
 

Figure 2.  a) Random Forests variable selection cross-

validation accuracies, and b) final list of selected variables 

in ranked order of relative importance 

 

Random Forests requires selection of the number of variables 

to split (mtry) and the number of trees to construct (trees) to 

optimize performance.  Trees was set to 500, while mtry 

values were varied and selected using maximum mean cross-

validation accuracy.  SOM was implemented with a 3x3 

hexagonal topology using a neighbourhood radius equal to 2/3 

of all variable ranges and learning rate decay from 0.05 to 0.01 

over 100 iterations.  A hierarchical (tree-based) clustering 

method was used to merge SOM derived clusters by iteratively 

combining clusters with similar properties until the desired 

number of clusters remain.  Cluster spatial distribution was 

assessed in map form.  The contributions of input variables to 

class sub-groups were examined by plotting frequency 

densities showing relative distributions of samples belonging 

to individual clusters. 

 

The test data confusion matrix (not shown) has an overall 

accuracy of 0.784 ± 0.018 based on Exact 95% Confidence 

Limits.  The majority of misclassifications occur between 

classes within the QHV.  HA predictions generally misclassify 

D and to a lesser extent Afp.  Y is equally misclassified as 

Afp, D and HB.  Classes underlying or immediately above HA 

and Y and classes in the upper sequence of the QHV are 

misclassified as each other.  Neither HA or Y are misclassified 

as each other despite their stratigraphic and spatial proximity.  

Due to strong basalt geochemical signatures, QRS is most 

often misclassified as HB.  QRS is also misclassified as 

undifferentiated URS of the Southwell Sub-Group, which 

contains a large proportion of shale.  Figure 3 provides a map 

geologic classes predicted by Ransom Forests, reclassified 

using a 3 x 3 majority convolution filter.  Predictions generally 

conform to the interpreted extent of geologic classes in the 

reference map (see Figure 1).  The inset in Figure 3 indicates 

the majority of misclassifications occur between spatially 

adjacent classes.  These errors are concentrated in regions of 

complex faulting and thin and discontinuous Mixed Sequence 

units.  Immediately to the north of Mt Charter, a zone of dense 

misclassifications is associated with the Mixed Sequence, 

especially where HB is mapped to underlie D and Afp is 

predicted as A, probably due to their similar geochemical 

signatures.  QRS is difficult to correctly classify where it is 

mapped as a thin unit: in contact with HB and URS, and 

adjacent to dolerite west of Mt Charter. 

 

Samples predicted as HB were grouped into four clusters.  The 

hierarchical cluster dendrogram in Figure 4a indicates HB1 

and HB3, and HB2 and HB4 are most similar.  The map of the 

spatial distributions of intra-class clusters (Figure 4b) shows 

HB4 is a thin and discontinuous layer along the lower margin 

HB, while HB2 occurs stratigraphically above HB4 north of 

the Que Fault.  HB1 is positioned within the hinge zone of an 

anticline north of the Que Fault and HB3 occurs south of the 

Que Fault, coincident with the Mt Charter Pb soil anomaly and 

hinge zone of a syncline.  Major differences between the four 

HB clusters occur within Ti, Cu, Cr and Pb variables (Figure 

4c), with HB1 and HB3 exhibiting relatively higher Ti, Cu and 

Pb than HB2 and HB4.  

 

 
 

Figure 3.  Geologic class predictions generated by Random 

Forests and spatial distribution of misclassified samples.   

 

CONCLUSIONS 
 

A backward-recursive variable selection method was used to 

identify and select the most important variables for the 

supervised classification of surface geologic units in the 

Hellyer - Mt Charter region using Random Forests.  A 

significant reduction in the number of redundant and irrelevant 

variables improves the interpretability of results and reduces 

computation cost without significantly affecting classification 

accuracy.  Random Forest categorical predictions of 

geological units generally conform to the reference geological 

map.  However, the method we used to obtain training data 

assumes prior knowledge of the general extent of geological 

classes, information which may not be available in other 

applications.  Random Forest predictions indicate the presence 

of small areas of potentially unmapped VHMS host horizons 

(i.e. HA and Y) south of the Que Fault and east of Que River,  
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Figure 4.  Self-Organising Map unsupervised clustering 

for Hellyer Basalt class predicted by Random Forests, a) 

hierarchical partitioning of clusters, b) spatial distribution 

and c) frequency density estimations of key variables 

 

which may be linked to subsurface mineralisation.  

Furthermore, Random Forest misclassifications indicate the 

highly variable and mixed geochemical signature of the Que-

Hellyer Volcanics.  We used a hierarchical tree clustering 

method for visualising the appropriate number of intra-class 

clusters and merging similar Self-Organising Map node-

vectors.  We have identified four distinct intra-class groups 

within the Hellyer Basalt based on key geophysical and 

geochemical variables.  The relative low base metal content 

and spatial distribution of clusters HB2 and HB4, suggests 

primary effusive origins.  In contrast, HB1 and HB3 are likely 

to be associated with synvolcanic base metal mineralisation.  

Random Forests offers geologists an opportunity to accurately 

and objectively predict geology from multisource and high 

dimensional geoscience data.  We show that by using Self-

Organising Maps, geologically relevant and spatially 

contiguous clusters can be inferred within predicted classes.  

Visualising the spatial distribution and similarities and 

dissimilarities between clusters provides clear interpretations 

of their geological significance. 
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