Candidate Set Strategies for Ant Colony
Optimisation

Marcus Randall and James Montgomery*

School of Information Technology
Bond University, QLD 4229
{mrandall, jmontgom }@bond.edu.au

Abstract. Ant Colony Optimisation based solvers systematically scan
the set of possible solution elements before choosing a particular one.
Hence, the computational time required for each step of the algorithm
can be large. One way to overcome this is to limit the number of element
choices to a sensible subset, or candidate set. This paper describes some
novel generic candidate set strategies and tests these on the travelling
salesman and car sequencing problems. The results show that the use of
candidate sets helps to find competitive solutions to the test problems
in a relatively short amount of time.

Keywords: Ant colony optimisation, candidate set, travelling salesman prob-
lem, car sequencing problem.

1 Introduction

The Ant Colony Optimisation (ACO) [1] meta-heuristic is a relatively new opti-
misation technique based on the mechanics of natural ant colonies. It has been
applied extensively to benchmark problems such as the Travelling Salesman
Problem (TSP), the job sequencing problem and the Quadratic Assignment
Problem (QAP). In addition, work on more complex problems that have dif-
ficult constraints in such areas as transportation and telecommunications, has
been undertaken [1]. Since ACO is a constructive meta-heuristic, at each step
ants consider the entire set of possible elements before choosing just one. Hence,
the vast majority of an ant algorithm’s runtime is devoted to evaluating the util-
ity of reachable elements and so ACO techniques can suffer from long runtimes if
attention is not paid to constructing appropriate subsets of elements from which
to choose. There has been little work done in this area, despite the fact that this
can potentially improve the efficiency of ACO, especially for large real world
problems. The way that this is achieved is via candidate set strategies.
Candidate set strategies have traditionally only been used as part of a lo-
cal search procedure applied to the solutions generated by ACO. However, the
strategies developed for local search heuristics such as 2-opt and 3-opt are inap-
propriate for use in the construction phase of the ACO algorithm, and it is only

* This author is a PhD scholar supported by an Australian Postgraduate Award.

in later improvements of Ant Colony System (ACS) that candidate set strategies
were applied as part of the construction process [2,3]. The most common candi-
date set used for the TSP is nearest neighbour, in which a set of the k nearest
cities is maintained for each city. Ants select from this set first and only if there
are no feasible candidates are the remaining cities considered. This approach has
been particularly useful on larger problems (more than 1500 cities) [2]. In some
instances, maintaining sets of less than 10 cities can be sufficient to contain all
the links in the optimal solution [4]. Bullnheimer, Hartl and Strauf [5] also use
a nearest neighbour candidate set their ant system for the vehicle routing prob-
lem. Another static approach for geometric problems is to create a candidate set
based on the Delaunay graph, augmented with extra edges to provide sufficient
candidates [4].

Both the nearest neighbour and Delaunay graph candidate set approaches can
be easily generalised for problems in which each element has a relationship with
each other element, such as the TSP. However, for problems that do not exhibit
strong relationships between elements, such as in the QAP where facilities relate
to locations but not to other facilities, these techniques are difficult to apply.

Each of these techniques uses static candidate sets generated a priori (i.e.
candidate sets that are derived before, and not updated or changed during,
the application of the ACO meta-heuristic). In contrast, dynamic candidate set
strategies require the sets to be regenerated throughout the search process. Al-
though used routinely in iterative meta-heuristics like Tabu Search (TS) [6],
their use in ant algorithms has only been suggested by Stiitzle and Hoos [7]. As
much of the power of ACO comes from the use of adaptive memory (pheromone
trails), it is likely that using dynamic candidate set strategies will lead to fur-
ther improvements in both solution quality and computational runtime. This
paper outlines generic dynamic candidate set strategies for a wide variety of
common combinatorial optimisation problems. In addition, we test some appro-
priate generic strategies on the TSP and the car sequencing problem (CSP) [8].
An extended version of this paper is also available [9].

This paper is organised as follows. Section 2 gives a description of some
generic candidate set strategies. Section 3 outlines the computational experi-
ments and Section 4 has the concluding remarks.

2 Generic Candidate Set Strategies

Candidate sets strategies can be broadly divided into two approaches: static, in
which candidate sets are generated a priori and used without change throughout
the search process, and dynamic, in which candidates sets are regenerated during
the search. Static approaches are more problem specific and suitable for simpler
problems such as the TSP. Dynamic approaches are more easily generalised
across different problem types and hence, their development and refinement is
necessary to solve complex problems.

The TS meta-heuristic was the first to make use of dynamic candidate list
strategies [6]. Greedy Randomised Adaptive Search Procedures (GRASPs) [10],

another constructive approach, also use a type of dynamic candidate set that
is highly similar to the first strategy described below. We describe how the TS
strategy of elite candidate set and a new general purpose strategy, evolving set
can be applied to ACO. Both of these approaches maintain separate candidate
sets for each element in the solution, as in the static approaches used previously
in ACO.

1. Elite Candidate Set. Initially, the candidate set is established by considering
all possible elements and selecting the best k, where k is the size of the set,
based on their probability values (see Dorigo and Gambardella [2]). This set
is then used for the next [iterations of the algorithm. The rationale of this
approach is that a good element now is likely to be a good element in the
future.

2. FEwvolving Set. This is similar to the Elite candidate set strategy and follows
an important aspect of the TS process. Elements that give low probability
values are eliminated temporarily from the search process. These elements
are given a “tabu tenure” [6] in a tabu list mechanism. This means that
for a certain number of iterations, the element is not part of the candidate
set. After this time has elapsed, it is reinstated to the candidate set. The
threshold for establishing which elements are tabu can be varied throughout
the search process depending on the quality of solutions being produced.

3 Computational Experience

Two problem classes were used to test the generic candidate set strategies, the
TSP and the CSP. The CSP is a common problem in the car manufacturing
industry [8]. In this problem, a number of different car models are sequenced
on an assembly line. The objective is to separate cars of the same model type
as much as possible in order to evenly distribute the manufacturing workload.
The TSP problem instances, from TSPLIB, are gr24, hk48, eil51, st70, €il76,
kroA100, d198, 1in318, pcb442 and att532. The CSP problem instances are n20t1,
n20t5, n40t1, n40t5, n60t1, n60t5, n80t1 and n80t5, and are available online at
http://www.it.bond.edu.au/randall/carseq.tar.

Our experiments are based on the ACS meta-heuristic. The computing plat-
form used to perform the experiments is a 550 MHz Linux machine. Each prob-
lem instance is run across 20 random seeds and consists of 3000 iterations. The
ACS parameter values used are: § = —2, global pheromone decay a = 0.1, local
pheromone decay p = 0.1, number of ants m = 10, ¢y = 0.9.

For both problem types, a control strategy and an ACS with a static can-
didate set were run in order evaluate the performance of the generic dynamic
strategies. The control ACS is simply ACS without any candidate set features.
The static set strategy for the TSP and CSP is nearest neighbour. For the CSP,
the separation distance between each pair of cars is calculated to produce the
nearest neighbour static set. In our experiments, we set k& = 10 for both TSP
and CSP.

3.1 Code Implementation

This section describes the mechanics of implementing the candidate set strate-
gies within the ACS framework. In particular, the heuristic for establishing and
varying quality thresholds is described and problem specific details are given.

Elite Candidate Set Elite candidate set as described in the TS literature
regenerates its candidate set after a predetermined number of iterations or if the
quality of elements in the set falls below a critical level. Our implementation
uses the former strategy, as it stores element quality at the time it generates
the candidate set. This makes it difficult to judge whether the current quality
of elements has dropped sufficiently to necessitate the regeneration of the set.
However, initial testing has shown that our method ensures that elite candidate
set runs quickly, while having minimal impact on the cost of solutions generated.
A candidate set may persist across iterations. Elite candidate set has two control
parameters: the size of the set (expressed as a constant number of elements) and
the refresh frequency (expressed as a (fractional) number of iterations). The
values used in the experiments are a set size of 10 and a refresh frequency of 0.5
iterations.

Evolving Set At each step, the Evolving set strategy examines only those el-
ements that are reachable by an ant during that step to determine their tabu
status. Elements whose tabu tenure has expired cannot be immediately rein-
cluded on the tabu list. Elements can, and in these experiments were, placed on
the tabu list for more than one iteration. Hence, Evolving set can serve to focus
the search over a number of iterations, rather than just within a single iteration.
In addition to the tabu threshold, which is adjusted by the algorithm, Evolving
set has only one parameter, the tabu tenure. For these experiments this was set
at 15 iterations. Tabu tenures smaller than one iteration were used initially but
found to be less effective.

A simple heuristic has been developed for adjusting the tabu threshold pe-
riodically between preset upper and lower bounds. An initial threshold is es-
tablished by calculating all the elements’ probabilities and selecting a threshold
value such that 50% of elements are above it. The upper bound is set such that
10% of elements are above it, while 10% of elements are below the lower bound.
The mean cost of solutions produced is used as an approximate measure of the
overall quality of the population of solutions. It is recorded after the first iteration
and subsequently updated each time the threshold is adjusted. The threshold is
adjusted every 20 iterations by examining the proportion of solutions with a
cost better than the previously recorded mean. If there are proportionally more
solutions with an improved cost, the algorithm is assumed to be in an improv-
ing phase and the threshold is raised. If the reverse is the case, the threshold is
lowered to allow greater exploration to take place. The new threshold is related
to the old by Equation 1.

L LT (1)
m

Tmaz — T L my—mg >0
S=<L T —Tmin Hmp—mg<O0 (2)
0 otherwise

m is the total number of solutions, m; and m, are the number of solutions with
better and poorer costs than the previous mean respectively, s is a scale factor
determined by Equation 2, and 7, and 7,4, form a lower and upper bound
on the threshold.

Problem Specific Implementation Details For the TSP, an ACS element
is represented by a city. The cost of an element(city) is simply d;; where i is the
previous city and j is the current city.

For the CSP, an element is represented by a car. At each step, each ant adds
a new car to its production line schedule. In order to calculate the element/car
cost, all of the previous cars must be examined in relation to the new car. If any
of these cars are of the same model type as the new car, the separation penalty
(i.e. cost) for that model type is recalculated.

3.2 Results

The results are given in Table 1. Results are presented as the Relative Percentage
Deviation (RPD) from the best known cost, calculated according to C;;% x 100,
where ¢ is the cost of the solution and cpes is the best-known cost for the
corresponding problem. The minimum (“Min”), median (“Med”) and maximum
(“Max”) measures are used to summarise the results as they are non-normally
distributed. Given the high consistency of results for CPU time (in seconds),
only the median CPU time is reported.

For the TSP, the Elite candidate set strategy appears to offer the best perfor-
mance in terms of solution cost, while the static candidate set strategy offers the
best increase in speed. The Evolving set strategy also produces better solutions
than normal ACS in less time, but its solutions are generally more expensive
than those produced by Elite candidate set and the static candidate set strat-
egy. It is important to note that the time used by the candidate set strategies is
highly dependent on the values of their control parameters.

Further experiments were carried out in which the static set and Elite can-
didate set strategies were run for equivalent time as the control strategy. These
found that their respective performances on cost could be improved if they were
run for more iterations, although the static set’s performance was still worse
than Elite candidate set’s.

For the CSP, Evolving set appears to perform best in terms of cost, but
is actually slower than normal ACS. Larger candidate set sizes may improve
the performance of the static set, which was often found to contain no usable

elements requiring all elements to be examined. In contrast, Elite candidate
set regularly regenerates its candidate set and does not suffer from this problem.
However, Elite candidate set did not perform well on the CSP in terms of solution
cost.

4 Conclusions

This paper has described some generic candidate set strategies that are suitable
for implementation within ACO. This has been a preliminary investigation and
it is likely that other candidate set mechanisms, apart from the ones described
and tested herein, are possible.

The results indicate that dynamic candidate set strategies can be applied
quite succesfully in an ACO setting to combinatorial optimisation problems such
as the TSP and CSP. However, each strategy’s performance across the two prob-
lem types is not consistent. Further investigation into why certain candidate set
strategies perform well on some types of problem and poorly on others needs to
be carried out. The effects of different control parameter values also need to be
more fully explored.

It is conceivable that the results could have been improved by the application
of a local search procedure. This has not been done as the primary purpose of
this study is to investigate how candidate set strategies can be applied in a
general way to constructive meta-heuristics.

In order for ACO meta-heuristics to be used routinely for practical optimisa-
tion problems, further empirical analysis of these candidate set techniques needs
to be undertaken. Future work will involve studying how the contents of these
dynamic candidate sets change with time using these strategies across different
problem types.

References

1. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-heuristic. In Corne,
D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill, London
(1999) 11-32

2. Dorigo, M., Gambardella, L.M.: Ant Colonies for the Traveling Salesman Problem.
BioSystems 43 (1997) 73-81

3. Stiitzle, T., Dorigo, M.: ACO Algorithms for the Traveling Salesman Problem.
In Miettinen, K., Makela, M., Neittaanmaki, P., Periaux, J. (eds.): Evolutionary
Algorithms in Engineering and Computer Science. Wiley (1999)

4. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applica-
tions. Springer-Verlag, Berlin (1994)

5. Bullnheimer, B., Hartl, R.F., Strauf}, C.: An Improved Ant System Algorithm
for the Vehicle Routing Problem. Sixth Viennese workshop on Optimal Control,
Dynamic Games, Nonlinear Dynamics and Adaptive Systems, Vienna, Austria
(1997)

6. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)

10.

Stiitzle, T., Hoos, H.: Improving the Ant System: A Detailed Report on the MAX-
MIN Ant System. Darmstadt University of Technology, Computer Science Depart-
ment, Intellectics Group., Technical Report AIDA-96-12 - Revised version (1996)
Smith, K., Palaniswami, M., Krishnamoorthy, M.: A Hybrid Neural Network Ap-
proach to Combinatorial Optimisation. Computers and Operations Research 73
(1996) 501-508

Randall, M., Montgomery, J.: Candidate Set Strategies for Ant Colony Optimi-
sation. School of Information Technology, Bond University, Australia, Technical
Report TR02-04 (2002)

Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization 6 (1995) 109-133

Table 1. Results for each strategy applied to the TSP and CSP

TSP CSP
Strategy Problem Cost (RPD) CPU Problem Cost (RPD) CPU
Instance Min Med Max Time Instance Min Med Max Time
Control gr24 0.0 0.5 5.0 17 n20t1 20.7 56.0 86.2 9
hk48 0.0 04 34 68 n20t5 29.3 33.3 68.0 9
eil51 0.5 2.6 5.2 s n40t1 42.5 58.6 73.3 31
st70 1.6 3.3 9.5 145 n40t5 27.0 32.4 47.2 31
€il76 1.5 3.8 84 170 n60t1l 113.8 141.8 162.5 68
kroA100 0.0 1.2 3.5 293 n60t5 24.2 33.4 50.0 67
d198 1.0 1.9 3.2 1144 n80t1 44.2 57.3 73.0 120
1in318 8.8 12.3 15.9 2948 n80t5H 24.7 34.3 47.2 119

pcb442 20.1 23.9 27.7 5772
att532 20.2 26.4 31.6 8384

Static gr24 0.0 0.5 5.3 15 n20t1 5.2 14.7 25.9 15
hk48 0.0 0.6 24 30 n20t5 49.3 50.7 52.0 15
eil51 0.5 2.6 5.2 32 n40t1 70.5 84.2 96.6 41
st70 0.3 2.0 7.9 45 n40t5 33.2 39.5 50.3 38
€il76 1.1 2.1 3.5 49 n60t1 196.1 209.9 273.0 79
kroA100 0.2 1.1 6.4 68 n60t5 30.1 37.5 50.2 79
d198 1.6 3.0 4.7 164 n80t1 67.0 80.2 109.4 136
lin318 2.6 7.7 13.1 332 n80t5 40.0 53.0 63.9 138

Elite gr24 0.0 0.5 4.4 10 n20t1 70.7 95.7 136.2 6

Candidate hk48 0.0 0.3 2.2 38 n20t5 68.0 97.3 174.7 5

Set eil51 0.5 3.1 6.1 43 n40t1 80.8 124.0 176.0 22
st70 0.3 2.0 9.2 83 n40t5 90.9 119.3 127.0 22
€il76 1.3 3.4 5.9 98 n60t1 227.6 257.6 323.7 54
kroA100 0.0 0.8 5.8 168 n60t5 107.8 129.2 133.6 55
d198 0.8 1.5 2.1 686 n80t1 101.2 151.4 210.6 107
lin318 1.9 3.5 5.1 1770 n80t5 92.0 123.6 154.8 109
pcb442 3.1 5.8 8.4 3518
att532 3.8 4.9 6.2 5075

Evolving gr24 0.0 0.6 5.0 9 n20t1 6.9 129 22.4 23

Set hk48 0.0 0.1 3.4 27 n20t5 10.7 10.7 12.0 17
eil51 0.7 2.6 5.6 28 n40t1 3.4 134 219 86
st70 0.7 39 7.3 47 n40t5 5.1 5.7 10.2 72
€il76 1.1 2.8 6.7 62 n60t1 68.4 78.0 90.1 198
kroA100 0.0 0.5 4.6 98 n60t5 21 28 46 174
d198 0.7 1.8 4.0 355 n80t1 10.0 15.9 22.7 358
1in318 3.2 5.0 6.5 954 n80t5 0.5 1.8 3.9 307

pcb442 13.8 17.4 20.4 1861
att632 13.5 17.1 22.8 2883

	Cover sheet

	Author's final draft
	Introduction
	Generic Candidate Set Strategies
	Computational Experience
	Code Implementation
	Elite Candidate Set
	Evolving Set
	Problem Specific Implementation Details

	Results

	Conclusions

